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Introduction
Infiltration of  solid organs by presumably pathogenic T cells is a common feature in many autoimmune 
diseases and in organ transplant rejection. These pathogenic events histologically and conceptually par-
allel T cell infiltration of  tumors, which can lead to tumor cell destruction. However, in contrast to the 
well-studied tumor-infiltrating lymphocytes (TILs), tissue-infiltrating T cells mediating disease in autoim-
munity have received far less attention. It is now well accepted that the tumor microenvironment functions 
to inhibit immune responses and induce T cell exhaustion (1–3), while in autoimmunity it is generally 
thought that pathogenic T cells actively destroy normal tissues unimpeded, as nonmalignant tissues lack 
the capacity to evolve resistance. To explore the nature of  autoimmune infiltrates, we have chosen to study 
lupus nephritis (LN), as the kidney is a pivotal target in this autoimmune disease. T cell–dependent intersti-
tial nephritis is the major prognostic indicator of  organ failure in lupus (4, 5).

Our recent work demonstrating that kidney-infiltrating T cells (KITs) are functionally and transcrip-
tionally exhausted (6) — much like TILs or CD8+ T cells after chronic viral infection — challenges 2 
paradigms. First, it argues against the idea that autoimmune destruction of  parenchymal tissue is a direct 
effector process, akin to a response to virally infected cells. Instead, some tissues may be endowed with 
natural self-preservation mechanisms that downregulate or suppress infiltrating T cells, which may prevent 
or attenuate autoimmunity. Second, it suggests that tumors do not evolve a de novo set of  pathways to neg-
atively regulate T cells. Instead, such pathways may be native to certain parenchymal tissues, and tumors 
may amplify them or simply naturally express them.

The discovery that kidney and perhaps other tissues can suppress infiltrating T cells raised an important 
question: If  KITs are functionally and transcriptionally inert or exhausted, then by what mechanisms does 
tissue damage proceed? One hypothesis to address this question is that exhausted cells are more properly 
thought of  as dysfunctional — rather than nonfunctional — and that they may slowly inflict tissue damage 
from residual effector function, much as exhausted T cells in chronic infection do serve to protect from 
more aggressive infection (7, 8). A second, nonexclusive explanation is that self-reactive T cells retain effec-
tor function upon arrival in the kidney, but they become progressively less functional due to the influence of  
the tissue microenvironment. In this view, damage by a given T cell clonotype is inflicted to a greater degree 
initially and then mitigated by an exhaustion program. Chronic disease could be maintained by continual 
recruitment of  new clones that are initially more functional.

We previously found that kidney-infiltrating T cells (KITs) in murine lupus nephritis (LN) resembled 
dysfunctional T cells that infiltrate tumors. This unexpected finding raised the question of how 
to reconcile the “exhausted” phenotype of KITs with ongoing tissue destruction in LN. To address 
this, we performed single-cell RNA-Seq and TCR-Seq of KITs in murine lupus models. We found 
that CD8+ KITs existed first in a transitional state, before clonally expanding and evolving toward 
exhaustion. On the other hand, CD4+ KITs did not fit into current differentiation paradigms 
but included both hypoxic and cytotoxic subsets with a pervasive exhaustion signature. Thus, 
autoimmune nephritis is unlike acute pathogen immunity; rather, the kidney microenvironment 
suppresses T cells by progressively inducing exhausted states. Our findings suggest that LN, a 
chronic condition, results from slow evolution of damage caused by dysfunctional T cells and their 
precursors on the way to exhaustion. These findings have implications for both autoimmunity and 
tumor immunology.
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To investigate these mechanisms, it is necessary to elucidate the nature of  intraparenchymal autoim-
mune responses more deeply. The result of  such work — an understanding of  the nature of  damage-caus-
ing T cells — could reveal ways of  specifically targeting them, for example based on their metabolic status 
or surface phenotype. In addition, such information could reveal disease drivers and provide tools to stratify 
patients — 2 important issues in lupus, which is notoriously heterogeneous in manifestation (9, 10). Fur-
ther, such insights will likely apply to other target organs and disease settings.

It is, however, exceptionally challenging to address these questions in human LN, due to the scarcity 
of  available tissue, which can only be obtained upon an extra “research pass” of  a needle biopsy. Indeed, a 
recent consortium study, though heroic, managed to assess only about 1000 single cells by RNA-Seq over 
all the patients (11). Moreover, nearly all of  these patients were under treatments that were designed specif-
ically to affect these very same cells, which greatly complicates interpretation.

For this reason, here we have employed murine lupus models, which afford us access to tissue and 
without the complication of  various treatments. We have used single-cell RNA-Seq (scRNA-Seq) to iden-
tify a surprising degree of  heterogeneity among both CD4+ and CD8+ KITs, suggesting a more dynamic 
process of  target organ damage than had been suspected. Within the CD8 compartment in particular, a 
large cluster of  “transitional” cells was identified, which retained partial activation and effector function 
and was predicted to evolve into both exhausted cells as well as resident memory cells, all of  which were 
also identified among KITs. Whereas CD4+ cells, intriguingly, did not fit into existing Th paradigms but 
rather included a cytotoxic cluster as well as demonstrating a pervasive exhausted phenotype. In addition, 
by using TCR-Seq, we were able to connect different clusters of  KITs, delineating a compelling progressive 
evolution of  clonotypes within the kidney. This work reveals the landscape of  interactions between infil-
trating T cells and the parenchyma in a lupus target organ and suggests a dynamic model for how nephritis 
evolves as a chronic condition. These insights could inform new strategies to interrupt the process.

Results
Experimental design. We generated 3 experimental cohorts to address T cell reprogramming after tissue infil-
tration in murine LN using the 10x Genomics scRNA-Seq platform and hashtag oligonucleotide (HTO) 
deconvolution technology (Figure 1A). In the initial cohort (Main-Seq), we compared splenic T cells and 
KITs from aged lupus-prone nephritic MRL/lpr mice, as well as “naive” T cells from non-lupus-prone B6 
mice. In the second cohort, we focused on KITs from MRL/lpr mice and in addition assessed the KIT TCR 
repertoire (MRL-TCR–Seq). Finally, in the third cohort, we completed a similar KIT analysis as in cohort 
2 using the FcγR2B–/–.Yaa model of  LN (Yaa-TCR–Seq).

T cells cluster based on origin, autoreactive status, and CD4/8 phenotype. Low-resolution transcriptome-based 
clustering of  all T cells in the Main-Seq cohort, using Seurat (12), identified 14 clusters (Figure 1B). 
HTO deconvolution demarcated cells based on T cell type (i.e., CD4 and CD8), organ of  origin (kid-
ney vs. spleen), and potential autoreactive status (B6 vs. lupus-prone mice, Figure 1C). All 3 MRL/lpr 
mice contributed to each defined population, with no population being driven by a specific donor (Sup-
plemental Figure 1; supplemental material available online with this article; https://doi.org/10.1172/jci.
insight.156048DS1). While CD4+ and CD8+ T cells from non-autoimmune mice were relatively uniform, 
CD4+ and CD8+ T cells from diseased mice displayed remarkable heterogeneity (Figure 1, B and C).

Heterogeneity and potential functions of  CD4+ T cells in murine lupus. High-resolution clustering yielded 13 
CD4+ T cell clusters (Figure 2A). HTO-directed deconvolution highlighted separation between kidney-de-
rived and spleen-derived T cells from MRL/lpr mice, while CD4+ T cells from B6 mice fell predominantly 
into 2 clusters (5 and 11) (Figure 2A, right panel). By identifying the most differentially expressed genes 
(DEGs) in each cluster (Supplemental Figure 2), we attempted to assign specific phenotypic subtypes to each 
CD4+ cluster. Using this approach, only 2 of  the CD4+ T cell clusters were easily matched to conventional T 
cell phenotypes: cluster 6 represented Tregs, while cluster 12 exhibited a type I IFN signature (IFNhi).

We then examined TF expression and canonical T cell gene expression signature enrichment over-
lays for well-described CD4+ T cell phenotypes, including Treg, Th1, Th2, T follicular helper (Tfh), and 
Th17 (see Supplemental Table 1 for gene lists) (13–23). As expected, the presumed Treg cluster exhibited 
strong Treg-associated gene signatures and expressed Foxp3 (Figure 2B). The Th1 signature was associ-
ated with clusters 1, 4, and 8, and Tbet was expressed in a similar distribution (Figure 2C). A stronger 
Th2 gene signature and Gata3 expression were also observed in the kidney-predominant clusters 1, 4, 8, 
and 10, suggesting some coexpression of  Th1 and Th2 phenotype with no clear delineation between the 
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2 lineages (Figure 2, C and D). Several reports have suggested a role for Th17 in LN; however, similar 
to the findings in the human nephritis samples the Accelerating Medicines Partnership in SLE network 
(AMP consortium) examined (11), no significant Th17 profile was observed by gene signature or Rorc 
expression in any compartment (Supplemental Figure 3, A and B). Few cells exhibited either the Tfh-as-
sociated gene signature or Bcl6 expression, consistent with reports of  few germinal centers in MRL/lpr 
spleens (24) (Supplemental Figure 3C). Finally, cluster 7 probably represented a central memory T cell 
(TCM) compartment, and cluster 5 represented naive T cells (Supplemental Figure 3, D and E).

We identified several TFs whose motifs were enriched among DEGs of given clusters using the SCENIC 
algorithm. Although the type I IFN cluster (cluster 12) shows evidence of IRF1, IRF7, IRF9, and STAT2 reg-
ulation (25) (Figure 3A), in general we did not find unique TF associations within specific clusters. However, 
hierarchical cluster analysis of the TF suggested transcriptional organization by organ of origin or presence of  
autoimmunity. There was a kidney-specific influence, in that numerous TF binding motifs (including HIF1α, 
TGIF2, CREM, JUN, FOS) were enriched in the majority of KITs, irrespective of cluster; several of these 
TFs were also themselves transcriptionally upregulated, including Crem and Hif1α, which have previously been 
associated with tissue residency and hypoxia, respectively (18, 26, 27) (Figure 3B). In accordance with the 

Figure 1. Low-resolution clustering of T cells from lupus-prone mice. (A) Schematic of experimental design encompassing tissue source, sorting algo-
rithm, marking with HTOs, number of mice used in each experimental cohort, and a description of downstream analytic techniques. (B) UMAP of T cells 
from mice in Main-Seq, outlining 14 clusters. (C) HTO-based assignment of cell source was mapped onto the UMAP. MRL/lpr, MRL.Faslpr; B6, C57BL/6; 
UMAP, uniform manifold approximation and projection; TF, transcription factor.
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Hif1α expression and transcriptional activity, recent work described a hypoxia gene expression profile in bulk 
RNA-Seq of KITs isolated from MRL/lpr mice (18). Similarly, we observed that a portion of KITs expressed a 
hypoxia profile, particularly in clusters 1, 4, 8, and 10 and the KIT Treg population (Figure 4A).

Given the findings from our prior work suggesting KIT exhaustion, we assessed the exhaustion 
signature (6), which appeared enriched among CD4+ KITs in total (Figure 4, A and B). Exhaustion 
signatures in multiple clusters were higher than the baseline defined by CD4+ B6 splenic T cells, with 
clusters 0, 4, 8, 10, and 9 exhibiting the highest score (Figure 4B). These clusters were composed mainly 
of  KITs, with the exception of  cluster 9, which consisted of  both KITs and splenic T cells from MRL/
lpr mice; however, even in cluster 9, the more exhausted cells were kidney derived (Figure 4B). Hence, 
despite the heterogeneity of  CD4+ KITs, exhaustion-associated gene expression appears in the tran-
scriptomes of  multiple clusters of  T cells.

As cytotoxic CD4+ T cells have been reported in aging, (13) tumor infiltrates (28), and systemic sclero-
sis (29), we assessed whether a cytotoxic gene signature was observed in KITs. Indeed, a portion of  both 
splenic and kidney-derived T cells from MRL/lpr mice, encompassing clusters 0, 2, and 9, expressed a 
cytotoxic gene signature (Figure 4A). Interestingly, KIT clusters generally expressed either a hypoxic profile 
or a cytotoxic gene signature but not both.

Trajectory analysis identifies developmental progression of  CD4+ T cells. Based on the analysis of  cluster gene 
signatures, we hypothesized that there is a progression from naive to peripheral effector/cytotoxic T cells, 
which then invade the kidney where they first express a cytotoxic program, followed by a hypoxia response 
accompanied by exhaustion/dysfunction. To evaluate this model, we created a lineage progression analysis 
using Monocle3, which integrates temporal gene expression (Figure 4C). HTO overlays on the Monocle3 
pseudotime trajectory (Figure 4C) indicated that lineage origin occurs with the B6 naive cluster; the pro-
gram then postulated early branching of  the Treg cluster, along with progression through activated lupus-
prone splenic cells, and finally to kidney-infiltrating cells. In this model, it appears that naive T cells enter 
the “autoimmune/cytotoxic phase” just prior to or in parallel with kidney infiltration, as hypothesized, and 
finally progress to a hypoxic/dysfunctional state (Figure 4D).

Figure 2. High-resolution clustering of CD4+ T cells uncovers unique transcriptional programs in KITs. (A) UMAP of 
CD4+ T cells from Main-Seq outlining 13 clusters, with the right panel exhibiting assignment of cell source as deter-
mined by HTO. (B–D) Gene set enrichment analysis (GSEA) performed in each cell by Wilcoxon’s test (–log10 [P value]) 
using published reference gene signatures (Supplemental Table 1) and related TF expression were overlaid onto the 
UMAP to identify CD4 phenotypes. This included (B) Treg gene signature and Foxp3 expression, (C) Th1 signature and 
Tbx21/Tbet expression, and (D) Th2 signature and Gata3 expression.

https://doi.org/10.1172/jci.insight.156048
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KIT Tregs express tissue-resident markers. To assess the independent effect of  tissue reprogramming on T 
cell phenotype, we more closely evaluated the Treg population (cluster 6), as this cluster was composed of  
cells from all 3 origins. Upon reclustering, KIT Tregs mapped separately from the splenic Tregs of  either 
B6 or autoimmune origin (Figure 5, A and B). A volcano plot (Figure 5C) revealed a number of  DEGs 
between peripheral and kidney Tregs, mostly upregulated in the kidney, suggesting that tissue residence 
induced an additional transcriptional program. These DEGs included Crem and Klf6, TFs previously asso-
ciated with CD4+ KIT phenotypes in our TF mapping (Figure 3B). Interestingly, genes previously identified 
in tissue-resident Tregs when compared to lymphoid Tregs were similarly transcriptionally upregulated in 
KIT Tregs, including Crem, Rgs1, Rgs2, Id2, Ctla4, and Areg (Figure 5C, highlighted in pink) (30).

CD8+ KITs exhibit heterogeneity after tissue infiltration. CD8+ T cells (from Main-Seq) were analyzed as 
done for the CD4+ population, yielding 9 clusters that resolved based on HTO (Figure 6, A and B). We 
could identify most of  these clusters by virtue of  the DEGs in each (Figure 6C). The majority of  splenic 
T cells were clustered to the right side of  the UMAP, with cluster 4 being predominantly composed of  

Figure 3. TF analysis suggests overarching transcriptional regulation of infiltrating CD4+ T cell clusters. (A) Heatmap representing z-scored regulon activity 
of top TFs inferred by SCENIC and association with CD4+ T cell clusters. (B) Expression of selected TFs overlaid onto the CD4 UMAP as depicted in Figure 2.

https://doi.org/10.1172/jci.insight.156048
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B6 splenic T cells and cluster 0 representing the majority of  MRL/lpr splenic T cells and suggesting a 
TCM phenotype.

Autoimmune splenic T cells were also represented in clusters 6 and 5, which comprise T effector mem-
ory (TEM) and peripherally exhausted cells, respectively. CD8+ KITs from MRL/lpr mice were found in 
several unique clusters. Cluster 2 contained an exhausted T cell population (TEX). Cluster 3 consisted of  a 
resident memory T cell population (TRM). Cluster 6 was a TEM cluster, made up of  approximately 50% KITs 
and 50% splenic T cells. Cluster 1 was the largest KIT cluster. It appeared to represent a transitional state, 
as cells in this cluster expressed a mixture of  genes indicative of  TEX, TRM, and TEM. The 2 smallest clusters 
were dividing cells (cluster 7), and IFNhi T cells (cluster 8), with cells from multiple sources.

To confirm clusters’ putative identities, reference gene signatures (Supplemental Table 1) were overlaid 
on the UMAP plots (Figure 6, D–I). The resident memory signature mapped most strongly to the TRM 
and KIT TEX clusters (Figure 6D). Reciprocally, the peripheral gene signature was associated with splenic 
derived T cells — particularly the naive, the TCM, and splenic portion of  the TEM clusters (Figure 6E); how-
ever, the peripheral TEX cluster exhibited neither a TRM or a peripheral signature. As expected, the CD8+ 
KIT population as a whole manifested a robust “exhausted” signature (6). Among KITs, the exhaustion 
signature was most associated with clusters 2 and 3 and to a lesser extent 1, which represent the KIT TEX, 
TRM, and transitional populations, respectively (Figure 6F). Reference gene UMAP overlays for TEM and 
TCM transcriptional signatures confirmed our initial classifications of  these clusters (Figure 6, G and H).

Unique TF profile associated with T cell infiltration and exhaustion. We further performed TF motif  enrich-
ment for the CD8+ T cell clusters using SCENIC (Figure 7A). As expected, IRF1, IRF7, IRF9, and STAT1 
were identified as transcriptional drivers of  the IFNhi cluster. Similar to the CD4+ compartment, several 
motifs were enriched in all CD8+ KITs (UQCRB, CREM, and KLF6), while other TFs were cluster spe-
cific; for example, in the TEX clusters (2 and 5), motifs for NR3C1, HTATIP2, and ELF1 were enriched.

Not all TFs can be mapped by SCENIC. To provide an alternative approach, we overlaid expression of  
multiple TFs on the UMAP plots (Figure 7B). Expression of  Crem and to a lesser extent Klf6, was associated 

Figure 4. CD4+ KITs exhibit a progressive transcriptional phenotype from cytotoxicity to hypoxia/dysfunction through pseudotime. GSEA performed in 
each cell by Wilcoxon’s test (–log10 [P value]) using published reference genes signature (Supplemental Table 1) overlaid onto the UMAP from Figure 2A. (A) 
Hypoxia signature, exhaustion signature, and cytotoxic CD4 signature. (B) Dot plots show the distribution of exhaustion score in each CD4+ T cell, grouped 
by cluster number. Dots are colored according to the source of cells they represent. Statistics were calculated by Kruskal-Wallis rank test. (C) Monocle tra-
jectory mapping of CD4+ KITs wherein time 0 (dark purple) represents lineage origination with progression to most differentiated (yellow), with cell source 
mapping. (D) Gene signature mapping for the indicated signatures as defined in A.

https://doi.org/10.1172/jci.insight.156048
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with KITs, while Uqcrb was not, exposing some discordance between TF expression and predicted TF gene 
regulation. Expression of  both Tox and Eomes, which are regulators of  T cell exhaustion (31–33), are correlat-
ed with the TEX clusters 2 and 5, further validating their identity. Notably, Tcf7, which is strongly expressed in 
splenic T cells, was also observed in transitional cells, with expression generally extinguished in TEX and TRM 
populations. A pattern similar to Tcf7 was seen with Klf2, whereas Klf6 and Id2 had reciprocal patterns.

Trajectory analysis identifies lineage progression of  CD8+ T cells and a distinct transitional population. Based on the 
fact that cluster 1 was at the center of the clearly distinguishable TEX, TRM, and TEM clusters, and that cluster 1 
displayed intermediate expression of several gene signatures (TRM, TEX, Tperiph) and TFs (Crem, Tcf7, Tox, Klf2, 
and Klf6) (Figure 6, D–F, and Figure 7B), we hypothesized that cluster 1 represents a transitional population that 
is in the process of differentiating from a peripheral phenotype to any one of the 3 more differentiated terminal 
destinations. Interestingly, a potentially similar transitional cell has been identified in tumor models in which 

Figure 5. Kidney-infiltrating Tregs exhibit features of tissue reprogramming. (A) High-resolution reclustering of Tregs 
identified as cluster 6 in Figure 2 (Main-Seq) identifies 3 unique clusters as illustrated by color-coding. (B) HTO-based 
identification of splenic (B6 and MRL/lpr) and KIT Tregs. (C) Volcano plot shows top significant (FDR < 0.05) DEGs that 
are upregulated or downregulated in KITs compared with splenic MRL/lpr Tregs, with genes in pink having been previ-
ously associated with tissue-resident Tregs (30).

https://doi.org/10.1172/jci.insight.156048
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cells also exhibit an exhausted or effector phenotype (34). To evaluate this hypothesis, we performed compu-
tational lineage progression analysis (Figure 7, C and D). This analysis delineated a progression from naive to 
memory cells, followed by kidney tissue invasion, where cells initially manifest a “transitional” phenotype. From 
there, the algorithm predicted cells developing into a TEM (cluster 6), TEX (cluster 2), or TRM (cluster 3) phenotype.

Clonal expansion and proliferation are associated with an exhausted phenotype in KITs. If  the model that auto-
reactive T cells enter the kidney and then become exhausted as part of  a self-preservation mechanism is 
correct, we would expect the transitional and exhausted clusters to harbor clonally expanded T cells, with 
some of  the clones spanning both clusters, suggesting dynamic progression. To test this, we performed 
TCR-Seq of  single cells, which allowed clonal lineage tracking among clusters in both genetic models of  
murine LN (MRL-TCR–Seq and Yaa-TCR–Seq, respectively).

Transcriptional data from all 3 cohorts were merged into a single UMAP using Harmony (Figure 
8A). Using GSEA and mapping of  Main-Seq cohort clusters, we identified, in the combined UMAP 
plot, clusters with exhausted, effector, resident memory, and transitional phenotypes (Figure 8, B and C).  

Figure 6. High-resolution clustering of CD8+ T cells identifies unique functional phenotypes. (A) UMAP of CD8+ T cells from Main-Seq delineating 
9 clusters. (B) UMAP with overlay exhibiting assignment of cell source as determined by HTO. (C) Heatmap shows top significant (FDR < 0.01) DEGs 
associated with each CD8+ cluster and their expression at single-cell level in columns. (D–I) GSEA performed in each cell by Wilcoxon’s test (–log10 [P 
value]) using published reference gene signatures (Supplemental Table 1), overlaid onto the UMAP to identify CD8 phenotypes. Clusters are outlined 
as per A. This included gene signatures for (D) resident memory (TRM), (E) circulating/lymphoid (Tperiph), (F) exhaustion (TEX), (G) effector memory (TEM), 
(H) central memory (TCM), and (I) hypoxia.

https://doi.org/10.1172/jci.insight.156048
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Despite examining 2 unique spontaneous nephritis models with variable levels of  histologic disease (Sup-
plemental Figure 4 and Supplemental Table 2), the composition of  the T cell clusters of  KITs was quite 
similar (Supplemental Figure 5 and Supplemental Figure 6, A and B), When evaluating clusters by mod-
el, only the IFNhi cluster was differentially represented, being increased among the FcγR2B–/–.Yaa KITs. 
This represented one of  the small clusters, and the increase in IFNhi cells was expected based on prior 
data (35). To assess whether mouse-to-mouse variability in cluster distribution, particularly with regard 
to the exhausted population, was correlated with histologic status, we performed linear regression anal-
ysis of  glomerulonephritis as well as interstitial nephritis score as compared to percentage of  cells in the 
exhausted clusters and found no significant associations (Supplemental Figure 6C). By histologic analysis 

Figure 7. TF and lineage progression analysis of CD8+ KITs. (A) Heatmap represents z-scored regulon activity of top TFs inferred by SCENIC (rows) and associa-
tion with CD8+ T cell clusters (columns). (B) Representative TFs were mapped onto CD8 UMAPs; TF selection was based on known regulatory functions or due 
to identification via SCENIC analysis. Outlines highlight spleen-derived, kidney-infiltrating, and exhausted cells, with dot red color intensity representing log2 
expression. (C) CD8+ T cells grouped into 9 distinct clusters and ordered by Slingshot pseudotime trajectory. (D) Slingshot lineage overlay on CD8+ T cell UMAP.
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(Supplemental Figure 4 and Supplemental Table 2) MRL/lpr mouse 5 had the most severe disease and the 
highest terminal exhaustion score; however, the remainder of  the mice with variable levels of  disease did 
not offer any additional correlation between histologic disease score and CD8+ T cell phenotype. Overall, 
these 2 genetically distinct murine lupus models had very similar cluster representation among their KITs, 
indicating at a single-cell level that the processes underlying interstitial nephritis were not model specific 
(Supplemental Figures 5 and 6).

We identified expanded T cell clones in each of  the mice evaluated, consistent with previous reports 
in patients with systemic lupus erythematosus (SLE) (36–38). High-frequency CD8 clones (top quartile) 
were defined as a TCR shared between ≥13 T cells (or a frequency of  ~1%) in MRL-TCR–Seq and 
between ≥40 T cells (or a frequency of  ~3%) in Yaa-TCR–Seq (Figure 8D). In the combined UMAP, 2 
distinct clusters of  exhausted cells were observed. The rightmost cluster (Figure 8E) exhibited a signifi-
cantly (P < 0.0001) higher exhaustion gene signature, which we denote as a terminally exhausted cluster 
(Figure 8F). In the MRL/lpr model the great majority of  the high-frequency clones mapped to the 
exhausted clusters (comprising about 79% of  all high-frequency clones), which is a significant enrich-
ment compared with T cells expressing unique TCRs (P < 0.0001, Figure 8, D and G). There was less 
robust expansion of  clonal T cells in the FcγR2B–/–.Yaa model, with 34.4% of  high-frequency clones 
mapping to the 2 exhausted clusters, compared with an expected 23.1% of  all T cells (P < 0.0001). 
Notably, there was significant clonal expansion observed in the terminal exhaustion cluster: among T 
cells expressing unique TCRs, the terminal exhaustion cluster comprised only 3.12%; whereas among 
high-frequency clones, the terminal exhaustion cluster comprised 17.3% of  cells (P < 0.0001). The 2 
other clusters that displayed expansion of  the high-frequency clones in the FcγR2B–/–.Yaa mice were 
TRM cells and the transitional group. The transitional cluster represented 17.1% of  cells with unique 
TCRs compared with 23.9% of  the high-frequency clones (P < 0.05, Figure 8G). Importantly, and con-
sistent with TIL data (39), higher clonal abundance was progressively correlated with higher exhaustion 
score as measured for high-frequency, moderate-frequency (>4 T cells sharing a TCR), shared (2–4 
cells), and unique clones (Figure 8F).

Expectedly, there was very little overlap among TCRs between mice. None of  the top clones showed 
overlap between the MRL/lpr and FcγR2B–/–.Yaa models. When examining the top 10 clones from each 
model, only the top clones showed any overlap. In each case nearly all the TCRs sharing the same CDR3 
regions arose from a single mouse, with 1 clone arising from a second mouse in the MRL/lpr cohort. 
Although 3 mice in the FcγR2B–/–.Yaa cohort expressed the top clonal sequence, 168 T cells arose from 1 
mouse while only 1 each arose from the 2 other mice (data not shown). We are uncertain whether these 
are true, independent instances of  the same TCR sequence or are the result of  rare demultiplexing errors 
arising from unfiltered doublets.

Plotting the distribution of  the top 20 highest frequency clones (Supplemental Figure 7) allowed us to 
evaluate how large clones span clusters, which in turn directly links the evolution of  these clones over the 
cluster phenotypes. In every high-frequency MRL/lpr clone, members were found in the transitional, TEX, 
and terminal TEX clusters. In the Yaa model, the majority of  the highest frequency clones were also repre-
sented in transitional as well as more terminally differentiated clusters, including both TEX and TRM clus-
ters. These clones provide direct evidence that progeny of  the same cell transition between differentiation 
states within the kidney. Taken together, these data support the trajectory analysis (Figure 7D), with clonal 
expansion in the transitional compartment followed by terminal differentiation.

Proliferation in exhausted clusters. Expanded clones in exhausted clusters could result from contin-
ued proliferation after differentiation into those clusters or could be nondividing terminal differentia-
tion products of  their dividing transitional precursors. To distinguish these possibilities, we quantified 
the cell cycle state of  each cluster using a score for expression of  gene sets indicative of  cell cycle 
phase. As expected, the proliferative cluster (Figure 8B) was enriched in S phase and to a lesser extent 
G2/M genes. The KIT exhausted clusters had high and significant S phase and G2/M scores in both 
strains of  mice (Figure 8H). In contrast, the naive, TRM, and TCM clusters exhibited significant enriched 
expression of  G1 phase genes, indicative of  resting, stable populations. This supports the concept that 
exhausted cells do continue to proliferate and that clonal expansion can occur at least in part after 
exhausted differentiation, suggesting that exhausted cells are sensing TCR signals and may contribute 
directly to pathogenesis.
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Figure 8. CD8+ KITs are clonally expanded, with clones and proliferation spanning the exhausted and transitional compartments. (A) UMAP of all 3 
scRNA-Seq cohorts (see Figure 1 for cohorts), integrated using Harmony, followed by projection of individual cohorts onto this “combined UMAP.” (B) Main-
Seq–defined CD8+ clusters labeled by cluster name (Figure 6), mapped onto the combined UMAP. (C) Combined UMAP with all putative clusters as outlined 
in B. (D) High-frequency clones (defined as clones representing the top quartile of expressed TCRs) from each cohort are mapped onto the combined UMAP. 
(E) Exhaustion gene set enrichment calculated using Wilcoxon’s test overlaid onto the combined UMAP. (F) Dot plots represent exhaustion scores for cells 
grouped based on clonal frequency among MRL/lpr and FcγR2B–/–.Yaa KITs, with exhaustion scores for B6 naive, early TEX, and terminal TEX shown at left 
for reference (*P = 0.05, **P < 0.01, ****P < 0.0001 as determined by 1-way ANOVA with Tukey’s test for multiple comparisons). Horizontal bars represent 
medians. (G) Pie charts represent the relative cluster distribution of unique TCR T cells as compared with high-frequency TCRs from MRL/lpr (top) and 
FcγR2B–/–.Yaa (bottom) models with the relative distribution of these clones within the putative T cell clusters as defined in B and C. (H) Cell cycle state 
was assessed over all cells for each cluster using GSEA for genes indicative of G1, G2/M, and S phases. Proliferative potential was analyzed for enrichment 
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Discussion
We previously reported that KITs in 3 different murine lupus models exhibited functional and transcrip-
tional “exhaustion,” with characteristics that paralleled TILs in progressing tumors (6, 14, 40). Yet, nephri-
tis in both lupus-prone mice and patients with SLE results in the ultimate destruction of  tissue and loss of  
organ function. The dynamic process that reconciles these 2 findings, and that describes how autoimmune 
renal destruction occurs and at the same time may be restrained via exhaustion and other mechanisms, has 
not been elucidated. Here, we have used scRNA-Seq and TCR-Seq to reveal marked heterogeneity among 
KITs and a likely progressive pathway that connects initially activated and potentially destructive CD4+ 
and CD8+ T cell clones to exhausted populations of  cells. Together, these studies provide insights into the 
pathogenesis of  LN and potentially actionable information for novel treatment strategies.

A major goal of  this work was to define which populations might be contributing to damage in LN. 
While numerous cell populations have been implicated in the pathogenesis of  LN, including dendritic 
cells, macrophages, B cells, and neutrophils (41), in our prior work we determined that T cells exhibited 
the largest expansion in nephritic mice compared with non-nephritic mice (6). They also exhibited unique 
functional features, and thus we selected this population for further analysis. However, it is likely that 
numerous other cell populations likely contribute to disease observed in both mice and humans. In the 
CD4+ compartment, clustering based on gene expression did not reveal classical CD4+ T cell differentiation 
states, including Th1, Th2, or Th17 cells; rather, several clusters were associated with hybrid transcriptional 
features of  both Th1 and Th2 cells (Figure 2). This would argue that the classic Th paradigm does not 
necessarily hold in systems of  complex immune activation within tissues, as has also been observed by 
others (11, 42). Th1/Th2 hybrid T cells may engender a self-limited response that serves to limit excessive 
immunopathology (43, 44).

Trajectory analysis and gene expression mapping suggested the following model for the evolution of  
CD4+ KITs: cytotoxic self-reactive CD4+ T cells that arise in the periphery infiltrate the kidney, and after 
initiation of  inflammation and transient organ damage, give rise to a more hypoxic and exhausted/dys-
functional T cell population, resulting in smoldering inflammation. The hypoxia-induced suppression and 
dysfunctional status of  such T cells has been well documented, supporting this model (3, 45); in fact recent 
work suggests that hypoxia directly induces T cell exhaustion (46) consistent with our findings in this work. 
The proposed initial activation in the periphery predicts that some antigens recognized by CD4+ T cells in 
the periphery may also be presented in the kidney and/or that kidney-specific antigens are presented in the 
periphery subsequent to initial renal damage and release.

Among CD8+ KITs, we identified several populations, including TCM, TEM, TRM, IFNhi, and TEX, as well 
as a transitional population. A specific focus, given our prior findings and TIL literature (2, 6, 14), was the 
exhausted cell cluster. TEX cells are associated with the TFs Tox and Eomes, documented mediators of  exhaus-
tion (31–33). Furthermore, the glucocorticoid receptor NR3C1, which was recently identified as a mechanism 
of promoting T cell dysfunction in tumors (47), is a potential transcriptional driver of  the TEX phenotype in 
this system. The role of  the transitional population, which we elucidate here for the first time to our knowl-
edge, may be key in understanding the dynamic process that occurs in the kidney as disease is established. 
Trajectory mapping placed these cells at the intersection of  autoreactive peripheral T cells and terminally 
differentiated KITs, which would infiltrate the kidney in the context of  pseudotime.

In the MRL/lpr model, clonally expanded TCRs spanned the transitional and TEX populations, indi-
cating dynamic movement between the clusters, as predicted by the trajectory model. In the FcγR2B–/–.Yaa 
model, clones were even more expanded; though prominent expansion was seen in the transitional and ter-
minally exhausted clusters, large clones spanned several compartments, suggesting infiltration followed by 
proliferation and differentiation into multiple terminally differentiated phenotypes. Overall, the cluster dis-
tributions between the 2 models were quite similar, suggesting common themes that likely apply to human 
LN and other forms of  autoimmune tissue infiltration. The greater extent of  clonal expansion and sharing 
among clusters seen in the FcγR2B–/–.Yaa model may represent different extent or quality of  disease, reflect-
ing subtypes of  murine LN, akin to different types of  LN seen in patients. In the FcγR2B–/–.Yaa model, we 
noted an increased number of  clonally expanded TRM cells; however, the role of  TRM in promoting disease 

of G2/M and S phase genes, comparing individual clusters with the total T cell population. (G and H) Data were analyzed using χ2 analysis and corrected 
for multiple comparisons for 9 comparison groups (*P = 0.05, ***P < 0.005, ****P < 0.0001). Green indicates enrichment of G2/M/S phase genes, and red 
indicates enrichment of G1 genes. 
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is unclear. While the function of  these cells in barrier tissue is generally felt to provide a rapid antigen-spe-
cific response at initial pathogen encounter, the role in nonbarrier tissue may be quite different. As there 
are shared TCR clones between exhausted and resident memory populations, this suggests that these may 
be alternative differentiation pathways for T cells, and it is possible that TRM may contribute to some of  the 
chronic damage response observed in LN. Resolution of  this question will await tools to specifically target 
either TRM or TEX in tissues of  lupus-prone mice.

Notably, 2 recent human studies examining T cells in the tumor microenvironment (34, 39) revealed 
infiltrates that parallel those in the LN models. Li et al. (34) described naive, memory, transitional, and 
dysfunctional CD8+ T cells in tumor infiltrates. Much like we observed in KITs, they also observed clonal 
overlap between transitional and dysfunctional T cells but to a lesser degree in the cytotoxic populations 
(34). Further, in both KITs (herein) and TILs (34), proliferative capacity was greater among the exhausted/
dysfunctional T cells, suggesting that TIL behavior may reflect enhancement of  the natural processes that 
evolved for organ preservation in the face of  autoimmunity.

At each stage of  progression from activation and damage toward either exhaustion or resident memory 
status, there may be opportunities to intervene based on specific cellular states. Further studies to better 
understand the factors that sustain cells or that could inhibit cells at each given stage are needed, as are 
insights into the signals that promote the progression along this pathway. The progressive pathway we have 
identified could also be a framework for understanding genetic susceptibility loci, some of  which might 
impinge on, for example, the likelihood that KITs can be induced toward exhaustion by the renal environ-
ment. Such genetic variants could be expressed in either the T cells or the target tissues (48).

Together these concepts raise the question of  how tissues reprogram activated infiltrating T cells and what 
the hallmarks are of  such reprogramming. In this regard, the TFs Crem, Id2, and Klf6 were identified in all 3 
KIT populations (CD4, CD8, Treg). Crem is a transcriptional repressor that suppresses IL-2 transcription and 
is associated with anergic T cells (49). Klf6 is thought to promote T cell quiescence, and in a recent study its 
expression was correlated with VISTA expression and reduced SLE susceptibility (50). These TF associations 
further support the concept that there are overarching tolerogenic programs induced after kidney infiltration.

Despite the clear presence of  a TEX population in both murine lupus models, a TEX population was 
not observed in human LN in a report from the AMP consortium (4). Notably, due to the difficulty in 
obtaining tissue, the AMP study examined few T cells (just over 1000 total from all patients), and these 
were obtained from patients treated with immunosuppressive therapy. While it is theoretically possible that 
T cell exhaustion does not occur in human LN and is mouse specific (6) and human tumor specific (51), 
it seems more likely that human autoimmunity will resemble human tumor infiltration; thus, deeper study 
may reveal exhausted KITs, at least in some patients. T cell exhaustion is manifestly observed in the periph-
eral blood CD8+ cells of  patients with lupus, and the presence of  such exhausted cells in blood correlates 
with less propensity for disease progression (11, 52). If  severe disease correlates with less ability to induce 
exhaustion, it is possible that those patients who sufficiently induce exhaustion may not be well represented 
in the AMP data that focused on patients who warranted (re)biopsy. Treatment with prednisone or other 
immunosuppressive agents may also preferentially deplete the exhausted population. Corticosteroids can 
induce T cell apoptosis (53) and reduce the efficacy of  anti–programmed cell death 1 (anti–PD-1) therapy 
(47, 53, 54). Additionally, treatment with cyclophosphamide leads to a vast reduction in PD-1+Lag3+ TEX 
in tumors and thus would likely do the same in human nephritic kidneys (55). Indeed, the efficacy of  these 
very treatments for nephritis implies that they must be impacting KITs and the renal microenvironment.

Integrating our findings, we propose several mechanisms by which kidney damage occurs in a sub-
acute fashion, even in the face of  inherent counterregulation within the tissues. Cytotoxic like CD4+ 
T cells may contribute to damage (28, 29). Parenchymal destruction may also be caused by a combi-
nation of  the early infiltrating/transitional CD8+ cells that recognize self-antigen and expand, before 
they become fully exhausted. It is further possible that the IFNhi and TEM cells, which are present in 
small numbers, are also pathogenic. Critically, while TEX are dysfunctional, they are not nonfunctional 
(7, 51); accordingly, these cells may also contribute to the slow chronic damage we observe in LN and 
likely continue to respond to mitogenic stimulation, as supported by the continuing S and G2/M phase 
signatures seen in TEX (Figure 8H).

While it does not appear that the percentage of  TEX increases with disease severity (Supplemental Fig-
ure 6C), or as lupus-prone animals age (6), the total number of  infiltrating T cells does increase with disease 
severity in these models and in human patients. Thus, there may be a point beyond which exhaustion can 
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no longer control disease. Prior work suggested that those patients with a peripheral blood CD8+ TEX sig-
nature were less likely to flare compared with those lacking this signature (52). However, what occurs at 
the level of  the target organ remains an outstanding question, and it will be interesting, in future work, to 
determine if  the proportion of  exhausted cells in a biopsy can be correlated with disease outcomes.

It will be important to identify the mechanisms by which each of  these potentially damaging cell types 
and events are inhibited by the kidney and how existing and novel therapies can affect them. It is hoped 
that this work will allow us and others to target these varying T cell populations more specifically, thereby 
opening new therapeutic avenues.

Methods
Animals. C57BL/6 mice were purchased from Jackson Laboratory. MRL/lpr mice were initially obtained 
from Jackson Laboratory and have been maintained in our laboratory. FcγR2B–/–.Yaa mice were obtained 
from Silvia Bolland (National Institute of  Allergy and Infectious Diseases, NIH, Rockville, Maryland, 
USA) and have been maintained in our laboratory. Mice were aged and proteinuria was measured prior to 
sacrifice, as documented in Supplemental Table 2.

Isolation of  T cells from kidney and spleen. T cells were isolated as previously described (6). In brief, after 
sacrifice, spleens were removed, and animals were perfused with 40 mL of  HBSS, until complete blanching 
of  liver and kidney occurred. KITs were isolated using the Octodissociator (Miltenyi Biotec) in the presence 
of  1600 Kunitz units/mL collagenase D (Roche Diagnostics) and 0.2 mg/mL DNAse IV (MilliporeSigma) 
for 30 minutes at 37°C. RBC lysis was performed, and cells were filtered through a cell strainer (100 μM 
nylon; Falcon, Corning). Splenocytes were isolated using mechanical dissociation between 2 frosted glass 
slides and filtered through a 70 μm mesh filter after RBC lysis.

Cells were stained as previously described (6) with the following panel: anti-CD8 (Lyt-2/TIB-105, 
Pac-Blue, produced in-house), anti-CD4 (GK-1.5, in PE, purchased from BioLegend), and anti-CD90.2 
(Thy1.2/30H12, Al488, produced in-house) for MRL/lpr mice or anti-CD90.2 (Thy1.2/30H12, Al647, pro-
duced in-house) for FcγR2B–/–.Yaa Ghost BV510 (Tonbo) was used to exclude dead cells. For all “in-house” 
antibodies, hybridoma clones are commercially available and antibodies were purified as described (6).

T cells were sorted using a FACSAria (BD Biosciences). After sorting, cells were washed twice 
with 2% BSA in PBS. Then anti-CD45 HTO reagents were added at a 1:50 dilution to each of  the sort-
ed samples. Anti-CD45 TotalSeq-A0096 30-F11 (BioLegend) was used for the Main-Seq cohort, and 
TotalSeq-C0096 30-F11 (BioLegend) was used for both TCR-Seq cohorts. After the HTO staining cells 
were washed twice in 2% BSA in PBS.

Library preparation and RNA-Seq of  T cells. Cells were counted and loaded into the 10x Genomics 
Chromium system per the manufacturer’s instructions. Gene expression, TCR, and antibody hashtag/
feature barcode libraries were generated, their quality was assessed through the Agilent TapeStation 
High Sensitivity D5000 Screentape, and their amounts were quantified with the KAPA Library Quan-
tification Kit for Illumina Platforms. For the Main-Seq cohort the 3PrimeV2 library was used; the fea-
ture barcode library was generated according to the New York Genome Center protocol (56). For the 
TCR-Seq cohorts the 5PrimeV1 libraries were obtained from 10x Genomics. For hashtagging, we fol-
lowed the “feature barcode” instructions from the manufacturer. Libraries were pooled and sequenced 
on a NovaSeq (Illumina Biosciences). FASTQ files were generated and aligned to the mouse reference 
genome mm10 with Cell Ranger 5.0.0 (10x Genomics) to produce the gene-cell count matrix and 
cell-antibody count matrix.

scRNA-Seq data processing. The 10x raw data from each sample were demultiplexed, and FASTQ files 
were generated using the “mkfastq” Cell Ranger pipeline (v5.0.0, 10x Genomics). Cell Ranger “count” 
was used to align reads to the mm10 reference genome, and mRNA transcript, and HTO unique molecular 
identifier (UMI) quantification tables were generated. The raw barcode matrix files generated from the 
Cell Ranger pipeline were further utilized for downstream analysis using the Seurat package (v4.0.0) (12) 
(https://github.com/satijalab/seurat) in R (v3.4.3).

Initial quality control and processing. Cells expressing fewer than 200 genes, or with greater than 10% of  
UMIs that mapped to mitochondrial DNA, were filtered out. The HTO tables were added to the data set 
and normalized by a centered-log ratio method using the “NormalizeData” function. The normalized HTO 
count was used to determine if  each gel bead-in-emulsion contained a single cell using the Seurat “MULTI-
seqDemux” function and manual inspection of  cells, where a cell was considered a singlet if  expression of  
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a single HTO accounted for more than 70% of the total HTO expression in that cell; otherwise, the cell was 
considered a doublet and removed. Gene expression values for each cell were log2-normalized using “Nor-
malizeData” function, where expression of  a gene was normalized to total expression of  all genes in that cell 
and scaled by a factor of  10,000. UMI, mitochondrial content, and hemoglobulin gene and ribosomal gene 
content scores were “regressed out” using Seurat’s “ScaleData” function.

Dimensionality reduction and clustering. Variable genes were detected using the “mean.var.plot” meth-
od in the “FindVariableFeatures” function with default cutoff, which computes the mean expression and 
dispersion (log[variance/mean]) per gene, followed by grouping the data into 20 bins based on their mean 
expression. Variable genes were then selected based on z-scored dispersion within each bin. These variable 
genes were used for dimensionality reduction based on principal component analysis (PCA) using the 
“RunPCA” function. “ElbowPlot” was used to assess the first 50 principal components, and the principal 
components that accounted for the largest variability in the data were selected for further UMAP dimen-
sional reduction and clustering analysis.

In order to identify distinct groups of  cells, unsupervised clustering was performed using the “Find-
Clusters” function, which calculates the k-nearest neighbors according to variable gene expression in 
all cells, thereby constructing a shared nearest neighbor graph using the Louvain algorithm. To avoid 
overclustering, we tested different resolution (“res”) parameters, ranging from 0.1 to 2 in increments of  
0.1, and the clustering progression was assessed and visualized using “Clustree” (v 0.4.3) (57). Optimal 
resolution was determined based on continued separation prior to “overclustering” as observed by the 
increasing crossover between clusters. Low-resolution clustering was then defined as analysis of  all cells 
within an entire cohort, while high-resolution clustering was defined as clustering on a preselected sub-
population, i.e., CD4+, CD8+, or Treg cells previously defined in our low-resolution analysis. Based on 
these observations we chose the resolutions 0.9, 1.4, 0.6, 0.9, respectively, for Main-Seq, CD4+, CD4+ 
Treg sub, and CD8+ from cohort 1 and resolution 0.7 for merged cohort CD8+ T cells. Cell clusters were 
visualized using UMAP dimensional reduction plots.

The “FindAllMarkers” function with default settings was utilized to find DEGs in each cluster, in com-
parison with all other clusters, using the Wilcoxon rank-sum test with genes detected in a minimum of  10% 
of  cells, a minimum of  0.25 average log fold change, and a minimum of  0.01 Bonferroni-adjusted P value.

Harmony analysis. For the combined UMAP in Figure 8, the 3 independently run cohorts were merged 
using Harmony (58) with default parameter settings.

Cell cycle evaluation. The “CellCycleScoring” function in Seurat was utilized to calculate the G1, G2/M, 
and S phase marker expression score in each cell using scoring strategy described previously (59). The num-
ber of  cells determined to be in G1, G2/M, or S phase was calculated on a per-cluster basis, and deviation 
from overall distribution was assessed by χ2 analysis.

GSEA and expression mapping. P values for GSEA were determined using the Wilcoxon test for pub-
lished gene set signatures as defined in Supplemental Table 1. Using “ggplot2” in Seurat, –log10 P values 
were plotted onto the UMAPs.

Additional analytics. Bar plot, dot plot, and PCA plots were constructed using ggplot2 in R. Heatmaps 
were generated using the “pheatmap” function in R.

TCR data analysis. TCR data were processed using cellranger vdj with–reference = refdata-cellrang-
er-vdj-GRCm38-alts-ensembl-3.1.0 to assemble TCR α and β chains and determine clonotypes. Cells with 
1 productive TCR (α and β) were kept for further analysis, while nonproductive TCR chains were exclud-
ed. Clonal T cells were defined as cells expressing shared TCR-α and -β receptors with identical CDR3 
sequences at the nucleotide level.

Pseudotime trajectory analysis. Trajectory analysis using the Seurat-processed gene counts was per-
formed using Monocle 3 (version 0.1.3) to model CD4+ T cell differentiation. The reverse graph embed-
ding method DDRTree was used to reduce the dimensionality, cells were ordered along a trajectory 
using “orderCells” function, and the trajectory was visualized in the reduced dimensional space.

To model CD8+ T cell differentiation, we used Slingshot with “start.clus” set as B6/naive cluster. The 
cells were ordered by Slingshot pseudotime and grouped as Seurat clusters to project the clusterwise trajec-
tory. The Slingshot trajectory lineage result was plotted on the CD8+ cell Seurat UMAP.

TF regulatory network analysis. The SCENIC v.1.1.2 workflow was utilized in R to identify regulons 
using the Seurat-processed count and clusters as per a previous study (60). Heatmaps were then created as 
described above.
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Histologic scoring. Kidney histology preparation and scoring were performed as defined previously (61).
Data and materials availability. All analyses and visualizations were performed in R. Specific methodol-

ogy and analysis using published Seurat programs are detailed in the Methods section. The data, metada-
ta, and analysis outputs such as cluster identification are deposited in National Center for Biotechnology 
Information’s Gene Expression Omnibus (GSE197339).

Statistics. Statistics were calculated in R as indicated in analysis-specific sections or in GraphPad Prism 
by 1-way ANOVA with Tukey’s test for multiple comparisons, 2-way ANOVA with repeated measures, or 
χ2 analysis as defined in figure legends, with P values represented as *P < 0.05, **P < 0.01, ***P < 0.001, 
****P < 0.0001. P < 0.05 was considered statistically significant.

Study approval. All work was approved by either University of  Pittsburgh’s or Yale University’s Institu-
tional Animal Care and Use Committee.

Author contributions
JST and MJS conceived the study. SS, MC, JST, and MJS developed methodology. JST and SS investigat-
ed. JST and SS visualized data. JST and MJS acquired funding. JST and MJS provided project adminis-
tration. JST and MJS provided supervision. JST and MJS wrote the original draft. JST, MJS, SS, and MC 
reviewed and edited the draft.

Acknowledgments
We would like to thank Minjung Kim for her tireless efforts in the lab, allowing this work to be accom-
plished, and acknowledge critical insight into the project from Kevin Nickerson, Rachael Gordon, and 
Peter Lipsky and critical review of  this work by Fadi Lakkis and Warren Shlomchik. Additionally, we 
would like to thank the University of  Pittsburgh Single Cell Core and specifically Tracy Tabib, who assisted 
with completion of  library preparation and 10x Genomics technology.

Funding was provided by Lupus Research Alliance, Novel Research Grant (to JST); NIH/National Insti-
tute of  Arthritis and Musculoskeletal and Skin Diseases grant K08AR075056 (to JST); and NIH/National 
Institute of  Allergy and Infectious Diseases grant R01 AI137132 (to MJS).

Address correspondence to: Jeremy S. Tilstra, 3500 Terrace Street, BST S705A, Pittsburgh, Pennsylvania 
15261, USA. Phone: 412.383.8861; Email: tilstraj@upmc.edu. Or to: Mark J. Shlomchik, W1052 Bio-
medical Science Tower, 200 Lothrop Street, Pittsburgh, Pennsylvania 15261, USA. Phone: 412.648.8771; 
Email: mshlomch@pitt.edu.

	 1.	Hope HC, Salmond RJ. Targeting the tumor microenvironment and T cell metabolism for effective cancer immunotherapy. Eur 
J Immunol. 2019;49(8):1147–1152.

	 2.	Jiang Y, et al. T-cell exhaustion in the tumor microenvironment. Cell Death Dis. 2015;6:e1792.
	 3.	Scharping NE, et al. Mitochondrial stress induced by continuous stimulation under hypoxia rapidly drives T cell exhaustion. 

Nat Immunol. 2021;22(2):205–215.
	 4.	Clark MR, et al. The pathogenesis and therapeutic implications of  tubulointerstitial inflammation in human lupus nephritis. 

Semin Nephrol. 2015;35(5):455–464.
	 5.	Hsieh C, et al. Predicting outcomes of  lupus nephritis with tubulointerstitial inflammation and scarring. Arthritis Care Res (Hobo-

ken). 2011;63(6):865–874.
	 6.	Tilstra JS, et al. Kidney-infiltrating T cells in murine lupus nephritis are metabolically and functionally exhausted. J Clin Invest. 

2018;128(11):4884–4897.
	 7.	Schmitz JE, et al. Control of  viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science. 

1999;283(5403):857–860.
	 8.	Paley MA, et al. Progenitor and terminal subsets of  CD8+ T cells cooperate to contain chronic viral infection. Science. 

2012;338(6111):1220–1225.
	 9.	Lanata CM, et al. A phenotypic and genomics approach in a multi-ethnic cohort to subtype systemic lupus erythematosus. Nat 

Commun. 2019;10(1):3902.
	10.	Peterson KS, et al. Characterization of  heterogeneity in the molecular pathogenesis of  lupus nephritis from transcriptional pro-

files of  laser-captured glomeruli. J Clin Invest. 2004;113(12):1722–1733.
	11.	Arazi A, et al. The immune cell landscape in kidneys of  patients with lupus nephritis. Nat Immunol. 2019;20(7):902–914.
	12.	Butler A, et al. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 

2018;36(5):411–420.
	13.	Hashimoto K, et al. Single-cell transcriptomics reveals expansion of  cytotoxic CD4 T cells in supercentenarians. Proc Natl Acad 

Sci U S A. 2019;116(48):24242–24251.

https://doi.org/10.1172/jci.insight.156048
mailto://tilstraj@upmc.edu
mailto://mshlomch@pitt.edu
https://doi.org/10.1038/cddis.2015.162
https://doi.org/10.1038/s41590-020-00834-9
https://doi.org/10.1038/s41590-020-00834-9
https://doi.org/10.1016/j.semnephrol.2015.08.007
https://doi.org/10.1016/j.semnephrol.2015.08.007
https://doi.org/10.1002/acr.20441
https://doi.org/10.1002/acr.20441
https://doi.org/10.1172/JCI120859
https://doi.org/10.1172/JCI120859
https://doi.org/10.1126/science.283.5403.857
https://doi.org/10.1126/science.283.5403.857
https://doi.org/10.1126/science.1229620
https://doi.org/10.1126/science.1229620
https://doi.org/10.1038/s41467-019-11845-y
https://doi.org/10.1038/s41467-019-11845-y
https://doi.org/10.1172/JCI200419139
https://doi.org/10.1172/JCI200419139
https://doi.org/10.1038/s41590-019-0398-x
https://doi.org/10.1038/nbt.4096
https://doi.org/10.1038/nbt.4096
https://doi.org/10.1073/pnas.1907883116
https://doi.org/10.1073/pnas.1907883116


1 7

R E S E A R C H  A R T I C L E

JCI Insight 2022;7(8):e156048  https://doi.org/10.1172/jci.insight.156048

	14.	Singer M, et al. A distinct gene module for dysfunction uncoupled from activation in tumor-infiltrating T cells. Cell. 
2016;166(6):1500–1511.

	15.	Stubbington MJ, et al. An atlas of  mouse CD4(+) T cell transcriptomes. Biol Direct. 2015;10:14.
	16.	Tibbitt CA, et al. Single-cell RNA sequencing of  the T helper cell response to house dust mites defines a distinct gene expression 

signature in airway Th2 cells. Immunity. 2019;51(1):169–184.
	17.	Mackay LK, et al. The developmental pathway for CD103(+)CD8+ tissue-resident memory T cells of  skin. Nat Immunol. 

2013;14(12):1294–1301.
	18.	Chen PM, et al. Kidney tissue hypoxia dictates T cell-mediated injury in murine lupus nephritis. Sci Transl Med. 

2020;12(538):eaay1620.
	19.	Aubert N, et al. Characterization of  a regulatory T cells molecular meta-signature identifies the pro-enkephalin gene as a novel 

marker in mice [preprint]. https://doi.org/10.1101/638072. Posted on bioRxiv March 6, 2020.
	20.	Martin MD, Badovinac VP. Defining memory CD8 T cell. Front Immunol. 2018;9:2692.
	21.	Willinger T, et al. Molecular signatures distinguish human central memory from effector memory CD8 T cell subsets. J Immu-

nol. 2005;175(9):5895–5903.
	22.	Ahrends T, et al. CD4+ T cell help creates memory CD8+ T cells with innate and help-independent recall capacities. Nat Com-

mun. 2019;10(1):5531.
	23.	Yusuf  I, et al. Germinal center T follicular helper cell IL-4 production is dependent on signaling lymphocytic activation mole-

cule receptor (CD150). J Immunol. 2010;185(1):190–202.
	24.	Luzina IG, et al. Spontaneous formation of  germinal centers in autoimmune mice. J Leukoc Biol. 2001;70(4):578–584.
	25.	Blaszczyk K, et al. The unique role of  STAT2 in constitutive and IFN-induced transcription and antiviral responses. Cytokine 

Growth Factor Rev. 2016;29:71–81.
	26.	Swarnalekha N, et al. T resident helper cells promote humoral responses in the lung. Sci Immunol. 2021;6(55):eabb6808.
	27.	Hayward SL, et al. Environmental cues regulate epigenetic reprogramming of  airway-resident memory CD8+ T cells. Nat 

Immunol. 2020;21(3):309–320.
	28.	Sacher AG, et al. Cytotoxic CD4+ T cells in bladder cancer-a new license to kill. Cancer Cell. 2020;38(1):28–30.
	29.	Maehara T, et al. Cytotoxic CD4+ T lymphocytes may induce endothelial cell apoptosis in systemic sclerosis. J Clin Invest. 

2020;130(5):2451–2464.
	30.	Miragaia RJ, et al. Single-cell transcriptomics of  regulatory T cells reveals trajectories of  tissue adaptation. Immunity. 

2019;50(2):493–504.
	31.	Doering TA, et al. Network analysis reveals centrally connected genes and pathways involved in CD8+ T cell exhaustion versus 

memory. Immunity. 2012;37(6):1130–1144.
	32.	Li J, et al. High levels of  eomes promote exhaustion of  anti-tumor CD8+ T cells. Front Immunol. 2018;9:2981.
	33.	Seo H, et al. TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8+ T cell exhaus-

tion. Proc Natl Acad Sci U S A. 2019;116(25):12410–12415.
	34.	Li H, et al. Dysfunctional CD8 T cells form a proliferative, dynamically regulated compartment within human melanoma. Cell. 

2020;181(3):747.
	35.	Celhar T, Fairhurst AM. Modelling clinical systemic lupus erythematosus: similarities, differences and success stories. Rheuma-

tology (Oxford). 2017;56(suppl 1):i88–i99.
	36.	Massengill SF, et al. SLE nephritis is associated with an oligoclonal expansion of  intrarenal T cells. Am J Kidney Dis. 

1998;31(3):418–426.
	37.	Winchester R, et al. Immunologic characteristics of  intrarenal T cells: trafficking of  expanded CD8+ T cell β-chain clonotypes 

in progressive lupus nephritis. Arthritis Rheum. 2012;64(5):1589–1600.
	38.	Murata H, et al. T cell receptor repertoire of  T cells in the kidneys of  patients with lupus nephritis. Arthritis Rheum. 

2002;46(8):2141–2147.
	39.	Yost KE, et al. Clonal replacement of  tumor-specific T cells following PD-1 blockade. Nat Med. 2019;25(8):1251–1259.
	40.	Collier JL, et al. Not-so-opposite ends of  the spectrum: CD8 + T cell dysfunction across chronic infection, cancer and autoim-

munity. Nat Immunol. 2021;22(7):809–819.
	41.	Chang A, et al. Cellular aspects of  the pathogenesis of  lupus nephritis. Curr Opin Rheumatol. 2021;33(2):197–204.
	42.	Kiner E, et al. Gut CD4 + T cell phenotypes are a continuum molded by microbes, not by TH archetypes. Nat Immunol. 

2021;22(2):216–228.
	43.	Peine M, et al. Stable T-bet(+)GATA-3(+) Th1/Th2 hybrid cells arise in vivo, can develop directly from naive precursors, and 

limit immunopathologic inflammation. PLoS Biol. 2013;11(8):e1001633.
	44.	Huang S. Hybrid T-helper cells: stabilizing the moderate center in a polarized system. PLoS Biol. 2013;11(8):e1001632.
	45.	Scharping NE, et al. The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell meta-

bolic insufficiency and dysfunction. Immunity. 2016;45(3):701–703.
	46.	Scharping NE, et al. Mitochondrial stress induced by continuous stimulation under hypoxia rapidly drives T cell exhaustion. 

Nat Immunol. 2021;22(2):205–215.
	47.	Acharya N, et al. Endogenous glucocorticoid signaling regulates CD8+ T cell differentiation and development of  dysfunction in 

the tumor microenvironment. Immunity. 2020;53(3):658–671.
	48.	Mohan C, et al. Genetic dissection of  lupus pathogenesis: a recipe for nephrophilic autoantibodies. J Clin Invest. 

1999;103(12):1685–1695.
	49.	Hedrich CM, et al. cAMP response element modulator α controls IL2 and IL17A expression during CD4 lineage commitment 

and subset distribution in lupus. Proc Natl Acad Sci U S A. 2012;109(41):16606–16611.
	50.	ElTanbouly MA, et al. VISTA is a checkpoint regulator for naïve T cell quiescence and peripheral tolerance. Science. 

2020;367(6475):eaay0524.
	51.	Zarour HM. Reversing T-cell dysfunction and exhaustion in cancer. Clin Cancer Res. 2016;22(8):1856–1864.
	52.	McKinney EF, et al. T-cell exhaustion, co-stimulation and clinical outcome in autoimmunity and infection. Nature. 

2015;523(7562):612–616.

https://doi.org/10.1172/jci.insight.156048
https://doi.org/10.1016/j.cell.2016.08.052
https://doi.org/10.1016/j.cell.2016.08.052
https://doi.org/10.1186/s13062-015-0045-x
https://doi.org/10.1016/j.immuni.2019.05.014
https://doi.org/10.1016/j.immuni.2019.05.014
https://doi.org/10.1038/ni.2744
https://doi.org/10.1038/ni.2744
https://doi.org/10.1126/scitranslmed.aay1620
https://doi.org/10.1126/scitranslmed.aay1620
https://doi.org/10.1101/638072
https://doi.org/10.3389/fimmu.2018.02692
https://doi.org/10.4049/jimmunol.175.9.5895
https://doi.org/10.4049/jimmunol.175.9.5895
https://doi.org/10.1038/s41467-019-13438-1
https://doi.org/10.1038/s41467-019-13438-1
https://doi.org/10.4049/jimmunol.0903505
https://doi.org/10.4049/jimmunol.0903505
https://doi.org/10.1016/j.cytogfr.2016.02.010
https://doi.org/10.1016/j.cytogfr.2016.02.010
https://doi.org/10.1126/sciimmunol.abb6808
https://doi.org/10.1038/s41590-019-0584-x
https://doi.org/10.1038/s41590-019-0584-x
https://doi.org/10.1016/j.ccell.2020.06.013
https://doi.org/10.1172/JCI131700
https://doi.org/10.1172/JCI131700
https://doi.org/10.1016/j.immuni.2019.01.001
https://doi.org/10.1016/j.immuni.2019.01.001
https://doi.org/10.1016/j.immuni.2012.08.021
https://doi.org/10.1016/j.immuni.2012.08.021
https://doi.org/10.3389/fimmu.2018.02981
https://doi.org/10.1073/pnas.1905675116
https://doi.org/10.1073/pnas.1905675116
https://doi.org/10.1016/j.cell.2020.04.017
https://doi.org/10.1016/j.cell.2020.04.017
https://doi.org/10.1053/ajkd.1998.v31.pm9506678
https://doi.org/10.1053/ajkd.1998.v31.pm9506678
https://doi.org/10.1002/art.33488
https://doi.org/10.1002/art.33488
https://doi.org/10.1002/art.10432
https://doi.org/10.1002/art.10432
https://doi.org/10.1038/s41591-019-0522-3
https://doi.org/10.1038/s41590-021-00949-7
https://doi.org/10.1038/s41590-021-00949-7
https://doi.org/10.1097/BOR.0000000000000777
https://doi.org/10.1038/s41590-020-00836-7
https://doi.org/10.1038/s41590-020-00836-7
https://doi.org/10.1371/journal.pbio.1001633
https://doi.org/10.1371/journal.pbio.1001633
https://doi.org/10.1371/journal.pbio.1001632
https://doi.org/10.1016/j.immuni.2016.08.009
https://doi.org/10.1016/j.immuni.2016.08.009
https://doi.org/10.1038/s41590-020-00834-9
https://doi.org/10.1038/s41590-020-00834-9
https://doi.org/10.1016/j.immuni.2020.08.005
https://doi.org/10.1016/j.immuni.2020.08.005
https://doi.org/10.1172/JCI5827
https://doi.org/10.1172/JCI5827
https://doi.org/10.1073/pnas.1210129109
https://doi.org/10.1073/pnas.1210129109
https://doi.org/10.1126/science.aay0524
https://doi.org/10.1126/science.aay0524
https://doi.org/10.1158/1078-0432.CCR-15-1849
https://doi.org/10.1038/nature14468
https://doi.org/10.1038/nature14468


1 8

R E S E A R C H  A R T I C L E

JCI Insight 2022;7(8):e156048  https://doi.org/10.1172/jci.insight.156048

	53.	Maxwell R, et al. Contrasting impact of  corticosteroids on anti-PD-1 immunotherapy efficacy for tumor histologies located 
within or outside the central nervous system. Oncoimmunology. 2018;7(12):e1500108.

	54.	Flint TR, et al. Tumor-induced IL-6 reprograms host metabolism to suppress anti-tumor immunity. Cell Metab. 2016;24(5):672–684.
	55.	Hanoteau A, et al. Cyclophosphamide treatment regulates the balance of  functional/exhausted tumor-specific CD8+ T cells. 

Oncoimmunology. 2017;6(8):e1318234.
	56.	Stoeckius M, et al. Cell Hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics. 

Genome Biol. 2018;19(1):224.
	57.	Zappia L, Oshlack A. Clustering trees: a visualization for evaluating clusterings at multiple resolutions. Gigascience. 

2018;7(7):giy083.
	58.	Korsunsky I, et al. Fast, sensitive and accurate integration of  single-cell data with Harmony. Nat Methods. 2019;16(12):1289–1296.
	59.	Tirosh I, et al. Dissecting the multicellular ecosystem of  metastatic melanoma by single-cell RNA-seq. Science. 

2016;352(6282):189–196.
	60.	Aibar S, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017;14(11):1083–1086.
	61.	Tilstra JS, et al. B cell–intrinsic TLR9 expression is protective in murine lupus. J Clin Invest. 2020;130(6):3172–3187.

https://doi.org/10.1172/jci.insight.156048
https://doi.org/10.1080/2162402X.2018.1500108
https://doi.org/10.1080/2162402X.2018.1500108
https://doi.org/10.1016/j.cmet.2016.10.010
https://doi.org/10.1080/2162402X.2017.1318234
https://doi.org/10.1080/2162402X.2017.1318234
https://doi.org/10.1186/s13059-018-1603-1
https://doi.org/10.1186/s13059-018-1603-1
https://doi.org/10.1038/s41592-019-0619-0
https://doi.org/10.1126/science.aad0501
https://doi.org/10.1126/science.aad0501
https://doi.org/10.1038/nmeth.4463
https://doi.org/10.1172/JCI132328

