

Supplemental Figure 1. Effective donor bone marrow reconstitution in PI3K δ^{-t} -->*Ldlr^{t-}* mice. (A) Efficient donor bone marrow reconstitution in PI3K $\delta^{+/+}$ ->*Ldlr^{t-}* (blue) and PI3K δ^{-t-} ->*Ldlr^{t-}* mice (red) verified by PI3K $\delta^{+/+}$ - and PI3K δ^{-t-} -specific PCR amplification of blood DNA alleles. DNA from heterozygous PI3K $\delta^{+/-}$ mice (+/-) served as control. Length (bp, base pairs) of markers (M) and specifically amplified bands as indicated. (B) Homogeneous transplantation of CD45.2 PI3K $\delta^{+/+}$ (blue) and PI3K $\delta^{-/-}$ (red) bone marrow into CD45.1 mice (n = 3) reveals equally high proportions of donor-derived total white blood cells (WBC), CD11b⁺ myeloid cells, CD19⁺ B cells, as well as CD4⁺ and CD8⁺ T cells among peripheral blood mononuclear cells (PBMC) compared with low proportions of CD45.1 recipient cells (grey), based on the gating strategy depicted in (C). No significant differences in donor-derived immune cell-subsets were observed among groups. Statistics were done using 2-tailed unpaired *t*-test (B).

Supplemental Figure 2. Identification of peripheral T-cell subsets in mice. Gating strategy for (**A**) live CD3⁺NK1.1⁻ CD4⁺ or CD8⁺ T cells (depicted in Figure 1B, 2A, 2C, and Supplemental Figure 3A) and for (**B**) live CD4⁺ or CD8⁺ T cells (depicted in Figure 2E, 6A, and Supplemental Figure 3C) from LNs and spleen of mice.

Supplemental Figure 3. PI3K δ deficiency has limited impact on CD8⁺ Teff-cell differentiation and cytotoxic CD8⁺ T-cell response. Leukocytes from LNs and spleen of PI3K $\delta^{+/+} \rightarrow Ldlr^{/-}$ (blue) and PI3K $\delta^{-/-} \rightarrow Ldlr^{/-}$ mice (red) were pre-gated for live CD3⁺NK1.1⁻CD8⁺ T cells and investigated for (A) CD62L and CD44 expression, (B) proportion of CD62L^{low}CD44^{high} effector cells and quantification of naïve/effector CD8⁺ T cell ratio (n = 10), (C) intracellular expression of IFN- γ and IL-4 by pre-gated live CD8⁺ T cells, and (D) proportion and number of IFN- γ^+ cytotoxic CD8⁺ T cells (CTLs) (n = 4 LNs pooled of 3 mice each, n = 11 - 12 spleen). Statistics were done using 2-tailed unpaired *t*-test. **P*<0.05, ***P*<0.01, ****P*<0.001; ns, not significant.

Supplemental Figure 4. Hematopoietic PI3K δ deficiency aggravates atherosclerosis in male but not female *Ldlr^{-/-}* mice. (A) Quantification of atherosclerotic lesion size depicted as relative plaque area (lesion area as % of total vessel area) in the aortic sinus of PI3K $\delta^{+/+} \rightarrow Ldlr^{/-}$ (blue) and PI3K $\delta^{-/-} \rightarrow Ldlr^{-}$ male mice (red) at four analyzed levels with an interval of 42 µm starting at the first appearance of the leaflets of the heart with a distance of 0 µm (n = 19 – 22). (B) Body weight as well as fasting levels of glucose, triglyceride, total cholesterol, HDL-cholesterol, and LDL-cholesterol were comparable between groups of indicated male mice (n = 20). No significant differences in body weight, glucose, and lipids were observed among groups. (C) Quantification of atherosclerotic burden in the whole aorta of PI3K $\delta^{+/+} \rightarrow Ldlr^{-/-}$ (blue) and PI3K $\delta^{-/-} \rightarrow Ldlr^{-/-}$ (red) female mice depicted as relative plaque area (lesion area as % of total vessel area) and plaque area (µm²), respectively. (n = 19 - 20). (D) Body weight as well as fasting levels of glucose, triglyceride, total cholesterol, HDL-cholesterol, and LDL-cholesterol were comparable between groups of indicated female mice (n = 19 - 20). (D) Body weight as well as fasting levels of glucose, triglyceride, total cholesterol, HDL-cholesterol, and LDL-cholesterol were comparable between groups of indicated female mice (n = 19 - 20). No significant differences in body weight, glucose, and lipids were observed among groups. Statistics were done using 1-way ANOVA with Bonferroni's post hoc test (A) or 2-tailed unpaired *t*-test (B-D). **P*<0.05, ***P*<0.01, ****P*<0.001, *****P*<0.0001; ns, not significant.

Supplemental Figure 5. Normal monocytes and neutrophils in PI3K $\delta^{-t} \rightarrow Ldlr^{-t}$ mice. (A) Number of Ly-6C^{high} inflammatory monocytes, Ly-6C^{low} patrolling monocytes, and neutrophils in BM (n = 7 - 8), spleen (n = 7 - 8), and peripheral blood (n = 12 - 13) of PI3K $\delta^{+/+} \rightarrow Ldlr^{-t}$ (blue) and PI3K $\delta^{-t} \rightarrow Ldlr^{-t}$ (red) male mice based on the gating strategy depicted in (B). Statistics were done using 2-tailed unpaired *t*-test. **P*<0.05, ***P*<0.01, ****P*<0.001; ns, not significant.

Supplemental Figure 6. Impaired numbers, stability, and functions of PI3K $\delta^{-/-}$ **Tregs.** (A) Proportion and number, as well as (B) FOXP3 and CD25 expression levels of splenic CD4⁺CD25⁺FOXP3⁺ Tregs from unchallenged PI3K $\delta^{+/+}$ (blue) and PI3K $\delta^{-/-}$ mice (red) and as controls, CD8⁺ T cells from PI3K $\delta^{-/-}$ mice (dotted gray line) (n = 6). (C) Proliferation of CFSE-labeled PI3K $\delta^{+/+}$ CD4⁺ Tresp cells stimulated for 90 hours with anti-CD3 antibody in the presence of APCs and CD4⁺CD25⁺ Tregs from unchallenged PI3K $\delta^{-/-}$ or PI3K $\delta^{+/+}$ mice at various ratios (1:1 to 16:1) or without Tregs. Histograms display proliferation of CFSE-labeled splenic CD4⁺CD25⁺CD62L⁺ Tregs (solated from unchallenged PI3K $\delta^{-/-}$ mice upon 85 hours of activation by anti-CD3/CD28-coated beads in the presence of 500 U/ml IL-2. Dot plots display proliferation and intracellular FOXP3 expression of pre-gated live CD4⁺ T cells, and histograms depict proliferation of pre-gated live CD4⁺ T cells. Data are representative of 3 experiments performed in triplicates (C-D). Statistics were done using 2-tailed unpaired *t*-test (**A-B**). **P*<0.05, ***P*<0.01, ****P*<0.001, *****P*<0.0001; ns, not significant.

Supplemental Figure 7. Purity of isolated CD4⁺CD25⁺ Tregs and metabolic characterization of PI3K $\delta^{-/-} \rightarrow Ldlr^{/-}$ mice adoptively transferred with PI3K $\delta^{+/+}$ and PI3K $\delta^{-/-}$ Tregs. (A) Expression of CD4, CD8, CD25, and intracellular FOXP3 by living PI3K $\delta^{+/+}$ splenocytes and MACS-purified CD4⁺CD25⁺ cells. Adoptively transferred PI3K $\delta^{+/+}$ CD4⁺CD25⁺ cells were ~95% pure and ~89% were CD4⁺CD25⁺FOXP3⁺ Tregs. (B) Body weight as well as fasting levels of glucose, triglyceride, total cholesterol, HDL-cholesterol, and LDL-cholesterol were comparable between groups of indicated and PI3K $\delta^{-/-} \rightarrow$ LDLR^{-/-} male mice adoptively transferred with either 10⁶ PI3K $\delta^{+/+}$ (green) or PI3K $\delta^{-/-}$ (purple) CD4⁺CD25⁺ Tregs at the start of the 6-weeks-HFD-period (n = 17 – 20). No significant differences in body weight, glucose, and lipids were observed among groups. Statistics were done using 1-way ANOVA with Bonferroni's post hoc test (B).

7

	B-1a cells	B-1b cells	Marginal Zone B-2 cells (MZB)	Follicular B-2 cells (FOB)	Regulatory B cells (Bregs)
Cell surface phenotype	CD19 ^{high} IgM ^{high} IgD ^{low} CD43 ⁺ CD5 ⁺	CD19 ^{high} IgM ^{high} IgD ^{low} CD43 ⁺ CD5 ⁻	CD19 ^{mid} IgM ^{high} IgD ^{low} CD43 ⁻ CD5 ⁻	CD19 ^{mid} IgM ^{low} IgD ^{high} CD43 ⁻ CD5 ⁻	CD19 ^{high} IgM ^{high} IgD ^{low/mid} CD43 ⁻ CD5 ⁺ CD62L ⁻

Baumgarth N.; Nat Rev Immunol. 2011 Jan;11(1):34-46.

Supplemental Figure 8. Gating strategy for the identification of mature CD19⁺ B-cell subsets in LNs and spleen of mice. Leukocytes from LNs and spleen of mice were pre-gated for viable cells and CD19⁺SSC^{Io} B cells were analyzed for expression of surface IgM and IgD. Gated CD19⁺SSC^{Io}IgM^{Io}IgD^{hi} B cells were further analyzed for the expression of CD43 and CD5, identifying CD19⁺SSC^{Io}IgM^{Io}IgD^{hi}CD43⁻CD5⁻ FOB cells. CD19⁺SSC^{Io}IgM^{hi}IgD^{Io} B cells were examined for CD43, CD5 and CD62L expression, distinguishing between CD19⁺SSC^{Io}IgM^{hi}IgD^{Io}CD43⁻CD5⁻ MZB cells, CD19⁺SSC^{Io}IgM^{hi}IgD^{Io}CD43⁻CD5⁻ MZB cells, CD19⁺SSC^{Io}IgM^{hi}IgD^{Io}CD43⁺CD5⁻ B-1a and CD19⁺SSC^{Io}IgM^{hi}IgD^{Io}CD43⁺CD5⁻ B-1b cells.