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Introduction
Radiation therapy is an effective cancer treatment; however, surrounding normal tissues are also affected, 
leading to tissue damage and remodeling (1–4). For patients with breast cancer, the heart, lungs, and skin 
are the most common organs at risk for toxicity (5–7). Onset of  radiation-induced toxicities often vary due 
to patient-specific factors, and clinical symptoms may be acute or long-term, often appearing months or even 
years after treatment (6). Modern advances in radiation therapy now allow for administration of  higher doses 
to smaller volumes, making target coverage and dose delivery important to maintain efficacy while minimiz-
ing toxicity. However, there are few biomarkers of  radiation-related damage that allow for real-time moni-
toring of  the tissue impact at a cellular level following radiation and provide a comparison with the planned 
dose. Here, we address this unmet need for sensitive and tissue-specific detection of  cellular injury using 
serially collected blood samples.

Decoding the cellular origins of  circulating cell-free DNA (cfDNA) from blood samples (liquid biopsies) 
is a promising approach for noninvasive monitoring of  organ homeostasis, where rising levels of  cfDNA 
released from dying cells indicate increased tissue damage (8–13). The majority of  cfDNA fragments peak 
around 167 bp, corresponding to the length of  DNA wrapped around a nucleosome (147 bp) plus a linker 
fragment (20 bp). This nucleosomal footprint in cfDNA reflects degradation by nucleases as a by-product 
of  cell death and the tissue origins of  the cfDNA fragments can be uncovered using highly cell-type-specific 
DNA methylation patterns (8, 14). DNA methylation typically involves covalent addition of  a methyl group 

Radiation therapy is an effective cancer treatment, although damage to healthy tissues is common. 
Here we analyzed cell-free, methylated DNA released from dying cells into the circulation to 
evaluate radiation-induced cellular damage in different tissues. To map the circulating DNA 
fragments to human and mouse tissues, we established sequencing-based, cell-type-specific 
reference DNA methylation atlases. We found that cell-type-specific DNA blocks were mostly 
hypomethylated and located within signature genes of cellular identity. Cell-free DNA fragments 
were captured from serum samples by hybridization to CpG-rich DNA panels and mapped to 
the DNA methylation atlases. In a mouse model, thoracic radiation-induced tissue damage was 
reflected by dose-dependent increases in lung endothelial and cardiomyocyte methylated DNA 
in serum. The analysis of serum samples from patients with breast cancer undergoing radiation 
treatment revealed distinct dose-dependent and tissue-specific epithelial and endothelial 
responses to radiation across multiple organs. Strikingly, patients treated for right-sided breast 
cancers also showed increased hepatocyte and liver endothelial DNA in the circulation, indicating 
the impact on liver tissues. Thus, changes in cell-free methylated DNA can uncover cell-type-
specific effects of radiation and provide a readout of the biologically effective radiation dose 
received by healthy tissues.
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to the 5-carbon of  cytosine (5mc), with the human and mouse genomes containing 28 and 21 million CpG 
sites, respectively (14, 15). Dynamic changes to the methylome during development and cellular differentia-
tion lead to stable, cell-type-specific patterns of  DNA methylation that are conserved during DNA replication 
and thus provide the predominant mechanism for inherited cellular memory during cell growth (16–19).

Recent studies have demonstrated the feasibility of  tissue-of-origin analysis of  methylated cfDNA in 
the circulation (20–24). However, few of  these studies have focused on tracking intervention-related chang-
es over time that is feasible by analyses of  serially collected liquid biopsies (25–27). The short half-life of  
cfDNA (15 minutes to 2 hours) is ideal for detecting real-time changes in tissue homeostasis due to thera-
peutic interventions (27, 28). Also, few cfDNA analyses have taken advantage of  CpG pattern analysis to 
increase sensitivity and specificity of  cell type proportion estimates (22, 23, 29–32). Each cfDNA molecule 
originates from a defined cell and pattern analysis of  sequence reads allows for individual classification of  
each sequenced fragment, as opposed to traditional methods that average the methylation status across a 
population of  fragments aligned at single CpG sites (27, 28). Building on these advances, we present a fine-
tuned approach for deconvolution of  cfDNA patterns based on fragment-level CpG methylation blocks.

Here, we first report comprehensive, sequencing-based DNA methylation reference maps of  healthy 
human and mouse cell types and show the close relationship of  DNA methylation with cellular gene expres-
sion. Then, we apply cell-type-specific DNA methylation to trace the origins of  cfDNA in serum samples. 
We report that hybridization capture sequencing of  methylated cfDNA in serum samples reveals dose-de-
pendent tissue damages in a mouse model of  radiation injury. In addition, analyses of  serial serum samples 
from patients with breast cancer undergoing standard-of-care radiation treatment indicate distinct cellular 
damages in different organs and provide a measure of  the biologically effective radiation dose administered. 
Thus, as a proof  of  concept, the atlases of  cell-type-specific methylation signatures developed here allow for 
detection and quantification of  radiation-induced cellular injury from cfDNA in the circulation.

Results
Experimental paradigm to identify the cellular origins of  radiation-induced damage from cfDNA in the circulation. To 
investigate whether radiation-induced tissue damage can be monitored from changes in methylated cfDNA 
in the circulation, we collected serial serum samples from patients with breast cancer undergoing routine 
radiation treatment as well as serum and tissue samples from mice that had received different doses of  tho-
racic radiation (Figure 1). The bioanalyzer trace in Figure 1 shows readings of  cfDNA isolated from serum 
samples that were bisulfite treated, enriched for sequences of  interest by methylome-wide hybridization 
capture, and subjected to sequence analysis. As a prerequisite for identification of  the cellular origins of  the 
cfDNA fragments isolated from the circulation, we established human and mouse cell-type-specific DNA 
methylation atlases. We took a sequencing-based approach interrogating existing whole-genome bisulfite 
sequencing (WGBS) data sets and generated complementary data from additional cell types composing 
at-risk organs that include the lungs, heart, and liver (Supplemental Tables 1 and 2; supplemental materi-
al available online with this article; https://doi.org/10.1172/jci.insight.156529DS1). The characteristics 
and validation of  the DNA methylation blocks that provide the basis for the cell-type-specific mouse and 
human atlases are described next.

Differences in DNA methylation blocks reflect distinct developmental lineages and cellular identities. We obtained 
controlled access to reference human and mouse WGBS data sets from publicly available databases, pref-
erentially from primary cells isolated from healthy human and mouse tissues. Additionally, we generat-
ed cell-type-specific methylomes for mouse immune cell types (CD19+ B cells, Gr1+ neutrophils, CD4+ 
T cells, and CD8+ T cells) and human tissue-specific endothelial cell types (coronary artery, pulmonary 
artery, cardiac microvascular, and liver sinusoidal endothelial cells [LSECs]). This resulted in the curation 
of  mouse methylation data from 10 different cell types and 18 tissues to establish the most comprehensive 
mouse methylation atlas to date. In addition, we characterized methylation data from over 30 distinct 
human cell types from diverse populations of  donors (Supplemental Tables 1 and 2). To better understand 
the epigenomic landscape of  these healthy human and mouse cell types in tissues, we characterized the 
methylomes by first segmenting the data into homogeneously methylated blocks where DNA methylation 
levels at adjacent CpG sites are highly correlated across different cell types (22). Curated human WGBS 
data sets from healthy cell types were segmented to identify 351,395 blocks covered by our hybridization 
capture panel used in the analysis of  cfDNA in human serum (captures 80 Mb, ~20% of  CpGs). Likewise, 
segmentation of  mouse WGBS data sets from healthy cell types and tissues identified 1,344,889 blocks 
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covered by the mouse hybridization capture panel (captures 75 Mb, ~50% of  CpGs). Average methylation 
was calculated within blocks of  at least 3 CpG sites and the top 30,000 blocks (~10%) were selected, show-
ing the highest variability across all samples. Unsupervised clustering analysis of  the top 30,000 variable 
methylation blocks among all human samples revealed that cellular identity and developmental lineage 
primarily drives the relationship between samples and is presented as a dendrogram and uniform manifold 
approximation and projection (UMAP) plot in Figure 2, A and B. The respective analysis of  mouse cell 
types is depicted in Figure 2C and Supplemental Figure 1A. The tight relationship of  methylomes of  the 
same cell type observed from the cluster analysis reinforces the concept that methylation status is conserved 
at regions critical to cell identity. The variation in distance between all samples was approximately 12 times 
larger than the variation in distance between samples from the same cell type (see Methods). It is notewor-
thy that differences in library construction did not bias sample clustering (Supplemental Figures 2 and 3). 
This stability allows methylated DNA to serve as a robust biomarker of  cell types across diverse human 

Figure 1. Experimental paradigm using cell-free methylated DNA in blood to identify cellular origins of radiation-induced tissue damage. Serial serum 
samples were collected from breast cancer patients treated with radiation. In parallel, paired serum and tissue samples were collected from mice receiving 
3 Gy or 8 Gy of radiation compared to sham control. Cell-free DNA (cfDNA) methylome profiling of serum samples was performed using hybridization 
capture-sequencing of bisulfite-treated cfDNA. Cell-type-specific methylation blocks were identified from whole-genome bisulfite sequencing (WGBS) 
reference data of healthy tissues and used to identify the cellular origins of the serum cfDNA.
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populations. For the most part, cells from distinct lineages remain closely related, including immune, epi-
thelial, neuronal, endothelial, muscle, and stromal cell types. Examples are tissue-specific endothelial and 
tissue-resident immune cells that cluster with other endothelial or immune cells respectively, independent 
of  the germ layer origin of  their tissues of  residence. Collectively, these findings support the idea that DNA 
methylation is highly cell-type specific and reflects cell lineage specification.

Development of  sequencing-based DNA methylation atlases of  primary human and mouse cell types. Based on 
the above unsupervised clustering analysis, we selected a final set of  reference methylomes used to identify 
differentially methylated cell-type-specific blocks. We excluded WGBS samples from bulk tissues and sam-
ples with low coverage. Subsets of  some related cell types were considered together to form the final groups 
(i.e., monocytes grouped together with macrophages and colon grouped together with small intestine). We 
identified cell-type-specific differentially methylated blocks (DMBs) that contained a minimum of  3 CpG 
sites and overlapped with captured regions from our hybridization panels used in the analysis of  cfDNA 
from serum. The co-methylation status of  neighboring CpG sites in these blocks distinguished all cell types 
included in the final groups. Overall, we identified 2,876 human and 7,344 mouse highly cell-type-specific 
DMBs passing all thresholds (see Methods). The liquid biopsy study by Moss et al. (24) found that a subset 
of  approximately 4000 informative CpG sites contribute to accurate deconvolution. In comparison, we 
utilized information from 28,810 CpG sites and 70,975 CpG sites within identified human and mouse 
cell-type-specific DMBs, respectively. In addition, the capture sequencing approach we took in this study 
allows for assessment of  fragment-level methylation patterns as opposed to the single-site resolution of  
methylation arrays. The human and mouse DNA methylation blocks specific for these cell types can be 
found in Supplemental Tables 3, 4, and 15. A summary of  human and mouse cell-type-specific methylation 
blocks is in Supplemental Table 5. Intriguingly, a variable number of  blocks were identified for each cell 
type using the same thresholds. This is likely due to genuine biologic differences between cell types but also 
affected by the depth of  coverage, purity, and degree of  separation from other tissues and cell types current-
ly included in the atlas. To visualize cell-type-specific DMBs, we created a methylation score that applies to 
both hypomethylated and hypermethylated DMBs. The score calculates the number of  fully unmethylated 
read-pairs divided by total coverage for hypomethylated blocks (and vice versa for hypermethylated blocks). 
The heatmaps in Figure 3, A and B depict up to 100 blocks with the highest methylation score for each 
cell-type group.

Differential DNA methylation is closely linked to the regulation of  cell-type-specific functions. We next sought 
to understand the role of  cell-type-specific methylation in shaping cellular identity and function. For this, 
we identified genes adjacent to cell-type-specific methylation blocks and performed pathway analysis of  
annotated genes using both ingenuity pathway analysis (IPA) and genomic regions enrichment of  anno-
tations tool (GREAT) (33, 34). Important biological differences were observed in the gene sets identified 
based on specific processes unique to the cell types profiled. For example, the biological function of  genes 
associated with immune cell–type-specific methylation reflects processes of  leukocyte cell-cell adhesion, 
immune-response-regulating signaling, and hematopoietic system development (Supplemental Figure 4). 
In contrast, fatty acid metabolic process, lipid metabolism, and acute-phase response signaling were iden-
tified for hepatocytes. Significantly enriched biological pathways and functions for genes associated with 
differential methylation in each cell type examined are provided in Supplemental Table 6.

Cell-type-specific DNA blocks are mostly hypomethylated and enriched at intragenic regions containing develop-
mental TF binding motifs. The majority of  human and mouse cell-type-specific blocks identified here were 
hypomethylated, consistent with other studies (14, 17). In human samples we found 86% of  cell-type-spe-
cific DMBs hypomethylated and only 14% hypermethylated. Strikingly, in the mouse samples, 98% of  
cell-type-specific DMBs were hypomethylated and only 2% were hypermethylated. The genomic locations 
of  human and mouse cell-type-specific hypo- and hypermethylated blocks are depicted in the schematics in 
Figure 3C and Supplemental Figure 1B, respectively. Interestingly, regardless of  directionality, the majority 
of  cell-type-specific blocks were located within intragenic regions. To assess whether the genomic locations 
of  cell-type-specific blocks show a distinct pattern, we compared their locations to the other captured blocks 
that do not vary among cell types (Figure 3D and Supplemental Table 7). We found that for both human and 
mouse, there was a significant enrichment of  cell-type-specific blocks within intragenic regions relative to 
other captured regions (Fisher’s exact test, P < 0.05). There was also a significant relationship between direc-
tionality and intragenic distribution, with a significantly larger proportion of  cell-type-specific blocks being 
hypermethylated in exons and hypomethylated in introns (χ2, degrees of  freedom = 3, P < 0.05). The similar 
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distribution of  cell-type-specific methylation blocks in human and mouse suggests a conserved biological 
function of  these genomic regions across species (Supplemental Figure 5).

Figure 2. Characterization of human and mouse healthy cell–type-specific reference methylation data. (A) Tree dendrogram depicting the relationship 
between different cell types. Whole-genome bisulfite sequencing (WGBS) data sets were included in the analysis. Average methylation was calculated for each 
sample within blocks of at least 3 CpGs and the top 30,000 blocks were selected that showed the highest variability across all samples. Unsupervised clustering 
of the reference WGBS samples was performed based on similarity in methylation status at these highly variable blocks. Samples from cell types with greater 
than n = 3 replicates were merged. (B and C) UMAP plot of human (B) and mouse (C) WGBS reference data sets. CAEC, coronary artery endothelial cell; CMEC, 
cardiac microvascular endothelial cell; CPEC, joint cardiopulmonary endothelial cell; HUVEV, human umbilical vein endothelial cell; LSEC, liver sinusoidal endo-
thelial cell; MK, megakaryocyte; NK, natural killer cell; PAEC, pulmonary artery endothelial cell; PMEC, pulmonary microvascular endothelial cell.

https://doi.org/10.1172/jci.insight.156529
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Figure 3. Cell-type-specific DNA blocks are mostly hypomethylated, enriched at intragenic regions and developmental transcription factor (TF) binding 
motifs. (A and B) Heatmaps of differentially methylated cell-type-specific blocks identified from reference WGBS data compiled from healthy cell types 

https://doi.org/10.1172/jci.insight.156529
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To further explore what common function these identified regions may have in human and mouse 
development, we performed motif  analysis using HOMER to determine whether there were commonly 
enriched transcription factor (TF) binding sites (TFBSs) (35). MADS motifs bound by MEF2 transcrip-
tion factors were significantly enriched in both human and mouse cell-type-specific hypomethylated blocks 
(Figure 3E). The MEF2 TFs are established developmental regulators with roles in the differentiation of  
many cell types from distinct lineages. In contrast, homeobox (HOX) motifs bound by several different 
HOX TFs were enriched in the human cell-type-specific hypermethylated blocks (Figure 3E). Specifical-
ly, HOXB13 was the top TF associated with binding at sites within the human hypermethylated DMBs. 
Recently, HOXB13 has been found to control cell state through binding to super-enhancer regions, sug-
gesting a novel regulatory function for cell-type-specific hypermethylation (36). In addition to the common 
TFBSs enriched by all cell-type-specific blocks, endothelial cell–specific TFs were found to be enriched in 
the endothelial cell hypomethylated blocks, including EWS, ERG, FLI1, ETV2/4, and SOX6 (Figure 4E). 
Overall, these data indicate functions of  these cell-type-specific blocks that represent cell-specific biology 
that is still underexplored.

Methylation profiling of  tissue-specific endothelial cell types reveals epigenetic heterogeneity associated with differ-
ential gene expression. Endothelial damage has been implicated in the pathophysiology of  radiation-induced 
cardiovascular disease, contributing to significant morbidity and mortality in patients with breast cancer 
(37–41). We thus generated tissue-specific endothelial methylomes paired with transcriptomes to be able to 
identify damage to distinct populations of  microvascular and large vessel endothelial cell types, including 
coronary artery, pulmonary artery, cardiac microvascular, and liver sinusoidal endothelia. We also made 
use of  publicly available liver sinusoidal endothelial (42) and umbilical vein endothelial methylomes (43) to 
complement our data (Supplemental Table 1). Previous studies support considering the vasculature of  the 
heart and lung as an integrated system in the development of  radiation damage due to the shared cardio-
pulmonary circulation (4). In addition, we were unable to identify methylation blocks that would separate 
cardiac from pulmonary microvascular endothelial cells in addition to LSECs and all other cell types in the 
human methylation atlas at the required specificity thresholds. Therefore, we merged cardiac and pulmonary 
endothelial cell types to generate a joint cardiopulmonary endothelial cell (CPEC) signal and identified the 
specific methylation blocks for CPEC, LSEC, and umbilical vein endothelial cell (HUVEC) types as distinct 
populations. We also identified pan-endothelial methylation blocks with methylation status in common to 
all endothelial cell populations relative to other cell types (Supplemental Figure 11, A–F). Pathway analysis 
of  genes associated with these genomic regions confirmed endothelial cell identity based on genes involved 
in the regulation of  vasculogenesis and angiogenesis (Figure 4A). In addition, unique pathways identified 
the tissue-specific epigenetic diversity of  endothelial cell populations from different organs (Figure 4D). The 
DNA methylation status at several tissue-specific blocks was found to correspond to RNA expression levels 
of  known endothelial cell–specific genes, confirming the identity of  endothelial populations characterized 
(Figure 4, B and C, and Supplemental Table 8) (44–50). For example, hypomethylation was associated with 
increased expression at several pan-endothelial genes, including NOTCH1, ACVRL1, FLT1, MMRN2, NOS3, 
and SOX7. Likewise, hypomethylation at CPEC- or LSEC-specific genes was associated with differential 
expression when comparing the 2 populations to reflect tissue-specific differences.

Methylated cfDNA changes indicate dose-dependent radiation damage in mice. To explore the relationship 
between radiation-induced damage in tissues to changing proportions of  cfDNA origins in the circulation, 
we used mice to model the response to exposure from different radiation doses. Mice received upper thorax 
radiation of  3 Gy or 8 Gy relative to sham control, forming 3 groups for comparison (Figure 1). Tissues 
and serum were harvested 24 hours after the last fraction of  radiation and tissues in the path of  the radia-
tion beam (heart, lungs, and liver) were analyzed. H&E-stained sections showed a visible, dose-dependent 

and tissues in human (A) and mouse (B). Each cell in the plot marks the methylation score of 1 genomic region (rows) at each of the 20 cell types in human 
and 9 in mouse (columns). Up to 100 blocks with the highest methylation score are shown per cell type. The methylation score represents the number 
of fully unmethylated or methylated read pairs/total coverage for hypo- and hypermethylated blocks, respectively. (C) Schematic diagram depicting 
location of human cell-type-specific hypo- and hypermethylated blocks. Genomic annotations of cell-type-specific methylation blocks were determined 
by analysis using HOMER. (D) Distribution of human (left) and mouse (right) cell-type-specific methylation blocks relative to genomic regions used in the 
hybridization capture probes. Captured blocks with less than 5% variance across cell types represent blocks without cell-type specificity and were used 
as background. *P < 0.05 by χ2 test (degrees of freedom = 4). (E) Total number and top 5 TF binding sites enriched among cell-type-specific differentially 
methylated blocks (DMBs) in human (top) and mouse (bottom), using HOMER motif analysis (cumulative hypergeometric distribution statistic). As above, 
captured blocks with less than 5% variance across cell types were used as background.

https://doi.org/10.1172/jci.insight.156529
https://insight.jci.org/articles/view/156529#sd
https://insight.jci.org/articles/view/156529#sd
https://insight.jci.org/articles/view/156529#sd


8

R E S E A R C H  A R T I C L E

JCI Insight 2023;8(14):e156529  https://doi.org/10.1172/jci.insight.156529

https://doi.org/10.1172/jci.insight.156529


9

R E S E A R C H  A R T I C L E

JCI Insight 2023;8(14):e156529  https://doi.org/10.1172/jci.insight.156529

impact of  radiation on the tissues (Figure 5A). The changes were most apparent in tissue sections of  the 
lungs, showing noticeable alveolar collapse with increased radiation dose. Liver tissues showed increased 
fibrosis with increased radiation doses and only minor changes were apparent in cardiac tissues matching 
with their lower sensitivity to radiation. Tissue effects were also assessed through qPCR analysis of  estab-
lished indicators of  radiation effects, including expression of  Cdkn1a (p21), that exhibited a dose-dependent 
increase in expression in response to radiation in all tissues (P < 0.05, Kruskal-Wallis test) (Figure 5B, 
Supplemental Figure 6, and Supplemental Table 9) (51).

To assess whether these damages to heart, lung, and liver are reflected by altered cfDNA composition 
in the circulation, we used capture sequencing of  CpG-containing cfDNA fragments. For the data analysis, 
we applied the above-described cell-type-specific methylation blocks derived from the mouse methylation 
atlas to infer cfDNA origins. We found a significant dose-dependent increase in lung endothelial, cardio-
myocyte, and combined solid organ cfDNA that correlated with radiation-induced cell death in the corre-
sponding tissues (P < 0.05, Kruskal-Wallis test) (Figure 5C and Supplemental Figure 7G). The dose-de-
pendent increase in hepatocyte cfDNA was not statistically significant and immune cell cfDNA showed no 
change between treatment groups (P ≥ 0.05, Kruskal-Wallis test) (Figure 5C and Supplemental Figure 7F). 
We conclude that changes in cfDNA fragments in the circulation can reveal the cellular source of  radia-
tion-induced damage in tissues.

Radiation treatment of  patients with breast cancer. To evaluate whether changes in cfDNA patterns could 
indicate damage to tissues in patients treated with radiation, we collected serum samples from patients with 
breast cancer at 3 time points during their standard-of-care radiation therapy after surgery (Figure 1). A 
baseline sample was taken for each patient before onset of  radiation therapy and a second end-of-treatment 
(EOT) sample was taken 30 minutes after the last treatment. Finally, a recovery sample was taken 1 month 
after completion of  radiation therapy. Demographic information and clinical characteristics of  patients 
enrolled in this study are provided in Supplemental Tables 10 and 11.

Methylated cfDNA changes provide an estimate of  tissue dose to indicate radiation-induced damage to healthy 
tissues. Due to close proximity with the target treatment area, the heart and lungs are common organs at 
risk for patients with breast cancer undergoing radiation therapy (Figure 6A). To assess therapy-induced 
lung damage, we examined patient serum for the presence of  lung epithelial cfDNA. Interestingly, we 
did not find a significant increase in lung epithelial cfDNA across all patients (P ≥ 0.05, Friedman test) 
(Figure 6E). However, a few patients showed increased lung epithelial cfDNA, indicating lung damage 
that corresponded with increasing dose and volume of  the ipsilateral lung receiving a 20-Gy dose (Lung 
V20). In addition to lung injury, cardiovascular disease is one of  the most serious complications from 
radiation exposure that is associated with increased morbidity and mortality (6). Through deconvolu-
tion using cardiopulmonary endothelial (CPEC) and cardiomyocyte-specific DMBs, we found increased 
CPEC and cardiomyocyte cfDNA in serum, indicating significant cardiovascular cell damage across all 
breast cancer patients (P < 0.05, Friedman test) (Figure 6, B and D). Changes in total endothelial cfDNA 
after radiation correlated with the average volume of  the lung receiving a 5-Gy dose (Lung V5 Mean) 
(Spearman’s r = 0.75, P < 0.05) (Figure 6C). In addition, changes in total endothelial cfDNA after radia-
tion also correlated with the mean lung dose (Gy), total body mean dose (Gy), and the volume of  the lung 
receiving a 20-Gy dose (Lung V20) (Supplemental Figure 8, D–F). Surprisingly, cardiomyocyte-specific 

Figure 4. Methylation profiling of tissue-specific endothelial cell types reveals epigenetic heterogeneity associated with differential gene expression and 
biological functions. (A) Functions of genes adjacent to endothelium-specific methylation blocks (all P < 0.05). Blue color indicates nearby hypomethylated 
regulatory blocks. Yellow color indicates nearby hypermethylated regulatory blocks. (B) Example of the NOS3 locus specifically unmethylated in endothelial cells. 
This endothelium-specific, differentially methylated block (DMB; highlighted in light blue) is 157 bp long (7 CpGs), and is located within the NOS3 gene, an endo-
thelium-specific gene (upregulated in paired RNA-seq data as well as in vascular endothelial cells, GTEx inset). The alignment from the UCSC genome browser 
(top) provides the genomic locus organization and is aligned with the average methylation (purple tracks) across cardiomyocyte, lung epithelial, liver sinusoidal 
endothelial cell (LSEC), cardiopulmonary endothelial cell (CPEC), hepatocyte, and immune (PBMC) samples (n = 3/cell-type group). Results from RNA-seq generat-
ed from paired cell types are depicted (green tracks) as well as peak intensity from H3K27ac and H3K4me3 published ChIP-seq data generated in endothelial cells 
(blue tracks). (C) Expression levels of genes adjacent to tissue-specific endothelial methylation blocks. Expression data were generated from paired RNA-seq of 
the same CPEC and LSEC populations used to generate methylation reference data. Pan-endothelial genes upregulated in both populations (ALL) are identified as 
common endothelium-specific methylation blocks to both LSEC and CPEC tissue–specific endothelial populations. (D) Pathways related to the biological function 
of genes containing endothelium-specific methylation blocks (all Benjamini-Hochberg–corrected P < 0.05 by right-tailed Fisher’s exact test). Unique pathways to 
tissue-specific endothelial cells are highlighted in distinct colors. (E) Top 5 transcription factor binding sites enriched among endothelium-specific hypomethylat-
ed blocks, using HOMER de novo and known motif analysis (cumulative hypergeometric distribution statistic). The background for the HOMER analysis consisted 
of 3,589 non–endothelial cell-type–specific hypomethylated blocks. HUVEC, human umbilical vein endothelial cell.
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methylated DNA in the circulation increased with the maximum radiation dose to the heart (Spearman’s 
r = 0.52, P = 0.05; Supplemental Figure 8A), but not the mean dose to the heart (Spearman’s r = 0.208, 
P ≥ 0.05) or volume of  the heart receiving a 5-Gy dose (Heart V5) (Spearman’s r = 0.45, P ≥ 0.05). This 
suggests that radiation-induced damage of  cardiomyocytes requires a threshold dose to cause cell death 
and matches with the relative resilience of  this cell type compared with epithelial and endothelial cells.

Radiation-induced hepatocyte and liver endothelial cfDNAs in patient with right- versus left-sided breast cancer. 
While liver damage is not a common radiation-induced toxicity in patients with breast cancer, a sub-
stantial dose may still be administered to the liver, especially with right-sided tumors (Figure 6A). We 
used the top hepatocyte (n = 200) and liver sinusoidal endothelial (LSEC) DNA methylation blocks to 
assess the serum cfDNA sequence data for the presence of  liver-derived DNA fragments. Surprisingly, 
in patients receiving radiation treatment of  right-sided breast cancer, an increase in hepatocyte as well 
as LSEC methylated DNA in the circulation indicated significant radiation-induced cellular damage in 
the liver (P <0.05, Wilcoxon’s matched-pairs signed-rank test) (Figure 6, F and G). Elevated levels of  
either hepatocyte and/or LSEC cfDNA were detected in 7 of  the 8 breast cancer patients with right-sid-
ed tumors. In contrast, there was no significant increase in hepatocyte or LSEC cfDNA in patients with 
left-sided breast cancer (P ≥ 0.05, Wilcoxon’s matched-pairs signed-rank test). The association of  ele-
vated liver-derived cfDNA with right-sided versus left-sided tumor location was also corroborated by 
correlation with the maximum dose administered to the liver (Gy) (Supplemental Figure 8, B and C).

Detection of  distinct endothelial and epithelial damage from radiation. We observed distinct epithelial and 
endothelial cell–type responses to radiation across the different tissue cfDNAs profiled. Different respons-
es to radiation were observed when comparing hepatocyte to lung epithelial damage (Figure 6E versus 
Figure 6F), demonstrating the ability of  methylated cfDNA to distinguish between tissue-specific epithe-
lial cell types from serum samples. Likewise, analysis for tissue-specific endothelial populations revealed 
differences in CPEC and LSEC responses to radiation (Figure 6B versus Figure 6G). In general, there was 
greater amount of  damage in genome equivalents (Geqs) to the combined endothelium compared with 
the epithelium across different organs (Supplemental Figure 7E). Also, there was a 5-fold higher signal 

Figure 5. Dose-dependent radiation damage in mouse tissues correlates with the origins of methylated cfDNA in the circulation. (A) Representative H&E stain-
ing of lung, heart, and liver tissues from mice treated with 3 Gy or 8 Gy radiation compared to sham control. Scale bar: 200 μm. (B) qPCR analysis of Cdkn1a (p21) 
mRNA. The expression in each sample was normalized to Actb and is shown relative to the expression in the sham control. Mean ± SD; n = 3. Kruskal-Wallis test 
was used for comparisons among groups: lung tissue, P = 0.004; heart tissue, P = 0.025; liver tissue, P = 0.004. (C) Lung endothelial, cardiomyocyte, and hepato-
cyte methylated cfDNA in the circulation of mice treated with 3 Gy and 8 Gy radiation compared to sham control expressed in genome equivalents per mL serum 
(Geq/mL). cfDNA was extracted from 18 mice (n = 6 in each group), with cfDNA from 2 mice pooled in each methylome preparation. Mean ± SD; n = 3 independent 
methylome preparations. Kruskal-Wallis test was used for comparisons among groups. NS, P ≥ 0.05; *P < 0.05: lung endothelial, P = 0.01; cardiomyocyte, P = 0.01; 
hepatocyte, P = 0.13.
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Figure 6. Methylated cell-type-specific cfDNAs provide an estimate of tissue dose to indicate radiation-induced damage to healthy tissues in 
patients with breast cancer. (A) Representative 3D-CRT treatment planning for patients with left-sided (left) and right-sided (right) breast cancer, 
respectively. The color map represents different radiation dose levels or isodose lines (green: 95% of prescription dose; isodose lines: yellow = 90%, 
cyan = 80%, orange = 70%, brown = 50%). (B, D, and E) Cardiopulmonary endothelial cell (CPEC), cardiomyocyte, and lung epithelial cfDNA (in Geq/
mL) in serum samples. Fragment-level deconvolution used CPEC- (n = 99), cardiomyocyte- (n = 374), and lung epithelial cell–specific methylation 
blocks (n = 69), respectively. Friedman test compared paired results at baseline, end of treatment (EOT), and recovery time points. *P < 0.05; CPEC 
P = 0.03, cardiomyocyte P = 0.01, lung epithelial P = 0.99. Mean ± SEM fold change relative to baseline levels is shown in bold (n = 15). (C) Cor-
relation of total endothelial cfDNA with dosimetry data. cfDNA is from deconvolution of pan-endothelial methylation blocks (n = 131), the mean 
volume of the lung receiving the 5-Gy dose is represented by Lung V5 Mean (%). Spearman’s correlation r was calculated, and considered significant 
when *P < 0.05. (F and G) Hepatocyte and liver sinusoidal endothelial cell (LSEC) cfDNA (in Geq/mL) in serum samples. Fragment-level deconvo-
lution used hepatocyte (n = 200) and LSEC methylation blocks (n = 61). Mean ± SEM fold change relative to baseline levels is shown in bold (n = 8 
right-sided, n = 7 left-sided breast cancer). Wilcoxon’s matched-pairs signed-rank test was used for comparison among groups. *P < 0.05; hepato-
cyte right-sided P = 0.02, hepatocyte left-sided P = 0.81, LSEC right-sided P = 0.02, and LSEC left-sided P = 0.93.
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from CPEC cfDNA compared with lung epithelial cfDNA. The endothelium is formed by a layer of  cells 
lining blood as well as lymphatic vessels, and turnover of  this cell type may contribute to the high level 
of  signal detected in the circulation (24). This could, however, also be a result of  the different sensitivities 
of  endothelial versus epithelial cell types to radiation-induced damage. Furthermore, in comparison with 
lung epithelial cell– and CPEC-derived cfDNA, sustained injury and delayed recovery is indicated by 
elevated cardiomyocyte cfDNA at the recovery time point (2-fold elevation from baseline) (Figure 6D). 
This may reflect important differences in cell turnover rates leading to differential processes of  regenera-
tion and repair in these cell types. Notably, 1 month after completion of  radiation therapy, CPEC damage 
signatures detected from cfDNA had returned to baseline levels, whereas sustained higher cfDNAs from 
cardiomyocytes and liver cell types indicates lingering tissue remodeling. Taken as a whole, these findings 
demonstrate applicability of  this approach to uncover distinct cellular damage in different tissues during 
the course of  treatment by the analysis of  blood samples.

Discussion
This study demonstrates the feasibility of  tissue-of-origin analysis of  methylated cfDNA to monitor tissue 
responses to radiation exposure. The assignment of  DNA fragments extracted from serum samples from 
patients undergoing treatment as well as from experimental animals to specific cell types required in-depth 
analysis of  tissue- and cell-type DNA methylation patterns and generation of  coherent atlases. We were 
positively surprised by the significant association of  the cell-type-specific DNA methylation blocks with 
cell-type-specific gene expression, TF binding motifs, and signaling pathway regulation supporting the bio-
logical validity of  the selected methylation blocks. We saw that cell-type-specific DNA methylation is well 
conserved across individuals from diverse donor populations that contributed to the methylation atlas. This 
suggests broad applicability in the monitoring of  tissue damage. Also, this implies that disease- or age-relat-
ed changes in DNA methylation occur outside the cell-type-specific blocks and thus will exert their impact 
without altering the features defining a particular cell type.

To enhance the quality and sensitivity of  the analyses, we developed human and mouse reference meth-
ylation atlases that were tailored to this study. Low-integrity cfDNAs were isolated from human and mouse 
serum samples with an optimized capture-sequencing methodology that increased sequencing coverage. This 
improves the sensitivity of  deconvolution when applying our sequencing-based, fragment-level probabilistic 
model. These improvements allow for accurate cellular assignment of  cfDNA fragments present in serum. We 
made an effort to include major cell types within target organs at risk as well as those thought to contribute to 
cfDNA in the circulation of  healthy individuals (5, 6, 24). While our reference atlas is limited to cell types that 
could be purified sufficiently for methylome analysis, this reference-based approach allows for direct inference 
of  the relationship between changing cellular composition of  cfDNA and response to radiation treatment 
over time. When evaluating our approach, we also directly compared cfDNAs extracted from serum and plas-
ma samples harvested from the same donor. The results were highly correlated when comparing methylation 
status and cellular origins of  cfDNA (Supplemental Figure 13). Interestingly, we found slightly less variation 
across donors in the cell-type proportions contributing to the cfDNA extracted from serum compared to plas-
ma (details in the Supplemental Methods section; Supplemental Figure 13).

Comparing the origins of  elevated cfDNA after upper thorax exposure to radiation showed similar 
changes in both human and mouse serum samples, providing further validation of  the approach. In both 
human and mouse, there was a significant increase in endothelial cell and cardiomyocyte cfDNA in the cir-
culation after radiation. Likewise, there was an overall increase in cfDNA derived from any solid-organ tis-
sue after radiation (Supplemental Figure 7, B and G). We also detected treatment-induced increases in breast 
basal and luminal epithelial cfDNA across all patients with breast cancer (Supplemental Figure 7, C and D) 
and an increase in mammary epithelial cfDNA in mice exposed to radiation (Supplemental Figure 7H). The 
total cfDNA concentration was not increased by radiation exposure of  mice, as also reported by others (52), 
although some patients with breast cancer showed an increase in total cfDNA at the end of  the treatment 
cycle (Supplemental Tables 12 and 13). Although we saw parallels in the cellular impact of  radiation, the 
genomic alignment of  the human and mouse atlases is limited by the current scarcity of  deep-sequencing 
WGBS data from purified murine cell types and low cross-species mapability of  epigenetic regions when 
converting coordinates between the genomes (Supplemental Table 14) (53, 54).

The vascular endothelium is among the cell types known to be affected by radiation exposure, although 
the role of  radiation-induced endothelial damage in mediating acute and chronic adverse effects has yet to 
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be fully understood (4, 41). Recent studies suggest that compromised endothelial cell function also impairs 
wound healing by depriving tissues of  signals necessary for regeneration and contributing to accelerated 
aging of  the hematopoietic and vascular systems (55–57). From an initial comparison we did see a greater 
absolute increase in signal measured in Geq from the endothelium compared with epithelium in different 
organs. This may indeed reflect the expected higher sensitivities of  endothelial cells to radiation, although 
the endothelial location bordering the blood stream may impact the amplitude of  the signal detected from 
cfDNA as well. We also established distinct methylation patterns that reflect organ-specific differences 
between endothelial cell populations in different tissues. For the present study, we generated tissue-specific 
endothelial methylomes to assess potentially distinct sensitivities of  CPECs and LSECs to radiation. While 
all endothelial cells share methylation patterns that are common to their lineage (Figure 2, A and B), we 
were pleasantly surprised by the diverse injury patterns observed when juxtaposing CPEC to LSEC signals 
that reflect distinct liver exposure based on the sidedness of  the cancer location. Interestingly, 1 month 
after completion of  radiation therapy the majority of  damage signatures detected in serum had returned to 
baseline levels. However, ongoing tissue repair and remodeling at this recovery time point is indicated by 
sustained elevation of  cardiomyocyte cfDNA as well as hepatocyte- and liver sinusoidal endothelia–derived 
cfDNAs in patients with right-sided breast cancers (Figure 6). Exploration of  these tissue- and cell-type-spe-
cific differences and their distinct time courses may shed light on previously unknown mechanisms of  
radiation-induced damage and repair.

The liver is not a common organ at risk for radiation-induced toxicity in breast cancer. Thus, we were 
surprised to find an increase in hepatocyte and LSEC methylated DNA in the circulation of  patients 
receiving radiation treatment for right-sided breast cancer. Previous studies have not found a relation-
ship between breast cancer radiation and overt liver fibrosis, even at doses higher than 40 Gy, although 
increased hepatic exposure is expected in radiation treatment of  patients with right-sided breast cancer 
(58). The liver is an interesting organ in this respect, and many factors, including radiation dose, fraction 
size, volume of  the liver radiated, and preexisting hepatic function may account for the discrepancy in 
the known association between exposure and clinical presentation (59, 60). The elevated liver cfDNAs we 
detected demonstrate the sensitivity of  the approach to identify previously unknown cell types and tissues 
affected by radiation treatment. Despite being at subclinical levels, this may become relevant in patients 
with hepatotoxic therapy regimens or comorbidities.

Only 3 patients (RT-102, RT-103, and RT-107) presented with grade 2 skin toxicity based on Com-
mon Terminology Criteria for Adverse Events (CTCAE v5) within our study timeline up to 1 month after 
completion of  radiation therapy. While this is a small number, we detected significantly increased breast 
basal and luminal epithelial damage in these 3 patients that corresponded with the clinical presentation 
(Supplemental Figure 7, C and D). We also detected elevated breast epithelial injury in patients who 
underwent mastectomy, were treated with proton beam therapy (PBT), and had a higher overall dose 
administered — all clinical factors associated with elevated risk of  skin toxicity. Although the findings 
from this study are highly encouraging, additional studies with a larger sample size are needed to further 
define the relationship between tissue dose administered and cell-type-specific methylated cfDNA changes 
in the circulation. As a future direction, it will be interesting to explore whether these methylated cfDNA 
changes occurring early on after radiation treatment can predict later onset of  toxicity. We hypothesize 
that circulating cfDNA analyses may be used to assess tissue toxicity profiles independent of  the presen-
tation of  clinical symptoms and compare tissue effects of  different radiation treatment approaches such 
as 3-dimensional conformal RT (3D-CRT), PBT, and intensity-modulated radiation therapy. Likewise, 
exploration of  regional variation in tissue-specific responses to radiation may offer opportunities to reduce 
tissue toxicity (61).

In conclusion, as a proof  of  concept we show that cell-type-specific methylation signatures can be 
applied to detect cellular injury from radiation treatment using DNA shed into the circulation. In mice, 
paired tissue and serum analysis allowed for a direct comparison of  tissue damage and its cfDNA correlates 
in serum samples. Treatment planning for patients with breast cancer provided an estimate of  the organ 
volume affected and radiation dose for organs at risk, including the heart, lungs, and liver. We found a strik-
ing degree of  correlation between the planned tissue radiation dose administered and the observed degree 
of  distinct cellular damage indicated by changes in cell-type-specific methylated cfDNA. We conclude that 
the minimally invasive detection of  methylated cfDNA from serum samples can indicate organ-specific 
damage, reveal biologically effective exposure, and identify cell types affected by radiation treatment.
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Methods
Human breast cancer patient serum sample collection. Serial serum samples were collected from 15 patients with 
breast cancer at baseline (before radiation treatment), EOT (30 minutes after the last radiation treatment), 
and recovery (1 month after cessation of  radiation treatment), thus allowing for a within-patient internal 
control and baseline. A schematic of  the time series for sample collection can be found in Figure 1. For serum 
isolation, peripheral blood (~8–12 mL) was collected in red-top venous puncture tubes and allowed to clot at 
room temperature for 30 minutes before centrifugation at 1500g for 20 minutes at 4°C to separate the serum 
fraction. Patients received either 3D-CRT or a combination of  PBT and 3D-CRT. Patient characteristics and 
treatment details including radiation dosimetry are summarized in Supplemental Tables 10 and 11.

Mouse serum and tissue collection. C57BL/6 mice (n = 18) from The Jackson Laboratory were x-ray irradi-
ated (~1.67 Gy/min; X-Rad 320, Precision X-Ray Inc.; filter, 0.75 mm tin/0.25 mm copper/1.5 mm alumi-
num, 320 kV, 12.5 mA) to the upper thorax at different doses (sham control, 3 Gy, 8 Gy) for 3 consecutive 
treatments. The irradiated lung and heart tissues received either 3 × 3 Gy, or 3 × 8 Gy of  radiation. The liver 
was partially irradiated, depending on the layout of  the liver in the irradiated area. We estimate that around 
40%–60% of the liver received either 3 × 3 Gy or 3 × 8 Gy of  radiation based on the assumption that the 
dose is identical to the tissue exposed as the unit of  energy per unit mass of  tissue (1 Gy = 1 Joule/kilogram). 
Serum and tissues were collected 24 hours after the last radiation dose. For serum isolation, blood was collect-
ed via cardiac puncture (~1 mL) and allowed to clot at room temperature for 30 minutes before centrifugation 
at 1500g for 20 minutes at 4°C to separate the serum fraction. Heart, lung, and liver tissues were harvested and 
sectioned to be both flash frozen and formalin fixed for subsequent analysis.

Cell isolation to generate reference methylomes. Reference methylomes were generated for mouse immune cell 
types and human endothelial cell types to complement publicly available data sets. Peripheral blood and bone 
marrow were isolated and spleens from healthy C57BL/6 mice were dissociated to single cells and FACS iso-
lated using cell-type-specific antibodies. Buffy coat (n = 4), bone marrow (n = 3), CD19+ B cell (n = 1), CD4+ 
T cell (n = 1), CD8+ T cell (n = 1), and Gr1+ neutrophil (n = 1) methylomes were generated after cell isolation 
using the following antibodies: FITC anti–mouse CD45 (catalog 103107), Alexa Fluor 647 anti–mouse CD3 
(catalog 100209), Brilliant Violet 711 anti–mouse CD4 (catalog 100549), Brilliant Violet 421 anti–mouse CD8a 
(catalog 100737), PE anti–mouse CD19 (catalog 152407), and PE/Cy7 anti–mouse Ly-6G/Ly-6C (Gr-1) 
(catalog 108415) (all BioLegend; diluted 1:20). Cryopreserved passage 1 human LSECs were purchased from 
ScienCell research laboratories (catalog 5000). Cryopreserved passage 2 human coronary artery endothelial 
cells (catalog C-14022), cardiac microvascular cells (catalog C-14029), and pulmonary artery endothelial cells 
(catalog C-14024) were isolated from single donor healthy human tissues purchased from PromoCell. Paired 
RNA-seq data were generated from the same cell populations used for DNA methylation profiling to validate 
the identity of purchased cell populations through analysis of cell-type expression markers.

Isolation of  circulating cfDNA. Circulating cfDNA was extracted from 3 to 4 mL of  human serum or 
plasma or 0.5 mL of  mouse serum, using the QIAamp Circulating Nucleic Acid kit (Qiagen) according 
to the manufacturer’s instructions. cfDNA was quantified via Qubit fluorometer using the dsDNA High 
Sensitivity Assay Kit (Thermo Fisher Scientific). Additional size selection using Beckman Coulter beads 
was applied to remove high-molecular-weight DNA reflective of  cell lysis and leukocyte contamination, as 
previously described (62). The same bead-based size selection was applied to all samples that were acquired 
through standardized serum isolation and cfDNA extraction protocols. This DNA purification step has 
been demonstrated to remove contaminating traces of  high-molecular-weight genomic DNA (~10 kb) from 
cfDNA released into the bloodstream through a natural process of  cell death (~150–200 bp). This method 
also served to concentrate the samples to the desired input volume before bisulfite conversion. Fragment 
size distribution of  isolated cfDNA after size selection was validated on the 2100 Bioanalyzer TapeStation 
(Agilent Technologies) (Supplemental Figure 13 and Supplemental Methods).

Isolation and fragmentation of  genomic DNA. Genomic DNA from tissues was extracted with the DNeasy 
Blood and Tissue Kit (Qiagen) following the manufacturer’s instructions and quantified via the Qubit fluo-
rometer dsDNA BR Assay Kit (Thermo Fisher Scientific). Genomic DNA was fragmented via sonication 
using a Covaris M220 instrument to the recommended 150–200 bp before library preparation. Lambda 
phage DNA (Promega Corporation) was also fragmented and included as a spike-in to all DNA samples 
at 0.5% (w/w), serving as an internal unmethylated control. Bisulfite conversion efficiency was calculated 
through assessing the number of  unconverted C’s on unmethylated lambda phage DNA. The SeqCap Epi 
capture pool contains probes to capture the lambda genomic region from base 4500 to 6500.
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Bisulfite capture-sequencing library preparation. Bisulfite capture-sequencing libraries were generated from 
either cfDNA or fragmented genomic DNA using the same protocol. As a first step, WGBS libraries were 
generated using the Pico Methyl-Seq Library Prep Kit (Zymo Research) with the following modifications: 
Bisulfite conversion was carried out using the EZ DNA Methylation Gold kit (Zymo Research) instead of  
the EZ DNA Methylation-Lightning Kit. For mouse samples, cfDNA from 2 mice in the same group was 
pooled as the input of  library preparation. An additional 2 PCR cycles were added to the recommended 
cycle number based on the total amounts of  input cfDNA. WGBS libraries were eluted in 15 μL of  10 mM 
Tris-HCl buffer, pH 8. Library quality control was performed with an Agilent 2100 Bioanalyzer and quan-
tity determined via the KAPA Library Quantification Kit (KAPA Biosystems).

Cell-free WGBS libraries were pooled to meet the required 1 μg DNA input necessary for targeted 
enrichment. However, no more than 4 WGBS libraries were pooled in a single hybridization reaction and 
the 1 μg input DNA was divided evenly between the libraries to be multiplexed. Hybridization capture 
was carried out according to the SeqCap Epi Enrichment System protocol (Roche NimbleGen, Inc.) using 
SeqCap Epi CpGiant probe pools for human samples and SeqCap Epi Developer probes for mouse samples 
with xGen Universal Blocker-TS Mix (Integrated DNA Technologies) as the blocking reagent. Washing 
and recovering of  the captured library, as well as PCR amplification and final purification, were carried out 
as recommended by the manufacturer. The capture library products were assessed by Agilent Bioanalyz-
er DNA 1000 assays (Agilent Technologies, Inc.). Bisulfite capture-sequencing libraries with inclusion of  
15%–20% spike-in PhiX Control v3 library (Illumina) were clustered on an Illumina Novaseq 6000 S4 flow 
cell followed by 150-bp paired-end sequencing. The individual sample-to-sample variability of  sequencing 
parameters was minimal and the coverage was highly correlated amongst the sequencing libraries (Supple-
mental Figure 14).

Bisulfite sequencing data alignment and preprocessing. Paired-end FASTQ files were trimmed using 
TrimGalore (v0.6.6) with parameters “--paired -q 20 --clip_R1 10 --clip_R2 10 --three_prime_clip_R1 10 
--three_prime_clip_R2 10” (63). Trimmed paired-end FASTQ reads were mapped to the human genome 
(GRCh37/hg19 build) using Bismark (v0.22.3) (64) with parameters “--non-directional”, and then con-
verted to BAM files using Samtools (v1.12) (65). BAM files were sorted and indexed using Samtools 
(v1.12). Reads were stripped from non-CpG nucleotides and converted to BETA and PAT files using wgb-
stools (v0.1.0), a tool suite for working with WGBS data while preserving read-specific intrinsic depen-
dencies (22, 66).

Reference DNA methylation data from healthy tissues and cells. Controlled access to reference WGBS data 
from normal human tissues and cell types was requested from public consortia participating in the Inter-
national Human Epigenome Consortium (IHEC) (67) and upon approval downloaded from the European 
Genome-Phenome Archive (EGA), Japanese Genotype-phenotype Archive (JGA), database of  Genotypes 
and Phenotypes (dbGAP), and ENCODE portal data repositories. Reference mouse WGBS data from 
normal tissues and cells were downloaded from selected GEO and SRA data sets. Additional information 
and citation of  reference methylation data used in this study can be found in Supplemental Methods and 
Supplemental Tables 1 and 2.

Segmentation and clustering analysis. We segmented the genome into blocks of  homogeneous methyla-
tion, as described by Loyfer et al., using wgbstools (with parameters segment --max_bp 5000) (22, 66). In 
brief, a multichannel dynamic programming segmentation algorithm was used to divide the genome into 
continuous genomic regions (blocks) showing homogeneous methylation levels across multiple CpGs for 
each sample. We applied the segmentation algorithm to 297 human reference WGBS methylomes and 
retained 351,395 blocks covered by the hybridization capture panel used in the analysis of  cfDNA. Like-
wise, segmentation of  109 mouse WGBS data sets from healthy cell types and tissues identified 1,344,889 
blocks covered by the mouse hybridization capture panel. The probed regions span 80 Mb (~20% of  CpGs) 
on the human panel and 75 Mb (~50% of  CpGs) on the mouse panel. Relative to the Infinium Methyla-
tionEPIC BeadChip, a commonly used human microarray (27), the human capture panel provides a 7-fold 
increase in CpG sites profiled. Likewise, the mouse capture panel provides a 35-fold increase in CpG sites 
profiled relative to the Infinium Mouse Methylation BeadChip. The human blocks had a median length of  
326 bp (interquartile range [IQR] = 890 bp) and 8 CpGs (IQR = 14 CpGs). Similarly, the mouse blocks had 
a median length of  770 bp (IQR = 1,252 bp) and 7 CpGs (IQR = 7 CpGs). The hierarchical relationship 
between reference tissue and cell-type WGBS data sets was visualized as a tree dendrogram. The top 30,000 
most variable methylation blocks containing at least 3 CpG sites and coverage across 90% of  samples were 
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selected, irrespective of  sample cell-type group. We computed the average methylation for each block and 
sample using wgbstools (--beta_to_table). Trees were assembled using the unweighted pair-group method 
with arithmetic mean (68), using scipy (v1.7.1) (69) and L1 distance, and then visualized in R with the 
ggtree package (v2.4.1) (70). The similarity between samples was assessed by the degree of  variation in 
distance between samples of  the same cell type (average 23,056) compared to samples between different 
cell types (average 273,018). Dimensional reduction was also performed on the selected blocks using the 
UMAP package (v0.2.8.2.0). Default UMAP parameters were used (15 neighbors, 2 components, Euclide-
an metric, and a minimum distance of  0.1).

Identification of  cell-type-specific methylation blocks. Tissue- and cell-type-specific methylation blocks 
were identified from reference WGBS data using custom scripts (Supplemental Code and Supplemental 
Methods). We performed a one-versus-all comparison to identify DMBs unique for each group. This 
was done separately for human and mouse. From this we first identified blocks covering a minimum of  
3 CpG sites, with lengths of  less than 2 kb and at least 10 observations. Then, we calculated the aver-
age methylation per block/sample, as the ratio of  methylated CpG observations across all sequenced 
reads from that block. Differential blocks were sorted by the margin of  separation, termed “delta beta,” 
defined as the minimal difference between the average methylation in any sample from the target group 
versus all other samples. Then, we computed the “soft margin” between target samples and background 
samples, allowing for some outliers using percentiles (Supplemental Figure 15). For all hypomethylated 
markers we calculated the difference between the 80th percentile of  the methylation status in the target 
group (--target.quant 0.2) and the 10th percentile of  the methylation status in the background group 
(--bg.quant 0.1). We selected blocks with a soft margin of  0.4 or greater for human and 0.35 or greater for 
mouse. Blocks with a (–) direction are hypomethylated and (+) direction are hypermethylated, defined as 
a direction of  methylation in the target cell type relative to all other tissues and cell types included in the 
atlas. Additional separation of  endothelial cell populations from different tissues was performed to iden-
tify unique markers for liver endothelial versus cardiopulmonary endothelial blocks that did not overlap. 
Separately, pan-endothelial blocks were identified with methylation status in common to all endothelial 
cell populations. Similarly, individual immune cell-type-specific methylation blocks were identified for 
purified cell populations. In addition, bulk immune blocks were identified with methylation status in 
common to all hematopoietic cell populations. The bulk immune methylation blocks were found to 
separate all hematopoietic cell types from solid organ cell types of  different lineages and were used for 
deconvolution in the circulation. The solid organ compartment was then further parsed into individual 
cell-type contributors as specified in Column F titled “Atlas Groups” in Supplemental Tables 1 and 2. 
For some cell types, a reduced subset of  blocks (i.e., top 200) were used for deconvolution in the circula-
tion if  the original number identified was greater than 1 SD above the mean. Selected human and mouse 
blocks for cell types of  interest that were used to identify origins of  cfDNA can be found in Supplemental 
Tables 3 and 4. Extended cell-type-specific blocks for purified populations of  endothelial and immune 
cell types can be found in Supplemental Tables 8 and 15.

Likelihood-based probabilistic model for fragment-level deconvolution. The cell-type origins of  cfDNA were 
determined using a probabilistic fragment-level deconvolution algorithm. Using this model, the likelihood 
of  each cfDNA molecule was calculated using a fourth-order Markov model, by which methylation of  
each CpG site directly depends on up to 4 adjacent previous sites within each fragment. We estimated 
these parameters for each differential block at every tissue and cell-type, and then used Bayes’ theorem 
to infer the posterior probability of  cell of  origin for each fragment, based on its complete methylation 
pattern. The model was trained on reference bisulfite sequencing data from normal cells and tissues of  
known identity to learn the distribution of  each marker in the target tissue/cell population of  interest 
compared to background. Then the model was applied to predict the origins of  each cfDNA molecule. 
The joint probability of  each cfDNA molecule (methylation patterns and cellular origin) is calculated 
based on the likelihood of  the methylation pattern (using the parameters for that cell type) times the prior 
probability that a read is originating from the target cell type. A prior probability of  0.1 was used for the 
combined endothelial cell type group and 0.85 for the combined immune cell type group, as expected 
based on findings in previous reports (24). A prior probability of  0.05 was used for all other solid organ 
cell types. Finally, each fragment is assigned to the cell type of  origin with the maximal posterior probabil-
ity (“hard” assignment). The proportion of  molecules (fragments) assigned to the tissue of  interest across 
all cell-type-specific markers was then averaged and used to determine the relative abundance of  cfDNA 
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derived from that tissue in each respective sample. We then adjusted the resulting proportions from all cell 
types to have a sum of  1 by imposing a normalization constraint. Tissue-specific endothelial cell types 
were normalized within the predicted total endothelial proportion identified by pan-endothelial markers 
in common to all endothelial cell types. Predicted cell type proportions were converted to genome equiv-
alents and are reported as Geq/mL through multiplying the relative fraction of  cell-type-specific cfDNA 
times the concentration of  cfDNA (ng/mL) by the mass of  the human haploid genome (3.3 × 10–12 g) or 
the mouse haploid genome equivalent (3.0 × 10–12 g).

In silico simulations and WGBS deconvolution. In silico mix-in simulations were performed using wgb-
stools (v0.1.0) (66) to validate the fragment-level deconvolution algorithm at the identified cell-type-specific 
blocks (Supplemental Figures 9–12), as previously described (22, 24). For each cell type profiled, we mixed 
known proportions of  target fragments into a background of  leukocyte fragments using wgbstools mix_pat. 
The leukocyte fragments were obtained from n = 4 buffy coat samples in mouse and n = 5 buffy coat sam-
ples in human. We performed 3 replicates for each admixture ratio assessed (0.05%, 0.1%, 0.5%, 1%, 2%, 
5%, 10%, 15%), which were analyzed as described above, and present the average predicted proportion and 
standard deviation across all replicates. Model accuracy was assessed through correct classification of  the 
actual percentage target mixed.

Functional annotation and pathway analysis. Cell-type-specific methylation blocks were annotated 
and motif  analysis was performed using HOMER (v4.11.1) (35) and the annotatePeaks.pl and findMo-
tifsGenome.pl functions. The top 5 motifs based on P value were selected from each analysis. Pathway 
analysis of  genes adjacent to identified tissue and cell-type-specific methylation blocks was performed using 
IPA (34) (Qiagen) and GREAT (33). GeneSetCluster was used to cluster identified gene set pathways based 
on shared genes (71). Cross-species comparison of  identified human and mouse cell-type-specific methyl-
ation blocks was performed using the UCSC Genome Browser LiftOver tool and the hg19ToMm9.over.
chain.gz file (Supplemental Table 14).

Genome browser visualization. Endothelial methylomes and paired transcriptomes were uploaded as cus-
tom tracks for visualization on the UCSC genome browser (72). Methylomes were converted to bigwig 
format using the wgbstools beta2bw. Enrichment for chromatin marks was assessed through analysis of  
published H3K27ac and H3K4me3 ChIP-seq data (46). GTEx single-nucleus RNA-seq data were acquired 
from the GTEx v9 portal (gtexportal.org) (73) and analyzed using R (v4.1.3). Counts per ten thousand reads 
(CP10K) of  NOS3 were log-transformed and averaged for each specific cell type. Color represents the general 
cell type and intensity of  color represents the number of  cells expressing NOS3.

Statistics. Statistical analyses for group comparisons and correlations were performed using Prism (Graph-
Pad Software) and R (v4.1.3). A correlation analysis was performed to assess relationship between chang-
ing cfDNAs and dose using Spearman’s rank correlation coefficient. Statistically significant comparisons are 
shown, with significance defined as P less than 0.05. Correction for multiple hypothesis comparisons was 
performed using the Benjamini-Hochberg method–corrected P value to control the false discovery rate (FDR) 
from multiple pathways being tested against each gene set. A 2-stage linear step-up procedure of  Benjamini, 
Krieger, and Yekutieli was performed for P value adjustment from multiple outcome measures.

Study approval. Patients with breast cancer undergoing adjuvant radiation therapy were enrolled and 
provided signed informed consent in this IRB-approved study at Medstar Georgetown University Hos-
pital (IRB protocol 2013-0049). Animal studies were approved by the Georgetown University IACUC 
(protocol 2017-0029).

Data availability. Raw sequencing files for DNA methylation data have been deposited in the database of  
Genotypes and Phenotypes (dbGAP) under study accession no. phs003290.v1.p1. Additional DNA methyla-
tion data for human and mouse samples are available in the NCBI Gene Expression Omnibus (GEO) under 
study accession no. GSE200187 (in BETA and PAT file formats). The BETA files (a wgbstools-compatible 
binary format) contain position and average methylation information for single CpG sites. The PAT files con-
tain fragment-level information (including CpG starting index, methylation pattern of  all covered CpGs, and 
number of  fragments with exact multi-CpG pattern). Raw and normalized RNA-seq data have been deposited 
in GEO under study accession no. GSE200095. Availability of  previously published and publicly available 
WGBS data from healthy cell types and tissues used in this paper are described in Supplemental Table 1 for 
human and Supplemental Table 2 for mouse. Code is available in Supplemental Code as well as at github.
com/nloyfer/wgbs_tools and github.com/nloyfer/MarkovDeconv. Any additional information required to 
reanalyze the data reported in this paper is available from corresponding author AW upon request.
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