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Supplementary methods

Sample selection

All the samples in our study came from surgical specimens were stored at -80 ‘C in the biobank
of Sun-Yat Sen University Cancer Center. All patients underwent esophagectomy, achieved
complete resection without receiving neoadjuvant therapy and experienced lymph node metastasis.
201 fresh frozen samples were chosen following our established criteria (Figure S1).

Inclusion criteria contained:

(1) Patients whose age=18 years, preoperative KPS score =90;

(2) Pathological diagnosis as esophageal squamous cell carcinoma and tumor located in
thoracic segment of esophagus;

(3) R, resection via thoracic approach and standard lymph node excision;

(4) Neo-adjuvant treatment naive;

(5) Patients with lymph node metastasis confirmed by pathological diagnosis
Exclusion criteria contained:

(1) Patients with secondary primary tumor;

(2) Patients died within 30 days after surgery or died of post-operation complication;

(3) Patients missing essential clinical information, such as age, sex, operation record,
pathological diagnosis and follow-up data.

(4) Patients with distant metastasis by PET-CT.

Follow up of patients and collection of clinical data

Patients were followed up through regular outpatient service four times per year within the first
year after surgery, twice per year from the second to the fifth year, and once a year after five years.
Regular examination included physical examination, blood and biochemical routine examination,
tumor biomarker (SCC and CEA), endoscopy and CT. Demographic and clinical data were extracted
from our clinical database.

Clinical endpoint data was prepared following the common used criteria[ 1]. Disease free survival
(DFS) is defined as the shortest period from the date of surgery to the date of first tumor recurrence
event with radiological or pathological confirmation. The censored time is from the date of surgery
to the last contact date or date of death. Overall survival (OS) is the longest period from the date
of surgery until the date of death at any cause. The censored time is from the date of surgery to
the date of last contact. Comprehensive pathological staging was conducted by experienced
pathologists following the 8" edition of AJCC cancer staging manual.

Gene panel design and sequencing

Mutation data were downloaded from supplementary materials of published result[2-9]. We
calculated mutation frequency for each gene based on WGS/WES data from 589 patients. In order
to gain in-depth insight of mutations of ESCC, we brought genes with mutation frequency above 2%
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into our panel list. Ultimately, all exons of 548 selected genes covering 5.731 Mbp were used to
design complementary probes for library construction.

AllPrep DNA Universal Kit (SureSelect, Agilent, Santa Clara, USA) was used to extract DNA
from frozen fresh tissues (purity>50%, median: 70%). DNA was quantified and quality controlled by
Qubit 2.0 and Agarose gel electrophoresis assay prior to library construction. DNA was broken into
180-280 bp and all exons of 548 genes were captured using Agilent SureSelect XT Custom Kit.
After PCR amplification and quality control by Agilent 2000, DNA library was sequenced using
paired-end 150 bp on lllumina Hiseq platform. The average sequencing depth of coverage on target
regions was 1070X (range: 690X—1616X), and 95% of targets were covered by 100 reads.

Data generation of validation cohort

To verify the prognostic value of our findings, an independent cohort was recruited from the
biorespository of Guangdong Esophageal Cancer Institute (GECI). The tumor samples of GECI
were collocted from thoracic division of Sat-Yat Sen University Cancer Center. Following the same
inclusion and exclusion criteria used in discovery cohort, 70 samples with qualified frozen tissues
were selected from 335 cases in our biorespository. Detailed comparison of clinical information
between 201 patients in discovery cohort and 70 patients in validation cohort was listed in Table S1.
Univariable Cox regression was performed with 2000 boostrap sampling in discovery cohort, and
66 genes associated with DFS or OS were included in the sequencing panel of validation cohort.
The design of captured probe and library construction of samples were identical to those applied in
discovery cohort. DNA library was sequenced using paired-end 150 bp on lllumina Hiseq 2500
platform. The median coverage of depth in validation cohort was 1026X (range: 515X-1648X). The
clean data of validation cohort was then processed following the same bioinformatic analysis
pipeline.

Tumor purity determinant

All samples underwent pathological review via frozen section. A tissue section was created
with two H&E slides (termed as top and bottom): a 4 1 m frozen section (top slide) was cut, 20 mg
of tumor tissue was shaved from the tissue for library construction, then a second 4 1 m frozen
section was cut (bottom slide). An H&E stain was conducted on both slide tissue sections.
SYSUCC-authenticated pathologist conducted diagnosis verification and turmor purity
assessment. Pathologist initially screened the slide in low magnification to determine the
microscopic morphology, then magnified to 20X and reviewed 10 representive fields on each slide.
The tumor purity was derived from the proportion of tumor nuclei compared to total nuclei present
on the slide. The tumor purity of each sample was the aveage level of purities in both top and
bottom slides. For quality control, random review of 20% of slides was conducted by a second
pathologist to confirm the results. If the results of second review were off by 10%, the sample
would be assessed again.

Reads alignment and Variant calling

Clean reads were obtained after filtering out low-quality reads and adapters from raw reads. The
clean reads were aligned to human reference genome b37 using BWA[10] and deduplicated using
SAMBLASTER][11]. Variants (SNVs and small Indels ) were identified using Mutect2 by comparing
tumor samples with an unmatched normal sample pool[12]. All putative variants were annotated
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using ANNOVAR[13]. To account for the absence of matched control, a custom variant sifting
pipeline was developed:
(1) Removal of variants located within low-coverage (<10X) regions and variants with less than
3 mutant reads
(2) Removal of variants whose allele fraction is 1
(3) For variants with well-characterized annotation in COSMIC[14], removal of known
polymorphisms reported among 1000 Genome, Exome Aggregation Consortium data[15] or
in-house database at frequency >0.1
(4) For vatiants without annotation in COSMIC, removal of variants recorded in dbSNP, variants
with frequency above 0.003 in 1000 Genome data, variants with frequency above 0.01 in in-
house database and variants with frequency above 0.001 in Exome Aggregation Consortium
data
(5) Removal of germline variants present in any of normal control.
After filtering the probably germline variants, the remaining mutations were used for further
analysis in our study.

Detection of significantly mutated genes

According to Darwinian evolution, mutations that endowed tumor cells survival advantage will
accumulate during tumor development. Following this principle, we statistically evaluated three
types of features extensively observed in driver genes: 1) mutation recurrence; 2) deleterious
mutation enrichment; 3) Mutation hotspots. The methodological details were as follow[3].

(1) Mutation recurrence test.

To test whether mutations in a gene frequently occurred across sample,
OncodriveCLUST was employed to evaluate mutation recurrence while considering gene
length, distribution of mutations across gene loci and background mutation rate[16].

(2) Deleterious mutation enrichment test.

A genuine driver gene is prone to undergo mutational hits that damage the protein
function than non-driver gene does. In this study, nonsense, frameshift, splice site mutations
and missense mutations scored under 0.05 by SIFT[17] were considered deleterious to
protein function. For each gene, we assumed the numbers of deleterious mutations and all
mutations as the number of successes and trials, respectively. Then we constructed a
binomial model to evaluate the enrichment of deleterious mutation. As for the probability in
binomial model, we used the ratio of deleterious mutations to all mutations in non-recurrently
mutated genes.

(3) Mutation cluster

Mutational hotspot is a strong indicator of positive selection[18].Rather than nucleotide-
level analysis, we applied an algorithm to detect amino acid residue-level hotspots[19].
Hotspot in the algorithm was defined as an amino acid position in protein-coding gene
mutated more frequently, corresponding to mutations located in the same codon.

Several significant mutated genes were identified at the threshold of adj. Pp,coarivecrust <0-1
and Pyinomia; <0.05: TP53, FRY, ZNF750, NFE2L2, GRIN2B and FCGBP.

Sanger sequencing

110 mutations were randomly selected for validation. Because common detection threshold of
mutations by Sanger sequencing is 10% of VAF[20, 21], we filter 59 mutations with a frequency of
over 10%. Among these mutations, 3 cases were failed due to difficulty of PCR amplification. Finally,
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Sanger sequencing succeed in 56 cases. 98.2% (55/56) of mutations detected by NGS were verified
by Sanger sequencing. Mutations of FRY gene in cell lines were also detected by Sanger
sequencing. Sequences of primers would be available upon request.

Analysis of copy number alterations

Copy number analysis was conducted using CNVKkit[22] which was designed specific for
targeted sequencing data. In brief, the read counts of 50 normal samples were normalized and
integrated into a pool reference. Then targeted reads and nonspecifically captured off-target reads
from tumor samples were used to infer somatic copy number alterations. The algorithm also adjusted
the bias that leads to sequencing read depth: GC content, target size, repetitive sequences. Copy
number alterations (CNAs) were inferred following default parameters and adjusted by tumor purity.

Oncogenic mutation annotataion

Each somatic mutation was annotated as oncogenic or unknown. Detailed annotation
parameters are listed as follows, which is similar to the criteria of oncogenic mutation in published
works[23, 24]:

(1) Oncogenic

a. Known oncogenic mutations reported in the literature[2-9, 14, 25-29];

b. Hotspot mutations (n = 3) that located in known cancer associated genes;

c. Truncating variants (nonsense mutations, splice site mutations, nonstop mutations and
frameshift insertions or deletions) in cancer associated genes;

(2) Unknown

a. Mutations outside of frequent oncogenic mutations in genes with known oncogenic
mutations;
b. Mutations in genes whose role in ESCC is not established yet.

Inference of temporal order of oncogenic mutations

The mutation order analysis was conducted using the previous described methods[23, 24].
Before testing whether one mutation occurred earlier the others, the variant allelic frequency (VAF)
of each oncogenic mutation was calibrated by copy number of loci at which mutations located
according to the method described previously[30]. In brief, VAF of homozygous mutations and
mutations of genes located on chromosome X in male cases were reduced to the half of the raw
data. VAF of hemizygous mutations were recalculated based on the formula as “Adjusted
VAF=x/(1+x)”, while x refers to raw VAF. Adjustment was not required for heterozygous mutations.

To test whether there existed evidence that two oncogenic mutations within a patient were
present in the same fraction of cells, we apply fisher exact test using the adjusted VAF. We set a
significance threshold of P <0.05 at determining whether clonal heterogeneity existed in a given
patient. Then we employed the “pigeonhole” principle to reconstruct temporal precedences of
oncogenic mutations, only including those pair comarisons with clear phylogenetic relationship[31].
From the set of genes in which at least 5 precedences were observed, we utilized Bradley-Terry
model[32] (package: BraleyTerry2) using penalized maximum likelihood to the observed
precedences[23, 24]. Quasi standard error was computed using ‘qvcalc’ package so that
comparison between any pair of genes was readily made, not just the comparison with the reference
gene.
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Estimation of cancer cell fraction

Following the algorithm described previously[33, 34], we computed the posterior probability
distribution over cancer cell fraction (CCF) of mutations to estimate their clone status. Let b
denoted the number of reads supporting such mutation, d denoted the total reads covering the
mutation locus, p referred to the tumor purity, c; and c, referred to the copy number of the gene
locus at that base in the tumor and normal genome respectively. The expected allele-fraction f(c)
of a mutation present in one copy in a fraction ¢ of cancer cells was calculated by f(c) = ¢ *

p
(1-p)entpce
distribution over CCF was obtained by calculating values over a regular grid of 100 ¢ values and
normalizing. Mutations were classified as clonal on the ground of the probability that the CCF exceed
0.85. A probability threshold of 0.5 was used in our study.

To infer the proportion of tumor cells carrying a given mutation, we used the following formula[31,
35]:

, with ¢ € [0.01,1]. Then P(c) o Binomial(bld, f(c)) assuming a uniform prior on c. The

CCF = min (1,2 * (1_‘));%)

Unsupervised machine learning

Prognosis related genes were selected as below for further clustering. To reduce false negative
rate and enhance statistics power, two follow-up end points (DFS and OS) and a relatively loose
significant threshold were used to generate gene-sample matrix. Log-rank test was applied to each
mutated gene (mutant VS wild type), and all 59 prognosis-associated genes (Ppps < 0.1 Or Ppg <
0.1 and frequency=2%) were assembled into a binary gene-sample matrix. None of mutation in 59
genes was observed in four patients, genomic data of these four patients was excluded from gene-
sample matrix due to the mathematical constraints of nonnegative matrix factorization (NMF).

To dig out ESCC subgroups that shared similar mutational patterns associated with prognosis,
NMF was used to cluster patients with similar mutation patterns (package: NMF). The number of
cluster k=3 was chose as it yielded a high cophenetic coefficient and effectively decomposed the
matrix[36]. To examine the robustness of the above NMF-based clusters, another entirely different
clustering algoritmn, partitioning around mediods consensus clustering[37], was applied (package:
ConsensusPlus). The number of clusters k=3 was picked by inspecting the bimodality of CDF curves
and progression of area under CDF curves[38]. Venn plot and Kappa index (package: irr) were
used to evaluate and visualize the consistency of clusters identified by two algorithms.

Analysis of external datasets

To evaluate whether FRY was dysregulated in ESCC, paired t test was used to compare the
mRNA levels of FRY in tumors and matched normal and paratumor tissues in three available ESCC
datasets, GSE23400, GSE44021 and GSE161533. Three datasets were further merged and batch
effects were adjusted using Limma package. To further discover the correlation of FRY and Hippo
pathway, we calculated the spearman correlation coefficients of FRY and Hippo target genes.
Taking advantage of the reverse-phase protein arrays (RPPA) data from the TCGA project, we
measured the relationship of FRY and YAP1, the only protein of Hippo pathway in the RPPA.

To validate the prognostic value of our three-gene signature, two independent datasets were
used to perform survival analysis[6, 39]. As for TCGA cohort, WES data were downloaded from
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UCSC Xena. Mutations were called by “Muse”, "Mutect”, “SomaticSniper” and “Varscan”. Mutations
only detect by more than two callers were used for further analysis. Patients were grouped according
to their mutation status of FAT1, FAT3 and FRY. Notably, the lack of accurate N stage information
in the TCGA cohort prevented us to further subdivide patients by status of their lymph node
metastasis. Note that the prognostic value of the three-gene mutation signature was insensitive to
choice of mutation callers (Figure S6). Similar analysis was performed in Song’s cohort[6], and
patients were subdivided by their positive lymph node status compatible with our discovery cohort.

To further characterize molecular features of the “FAT/FRY” subtype, we performed multiomics
analysis based on the data from TCGA and GSE47404. For transcriptome analysis, the read count
data were transformed to TMM by the R package edgeR to identify differentially expressed
genes[40]. For microarray data, differentially expressed genes was detected by package “limma”.
We used gene set enrichment analysis to identify enriched pathways in the molecular subtypes
(package: Clusterprofiler). To dissect the composition of tumor environment, we calculated the z-
score of immune cells to represent their relative composition in ESCC micro-environment using
package “GSVA” [41-43]. Briefly, this method could evaluated activities of pathway by automatically
catched a subset of genes in the pathway whose combined expression delivers optimal
discriminative power for the disease phenotype. Marker genes representing each immune cell
subset could be sourced from published papers (Table S8).

To assess the capacity of our molecular subtypes to predict immunotherapy responses, we
applied subclass mapping (SubMap) to measure the similarity of transcriptome profile of our
molecular subtypes and that of the groups with different responses in the immunotherapy cohort.
The SubMap algorithm evaluates the extent of commonality of the different subgroups in
independent datasets. Permutation-based P-values were used to evaluate the similarity, and the
lower the P-values were, the higher the similarity. We applied SubMap (GenePattern) to measure
the similarity of ESCC molecular subtypes with different responses of patients from two melanoma
cohorts and a urothelial cancer cohort treated with immune checkpoint inhibitors[44-46].

Furthermore, we evaluated the predictive capacity of FAT/FRY signature in immunotherapy
cohorts. Due to the lack mature sequencing data of ESCC, we chose to perform survival analysis in
a pancancer cohort with microsatellite stable (MSS) tumors and a NSCLC cohort as an
alternative[47-49], because most of ESCC were MSS[50] and the genetic background of ESCC were
similar to that of NSCLC[51].

Analysis of drug response for different ESCC subgroups

The drug response data (half maximal inhibitory concentration, IC50) of 22 ESCC cell lines with
Cancer Cell Line Encyclopedia mutational profiling data were retrived from Genomics of Drug
Sensitivity in Cancer[52]. The higher IC50 indicated a more resistant phenotype of the cell. Student
t test was used to compared drug responses of the FAT/FRY mutant cell lines and those with wild

type.

Statistical analysis

All analyses were performed in R 4.0.2 and SPSS 25.0 (IBM Corporation). The P value for the
survival curve was calculated from the log-rank test. Student’s t test or the Wilcoxon rank-sum test
was used to test for an association between two groups of continuous variables as appropriate.
Paired t test was used to compare the mRNA levels of FRY in tumors and matched normal tissues
in three available ESCC datasets, GSE23400, GSE44021 and GSE161533. Fisher’s exact test was
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used to test for an association between categorical variables, including determining whether the
oncogenic mutations of cancer-associated genes had a bias towards being “clonal”. Clonal events
were deemed early events and subclonal events were acquired relatively later. The fixed (12<50%)
or random effects (I? = 50%) model was used to pool the HR of the molecular subgroup from three
cohorts using “meta” package. We performed area under the curve (AUC) for the receiver operating
characteristic (ROC) analysis to compare sensitivity and specificity for prediction of death and
relapse at different cutoff times (2, 3 and 4 years) by our molecular subgroups and the AJCC 8"
TNM stage using “timeROC” package. Similar analysis was performed to compare the performance
of the three-gene signature and TMB in predicting post-immunotherapy outcome. All P values
reported are two-sided. The P value threshold for statistical significance was set at 0.05. Several
packages, including “ggplot2”, “ggsci”, “ggtheme”, “survival”, “maftools”, “trackviewer”, “GridExtra”
and “VennDiagram” was used for data visuallization. To visualize the mutation profile of genes, the
protein sequence annotations were downloaded from Uniprot database
(https://www.ebi.ac.uk/proteins/api/).

RNA extraction, reverse transcription and quantitative PCR

Among the 201 patients in the discovery set, 90 fresh frozen tumors were available. Reasons
for the absence of samples included the exhaustion of samples and prohibition of obtaining samples
from the biobank due to their age. Total RNA was extracted from clinical samples using TRIzol
reagent (Invitrogen) according to the manufacturer’s instruction. cDNA was synthesized from 1 ug
of total RNA using RevertAid First Strand cDNA Synthesis Kit (Thermo Scientific). cDNA was
subjected to quantitative real-time PCR (qRT-PCT). GAPDH was used as an internal control. The
primers used in this study are shown in Table S11. QRT-PCR was performed using the Power SYBR
Green PCR Master Mix (Applied Bio systems) and LightCycler480 PCR system (Roche Diagnostics).

Cell Lines and Culturing

Human ESCC cell lines KYSE30, KYSE410 were all preserved in State Key Laboratory Of
Oncology In South China. All of these cells were cultured in DMEM medium supplemented with 10%
fetal bovine serum and 1% antibiotics (100 mg/mL streptomycin and 100 units/mL penicillin) at37 C
in a humidified incubator under 5% CO2 condition.

Small Interfering RNA Mediated Gene Knockdown

Depletion of gene expression was performed by transfecting cells with small interfering RNA
(siRNA) oligonucleotides directed against the following target sequences: FRY-sii
GCAGGACCCTTCAGCATTA; FRY-si2: GCTACAACTACTTCGAATT. Transfection steps were
performed following the manufacture’s protocols, using Lipofectamine RNAIMAX (Invitrogen, USA).

Overexpression of Truncated protein of FRY

The plasmid containing human partial length FRY cDNA (1-957) was amplified by PCR and
cloned into pcdna3.1 vector and linked with a HA tag at the N-terminal. Transfection steps were
performed following the manufacture’s protocols, using Lipofectamine 3000 (Invitrogen, USA)
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Western Blotting

Cell lysate was prepared using a RIPA Lysis Buffer (Millpore, USA), and the protein
concentration was measured using a BCA Protein Assay Kit (keyGEN BioTECH, China). Cell lysates
were separated by 6%—10% sodium dodecyl sulfate (SDS)— polyacrylamide gel electrophoresis
(PAGE) gel electrophoresis and transferred to a PVDF membrane. After blocking with 5% skim milk,
the membrane was incubated with one of the following primary antibodies under 4°C overnight: FRY
(LS-C343004, mouse; LSBio, Germany), HA (3724, rabbit; CST, USA), Vinculin (13901, rabbit; CST,
USA), Tubulin (3873, mouse; CST, USA), and then incubated with the species-specific secondary
antibodies for one hour under room temperature. Finally, the membrane was incubated with Western
Blotting Substrate (Thermo Scientific, USA) and detected by ChemiDoc Touch imaging system
(Biorad, USA).

Cell Proliferation Assays

For cell viability assay, cells were seeded into a 96-well plate at 103 cells per well and cultured
at 37 C. For each day, 10% (volume/volume) CCK-8 (Dojindo, Kumamoto, Japan) was added to
the culture medium and incubation lasted for 1 hour. Cell viability was monitored by measuring
absorbance at 450 nm using a Microplate Reader (MD SpectraMax PlusPower 384, USA). The
experiment was performed in quintuplicate and repeated twice.

Immunohistochemistry staining and digital analysis

Previous immunogenomic analyses from both TCGA-ESCC and GSE47404 datasets show that
CD8+ tumor inflitrated lymphocytes (TILs) were more abundant in FAT/FRY mutant ESCC.
Therefore, immunohistochemistry(IHC) analysis was performed for CD8 (ZA-0508-3.0, ZSGB-BIO)
to evaluate the CD8+ TIL inflitrations of 170 patiants with available tumor tissue slides from the
discovery cohort. Reasons for absence of tumor slides included exhaustion of FFPE slides and
absence of tumors in the slides. Polaris digital slides scanner (Akoya Biosciences, USA) was used
to scan the slides and HALO digital pathological platform was used to quantify the density of CD8+
cells. The tumor regions wes mannually annotated by an experienced pathologist and the The RGB
signal of the immunostaining markers was recognized by the multiplex IHC mode of HALO software
and the cutoff of the signal was calibrated by the author (MZH). The positive cell densities of the
tumor area was calculated as the number of positive cells divided by the tumor area measurements
(cell counts/mm2). The proportions of CD8+ cells were also calculated to parallelly evaluate the
abundance of CD8+ TILs, which was not affected by the size of annotated areas. Wilcoxon rank
sum test was performed to compare the density of CD8+ cells between FAT/FRY mutant and wild
type tumors.
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68 Figure S1 Diagram of samples selection workflow. Patients in discovery and validation

69  cohorts were selected by the same criteria.
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71 Figure S2 Overview of our analysis schedule
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Figure S3 Lolliplot of frequently mutated genes. (A) Mutational hotspots accumulated in

ESCC associated genes, including histone modifiers EP300, CREBBP, KMT2C and JMJD1C. (B)
Sanger sequencing identified somatic mutations of FRY in ESCC cell lines. No FRY mutations
were detected in KYSE410 and KYSESO cell lines. (C) Multivariable Cox regression analysis of
mutation status of FRY and clinicopathological variables. (D) The mRNA levels of CTGF and
CYR61 in two RNAiI KYSE410 cells and the control KYSE410 cells. (E) Western blot and
quantitative analysis of knock down efficiency of FRY in KYSE410 and KYSE3O0 cells. (F) Western
blot analysis of overexpression of hotspot mutation FRY p.E319X. Data represent mean + SEM
from 3 independent experiments and each had three replications
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86 FRY In three microarray datasets. Negative correlation of FRY and YAP1 and its target

87 genes in the combined microarray datasets (A, C-L). (B) Correlation of mRNA levels of FRY and
88 protein expression of YAP1 in the TCGA-ESCC RPPA datasets.
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Figure S5 Association of the three-gene signature with patient prognosis. (A)

Kaplan-Meier survival analysis showed that patients with mutation(s) in at least one mutation in genes of this
signature had significantly shorter DFS than those patients with wild type genotype. (B) The prognostic value was
further validated in an independent validation cohort (B). (C) Survival curves showed a marginal trend that patients
with two mutations in three-gene signature had worse DFS than patients with one mutations in three-signature.
(D) The ‘FAT/FRY’ subgroup had shorter progression-free survival in TCGA cohort. (E) Multivariate cox regression
analysis in TCGA/ICG cohort showed that three-gene signature is associated with poor survival independent TNM
stage and demographic variables. In TCGA cohort, 95 patients with definitive pathological stage were included in
this analysis. (F) Forest plot of hazard ratio (HR) of relapse for 367 ESCC patients in different molecular subgroups
from three cohorts with the fixed effects model. (pooled HR: 1.70, 95%CI: 1.27-2.93, 12=38%, P=0.2). TE: effect,
TEVAR: standard error of the effect. (F/G) The negative association between the three-gene signature and the
OS in whole patients (F) and patients with lymph node metastasis (G) in another independent dataset[6].
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Figure S6 Survival curves of patients according to three-gene signature

stratified by clinicopathological parameters. The three-gene mutation signature reflects poor

prognosis in different demographic subgroups. OS curves of “FAT/FRY” mutant patients and wild type patients
were stratified by gender (A/B), age (C/D), N stage (E) and AJCC 8t TNM stage (F). Patients in wild-type in stage
IlIB had similar OS with patients in stage llIA. Patients in wild-type group in N2 stage had similar OS with patients
in FAT/FRY subtype in N1 stage.
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Figure S7 Comparisons of the sensitivity and specificity for prediction of disease

progression and deathby the three-gene signature and the TNM stage. Receiver

operating characteristics (ROC) curves for relapse within 2, 3 and 4 years (a-c), and disease progression within 2,
3 and 4 years (d-f). AUROC, area under the ROC (AUROC). Area under the curve was compared using t test.
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Figure S8 Prognostic value of the three-gene mutation signature detected by

different methods in TCGA cohort. Patients were assigned into FAT/FRY subgroup according to
their mutation status of FAT1, FAT3 and FRY.
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Figure S9 Representative images of CD8 immunohistochemistry of ESCC tissues

from FAT/FRY muatant and wild type patients. The brown dot indicated the CD8 positive cell

and the blue dot represented the nucleus.
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therapy. (A/B) Adjuvant therapy improved both DFS (A) and OS (B) in pN+ ESCC populations. (C-F) The

effects of adjuvant therapy did not differed between the FAT/FRY subgroup (C/D) and wild-type subgroup (E-F).
(G/H) In patients with surgery alone (without adjuvant therapy), FAT/FRY signature associated with poor DFS (G)

and OS (H).
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Figure S11 Prognostic value of genomic and transcriptomic features of FAT/FRY
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41

42

43

44

45

Table S1 Detailed comparison of clinical variables between discovery cohort and

validation cohort

Variables Discovery Independent validation | P The
set(N=201) N(%) set(N=70) N(%) value | set(N=271)
Sex 0.571
Female 35(17.4) 15(21.4) 50(18.5)
Male 166(82.6) 55(88.6) 221(81.5)
Age 0.854
<59 96(47.8) 35(50) 130(48.0)
=60 105(52.2) 35(50) 141(52.0)
Smoking status 0.631
Yes 129(64.2) 42(60.0) 171(63.1)
No 72(35.8) 28(40.0) 100(36.9)
Alcoholism 0.107
Yes 99(49.3) 26 (37.1) 125(46.1)
No 102(50.7) 44(62.9) 146(53.9)
Differentiation 0.176
Well 25(12.4) 14(20.0) 39(14.4)
Moderate-poor 176(87.4) 56(80.0) 232(85.6)
Surgical approach 0.77
Left thoracotomy 66(32.8) 25(85.7) 91(33.6)
Right thoracotomy 135(67.2) 45(64.3) 180(66.4)
Lesion location 0.446
Upper 16(8.0) 3(4.3) 19(7.4)
Middle 115(57.2) 45(64.3) 160(59.0)
Lower 70(34.8) 22(31.4) 92(35.1)
pT classification 0.669
T1-T2 31(15.4) 13(18.6) 44(16.2)
T3-T4a 170(84.6) 57(81.4) 227(83.8)
PN classification 0.158
N1 99(49.3) 42(60.0) 141(52.0)
N2-3 102(50.7) 28(40.0) 130(48.0)
Adjuvant chemo
radiotherapy
Yes 85(42.3) 31(44.3) 0.88 116(42.8)
No 116(57.7) 39(55.7) 155(57.2)

and independent validation cohort

Table S1 Detailed comparison of clinical variables between discovery cohort

independent
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Table S5 Multivariable Cox regression analysis of the three-gene signature and clinicopathological

(Yes vs No)

factors
Variable Discovery cohort (N=201) Validation cohort (N=70)
HR (95% ClI) P HR (95% CI) P
Sex (male vs female) 0.60 (0.36-0.99) 0.047 0.39 (0.14-1.09) 0.07
Age (560 vs >60) 0.93 (0.65-1.33) 0.68 0.73 (0.23-2.33) 0.60
pT classification 1.27 (0.75-2.17) 0.54 3.07 (1.04-10.45) 0.045
pT3-4 VS pTi—
PN classification
3.22(1.97-5.28 <0.001 2.20(0.61-4.09 0.14
PN>—3 VS pN; ( ) ( )
Differentiation 0.85(0.51-1.43) 0.54 1.58 (0.61-4.09) 0.35
pGs VS pGi—;
Number of lymph nodes examined
(527 vs >27) 1.31(0.92-1.88) 0.14 1.63(0.78-3.37) 0.20
Prognostic subtype 1.47 (1.04-2.09) 0.028 2.82 (1.28-6.22) 0.01
(FAT/FRY vs wild type)
Adjuvant chemo = radiotherapy | 0.67 (0.46-0.97) 0.035 0.33(0.15-0.72) 0.006

Table S5 Multivariable Cox regression analysis of the three-gene signature and

clinicopathological factors
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Table S6 Detailed comparison of clinical variables between "FAT/FRY" group and wild type group
across the 271 ESCC patients
Variables FAT/FRY (N=105) wild-type (N=166) P Overall (N=271)
Age 0.85
<60 53 (50.4) 87 (52.4) 140 (51.6)
> 60 52 (49.6) 79 (47.6) 131 (48.4)
Sex 0.97
Female 19 (18.5) 31 (18.7) 50 (18.5)
Male 86 (71.5) 135(71.3) 221 (81.5)
T stage 0.85
T1 7(6.7) 12 (7.7) 19(7.0)
T2 32 (30.5) 48 (28.9) 80 (29.5)
T3 57 (54.3) 96 (57.8) 153 (56.5)
T4 9(8.6) 10 (6.0) 19(7.0)
N stage 0.16
N1 48 (45.7) 91 (54.8) 139 (51.3)
N2 47 (44.8) 55(33.1) 102 (37.6)
N3 10 (9.5) 20 (12.0) 30 (11.1)
Surgical procedure 0.93
Right thoracotomy 70 (68.0) 112 (66.7) 180 (65.7)
Left thoracotomy 33 (32.0) 56 (33.3) 91 (34.3)
Differentiation 0.84
G2-3 87 (82.9) 145 (87.3) 232 (85.6)
G1 18 (17.1) 21 (12.7) 39 (14.4)
smoking status 1
Yes 66 (62.8) 105 (63.3) 171 (63.1)
No 39 (37.1) 61 (36.7) 100 (36.9)
alcohoism =1 (%) 0.31
Yes 53 (50.5) 72 (43.4) 125 (46.1)
No 52 (49.5) 94 (56.6) 146 (53.9)
position (%) 0.10
Upper 3(2.9) 16 (9.6) 19(7.4)
Middle 66 (62.9) 94 (56.6) 160 (59.0)
Lower 36 (34.3) 56 (33.7) 92 (33.9)
Adjuvant therapy 0.16
Yes 39 (37.1) 77 (46.4) 116 (42.8)
No 66 (62.9) 89 (53.6) 155 (57.2)

Table S6 Detailed comparison of clinical variables between "FAT/FRY" group

and wild type group across the 271 ESCC patients
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Signature Name Resource Supplmentary
reference
CD 8T cells Charoentong et al. Cell Rep | [41]
2017;18:248-262.
Eosinophils Charoentong et al. Cell Rep | [41]
2017;18:248-262.
Gamma delta T cells Charoentong et al. Cell Rep | [41]
2017;18:248-262.
Activated dendritic cells Charoentong et al. Cell Rep | [41]
2017;18:248-262.
IFN gamma signature Ayers M, et al. J Clin Invest | [53]
2017;127:2930-2940
GO BP Hippo signaling MsigDB http://www.gsea-
msigdb.org/
LEONARD_HYPOXIA MsigDB http://www.gsea-
msigdb.org/
LEONARD_HYPOXIA MsigDB http://www.gsea-
msigdb.org/
FARDIN_HYPOXIA MsigDB http://www.gsea-
msigdb.org/
WINTER_HYPOXIA_DN MsigDB http://www.gsea-
msigdb.org/
KEGG_DRUG_METABOLISM_OTHER_ENZYMES | MsigDB http://www.gsea-
msigdb.org/
KEGG_DRUG_METABOLISM_CYP450 MsigDB http://www.gsea-
msigdb.org/
KEGG_DRUG_XENOBIOTICS_CYP450 MsigDB http://www.gsea-
msigdb.org/

Table S8 Publicly-available gene signatures used in the study

CTGF former CTCGCGGCTTACCGACTG

CTGF reverse GGCTCTGCTTCTCTAGCCTG

CYR61 former GTTTGGCCCAGACCCAACTA

CYR61 reverse GGCTCTGCTTCTCTAGCCTG

LATS2 former CAGGATGCGACCAGGAGATG
LATSZ reverse CAGGATGCGACCAGGAGATG

FAT1 former TTCAAAATAGGTGAAGAGACAGGTG
FAT1 reverse TTCAAAATAGGTGAAGAGACAGGTG

Table S11 Primers used in our gRT-PCR experiment.
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