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Supplementary methods 50 

Sample selection 51 

 All the samples in our study came from surgical specimens were stored at -80 ℃ in the biobank 52 
of Sun-Yat Sen University Cancer Center. All patients underwent esophagectomy, achieved 53 
complete resection without receiving neoadjuvant therapy and experienced lymph node metastasis. 54 
201 fresh frozen samples were chosen following our established criteria (Figure S1). 55 
Inclusion criteria contained: 56 

(1) Patients whose age≥18 years, preoperative KPS score≥90; 57 
(2) Pathological diagnosis as esophageal squamous cell carcinoma and tumor located in 58 

thoracic segment of esophagus; 59 
(3) 𝑅" resection via thoracic approach and standard lymph node excision; 60 
(4) Neo-adjuvant treatment naïve;  61 
(5) Patients with lymph node metastasis confirmed by pathological diagnosis  62 

Exclusion criteria contained: 63 
(1) Patients with secondary primary tumor; 64 
(2) Patients died within 30 days after surgery or died of post-operation complication; 65 
(3) Patients missing essential clinical information, such as age, sex, operation record, 66 

pathological diagnosis and follow-up data. 67 
(4) Patients with distant metastasis by PET-CT. 68 

Follow up of patients and collection of clinical data  69 

Patients were followed up through regular outpatient service four times per year within the first 70 
year after surgery, twice per year from the second to the fifth year, and once a year after five years. 71 
Regular examination included physical examination, blood and biochemical routine examination, 72 
tumor biomarker (SCC and CEA), endoscopy and CT. Demographic and clinical data were extracted 73 
from our clinical database.  74 

Clinical endpoint data was prepared following the common used criteria[1]. Disease free survival 75 
(DFS) is defined as the shortest period from the date of surgery to the date of first tumor recurrence 76 
event with radiological or pathological confirmation. The censored time is from the date of surgery 77 
to the last contact date or date of death. Overall survival (OS) is the longest period from the date 78 
of surgery until the date of death at any cause. The censored time is from the date of surgery to 79 
the date of last contact. Comprehensive pathological staging was conducted by experienced 80 
pathologists following the  8$% edition of AJCC cancer staging manual. 81 

Gene panel design and sequencing 82 

 Mutation data were downloaded from supplementary materials of published result[2-9]. We 83 
calculated mutation frequency for each gene based on WGS/WES data from 589 patients. In order 84 
to gain in-depth insight of mutations of ESCC, we brought genes with mutation frequency above 2% 85 



into our panel list. Ultimately, all exons of 548 selected genes covering 5.731 Mbp were used to 86 
design complementary probes for library construction. 87 
 AllPrep DNA Universal Kit (SureSelect, Agilent, Santa Clara, USA) was used to extract DNA 88 
from frozen fresh tissues (purity>50%, median: 70%). DNA was quantified and quality controlled by 89 
Qubit 2.0 and Agarose gel electrophoresis assay prior to library construction. DNA was broken into 90 
180-280 bp and all exons of 548 genes were captured using Agilent SureSelect XT Custom Kit. 91 
After PCR amplification and quality control by Agilent 2000, DNA library was sequenced using 92 
paired-end 150 bp on Illumina Hiseq platform. The average sequencing depth of coverage on target 93 
regions was 1070X (range: 690X—1616X), and 95% of targets were covered by 100 reads. 94 

Data generation of validation cohort  95 

To verify the prognostic value of our findings, an independent cohort was recruited from the 96 
biorespository of Guangdong Esophageal Cancer Institute (GECI). The tumor samples of GECI 97 
were collocted from thoracic division of Sat-Yat Sen University Cancer Center. Following the same 98 
inclusion and exclusion criteria used in discovery cohort, 70 samples with qualified frozen tissues 99 
were selected from 335 cases in our biorespository. Detailed comparison of clinical information 100 
between 201 patients in discovery cohort and 70 patients in validation cohort was listed in Table S1. 101 
Univariable Cox regression was performed with 2000 boostrap sampling in discovery cohort, and 102 
66 genes associated with DFS or OS were included in the sequencing panel of validation cohort. 103 
The design of captured probe and library construction of samples were identical to those applied in 104 
discovery cohort. DNA library was sequenced using paired-end 150 bp on Illumina Hiseq 2500 105 
platform. The median coverage of depth in validation cohort was 1026X (range: 515X-1648X). The 106 
clean data of validation cohort was then processed following the same bioinformatic analysis 107 
pipeline.  108 

Tumor purity determinant  109 

 All samples underwent pathological review via frozen section. A tissue section was created 110 
with two H&E slides (termed as top and bottom): a 4 μm frozen section (top slide) was cut, 20 mg 111 
of tumor tissue was shaved from the tissue for library construction, then a second 4 μm frozen 112 
section was cut (bottom slide). An H&E stain was conducted on both slide tissue sections. 113 
SYSUCC-authenticated pathologist conducted diagnosis verification and turmor purity 114 
assessment. Pathologist initially screened the slide in low magnification to determine the 115 
microscopic morphology, then magnified to 20X and reviewed 10 representive fields on each slide. 116 
The tumor purity was derived from the proportion of tumor nuclei compared to total nuclei present 117 
on the slide. The tumor purity of each sample was the aveage level of purities in both top and 118 
bottom slides. For quality control, random review of 20% of slides was conducted by a second 119 
pathologist to confirm the results. If the results of second review were off by 10%, the sample 120 
would be assessed again. 121 

Reads alignment and Variant calling 122 

Clean reads were obtained after filtering out low-quality reads and adapters from raw reads. The 123 
clean reads were aligned to human reference genome b37 using BWA[10] and deduplicated using 124 
SAMBLASTER[11]. Variants (SNVs and small Indels ) were identified using Mutect2 by comparing 125 
tumor samples with an unmatched normal sample pool[12]. All putative variants were annotated 126 



using ANNOVAR[13]. To account for the absence of matched control, a custom variant sifting 127 
pipeline was developed: 128 

(1) Removal of variants located within low-coverage (<10X) regions and variants with less than 129 
3 mutant reads 130 

(2) Removal of variants whose allele fraction is 1 131 
(3) For variants with well-characterized annotation in COSMIC[14], removal of known 132 

polymorphisms reported among 1000 Genome, Exome Aggregation Consortium data[15] or 133 
in-house database at frequency >0.1  134 

(4) For vatiants without annotation in COSMIC, removal of variants recorded in dbSNP, variants 135 
with frequency above 0.003 in 1000 Genome data, variants with frequency above 0.01 in in-136 
house database and variants with frequency above 0.001 in Exome Aggregation Consortium 137 
data 138 

(5) Removal of germline variants present in any of normal control. 139 
 After filtering the probably germline variants, the remaining mutations were used for further 140 
analysis in our study. 141 

Detection of significantly mutated genes 142 

 According to Darwinian evolution, mutations that endowed tumor cells survival advantage will 143 
accumulate during tumor development. Following this principle, we statistically evaluated three 144 
types of features extensively observed in driver genes: 1) mutation recurrence; 2) deleterious 145 
mutation enrichment; 3) Mutation hotspots. The methodological details were as follow[3]. 146 

(1) Mutation recurrence test.  147 
To test whether mutations in a gene frequently occurred across sample, 148 

OncodriveCLUST was employed to evaluate mutation recurrence while considering gene 149 
length, distribution of mutations across gene loci and background mutation rate[16].  150 

(2) Deleterious mutation enrichment test. 151 
A genuine driver gene is prone to undergo mutational hits that damage the protein 152 

function than non-driver gene does. In this study, nonsense, frameshift, splice site mutations 153 
and missense mutations scored under 0.05 by SIFT[17] were considered deleterious to 154 
protein function. For each gene, we assumed the numbers of deleterious mutations and all 155 
mutations as the number of successes and trials, respectively. Then we constructed a 156 
binomial model to evaluate the enrichment of deleterious mutation. As for the probability in 157 
binomial model, we used the ratio of deleterious mutations to all mutations in non-recurrently 158 
mutated genes. 159 

(3) Mutation cluster 160 
Mutational hotspot is a strong indicator of positive selection[18].Rather than nucleotide-161 

level analysis, we applied an algorithm to detect amino acid residue-level hotspots[19]. 162 
Hotspot in the algorithm was defined as an amino acid position in protein-coding gene 163 
mutated more frequently, corresponding to mutations located in the same codon. 164 

Several significant mutated genes were identified at the threshold of 𝑎𝑑𝑗. 𝑃+,-./012345678≤0.1 165 
and 𝑃91,.:1;<≤0.05: TP53, FRY, ZNF750, NFE2L2, GRIN2B and FCGBP. 166 

Sanger sequencing  167 

 110 mutations were randomly selected for validation. Because common detection threshold of 168 
mutations by Sanger sequencing is 10% of VAF[20, 21], we filter 59 mutations with a frequency of 169 
over 10%. Among these mutations, 3 cases were failed due to difficulty of PCR amplification. Finally, 170 



Sanger sequencing succeed in 56 cases. 98.2% (55/56) of mutations detected by NGS were verified 171 
by Sanger sequencing. Mutations of FRY gene in cell lines were also detected by Sanger 172 
sequencing. Sequences of primers would be available upon request.  173 

Analysis of copy number alterations 174 

Copy number analysis was conducted using CNVkit[22] which was designed specific for 175 
targeted sequencing data. In brief, the read counts of 50 normal samples were normalized and 176 
integrated into a pool reference. Then targeted reads and nonspecifically captured off-target reads 177 
from tumor samples were used to infer somatic copy number alterations. The algorithm also adjusted 178 
the bias that leads to sequencing read depth: GC content, target size, repetitive sequences. Copy 179 
number alterations (CNAs) were inferred following default parameters and adjusted by tumor purity.	 180 

Oncogenic mutation annotataion 181 

 Each somatic mutation was annotated as oncogenic or unknown. Detailed annotation 182 
parameters are listed as follows, which is similar to the criteria of oncogenic mutation in published 183 
works[23, 24]: 184 

(1) Oncogenic 185 
a. Known oncogenic mutations reported in the literature[2-9, 14, 25-29]; 186 
b. Hotspot mutations (n ≥ 3) that located in known cancer associated genes; 187 
c. Truncating variants (nonsense mutations, splice site mutations, nonstop mutations and 188 

frameshift insertions or deletions) in cancer associated genes; 189 
(2) Unknown  190 

a. Mutations outside of frequent oncogenic mutations in genes with known oncogenic 191 
mutations; 192 

b. Mutations in genes whose role in ESCC is not established yet. 193 

Inference of temporal order of oncogenic mutations  194 

 The mutation order analysis was conducted using the previous described methods[23, 24]. 195 
Before testing whether one mutation occurred earlier the others, the variant allelic frequency (VAF) 196 
of each oncogenic mutation was calibrated by copy number of loci at which mutations located 197 
according to the method described previously[30]. In brief, VAF of homozygous mutations and 198 
mutations of genes located on chromosome X in male cases were reduced to the half of the raw 199 
data. VAF of hemizygous mutations were recalculated based on the formula as “Adjusted 200 
VAF=x/(1+x)”, while x refers to raw VAF. Adjustment was not required for heterozygous mutations. 201 
 To test whether there existed evidence that two oncogenic mutations within a patient were 202 
present in the same fraction of cells, we apply fisher exact test using the adjusted VAF. We set a 203 
significance threshold of P ≤0.05 at determining whether clonal heterogeneity existed in a given 204 
patient. Then we employed the “pigeonhole” principle to reconstruct temporal precedences of 205 
oncogenic mutations, only including those pair comarisons with clear phylogenetic relationship[31]. 206 
From the set of genes in which at least 5 precedences were observed, we utilized Bradley-Terry 207 
model[32] (package: BraleyTerry2) using penalized maximum likelihood to the observed 208 
precedences[23, 24]. Quasi standard error was computed using ‘qvcalc’ package so that 209 
comparison between any pair of genes was readily made, not just the comparison with the reference 210 
gene. 211 



Estimation of cancer cell fraction  212 

 Following the algorithm described previously[33, 34], we computed the posterior probability 213 
distribution over cancer cell fraction (CCF) of mutations to estimate their clone status. Let 𝑏 214 
denoted the number of reads supporting such mutation,	𝑑 denoted the total reads covering the 215 
mutation locus, 𝜌 referred to the tumor purity,	𝑐$ and 𝑐,	referred to the copy number of the gene 216 
locus at that base in the tumor and normal genome respectively. The expected allele-fraction 𝑓(c) 217 
of a mutation present in one copy in a fraction c of cancer cells was calculated by 𝑓(c) = 𝑐 ∗218 

C
(EFC)-HIC-J

, with 𝑐 ∈ [0.01,1]. Then P(c) ∝ Binomial(b|d, 𝑓(𝑐)) assuming a uniform prior on c. The 219 

distribution over CCF was obtained by calculating values over a regular grid of 100 c values and 220 
normalizing. Mutations were classified as clonal on the ground of the probability that the CCF exceed 221 
0.85. A probability threshold of 0.5 was used in our study. 222 

To infer the proportion of tumor cells carrying a given mutation, we used the following formula[31, 223 
35]: 224 

 CCF = min W1, 9
/
∗ (EFC)-HIC-J

C
X	 225 

Unsupervised machine learning  226 

Prognosis related genes were selected as below for further clustering. To reduce false negative 227 
rate and enhance statistics power, two follow-up end points (DFS and OS) and a relatively loose 228 
significant threshold were used to generate gene-sample matrix. Log-rank test was applied to each 229 
mutated gene (mutant VS wild type), and all 59 prognosis-associated genes (𝑃YZ7 ≤ 0.1 or 𝑃+7 ≤230 
0.1 and frequency≥2%) were assembled into a binary gene-sample matrix. None of mutation in 59 231 
genes was observed in four patients, genomic data of these four patients was excluded from gene-232 
sample matrix due to the mathematical constraints of nonnegative matrix factorization (NMF). 233 

To dig out ESCC subgroups that shared similar mutational patterns associated with prognosis, 234 
NMF was used to cluster patients with similar mutation patterns (package: NMF). The number of 235 
cluster k=3 was chose as it yielded a high cophenetic coefficient and effectively decomposed the 236 
matrix[36]. To examine the robustness of the above NMF-based clusters, another entirely different 237 
clustering algoritmn, partitioning around mediods consensus clustering[37], was applied (package: 238 
ConsensusPlus). The number of clusters k=3 was picked by inspecting the bimodality of CDF curves 239 
and progression of area under CDF curves[38]. Venn plot and Kappa index （package: irr）were 240 
used to evaluate and visualize the consistency of clusters identified by two algorithms. 241 

Analysis of external datasets 242 

 To evaluate whether FRY was dysregulated in ESCC, paired t test was used to compare the 243 
mRNA levels of FRY in tumors and matched normal and paratumor tissues in three available ESCC 244 
datasets, GSE23400, GSE44021 and GSE161533. Three datasets were further merged and batch 245 
effects were adjusted using Limma package. To further discover the correlation of FRY and Hippo 246 
pathway, we calculated the spearman correlation coefficients of FRY and Hippo target genes. 247 
Taking advantage of the reverse-phase protein arrays (RPPA) data from the TCGA project, we 248 
measured the relationship of FRY and YAP1, the only protein of Hippo pathway in the RPPA.  249 
 To validate the prognostic value of our three-gene signature, two independent datasets were 250 
used to perform survival analysis[6, 39]. As for TCGA cohort, WES data were downloaded from 251 



UCSC Xena. Mutations were called by “Muse”, ”Mutect”, “SomaticSniper” and “Varscan”. Mutations 252 
only detect by more than two callers were used for further analysis. Patients were grouped according 253 
to their mutation status of FAT1, FAT3 and FRY. Notably, the lack of accurate N stage information 254 
in the TCGA cohort prevented us to further subdivide patients by status of their lymph node 255 
metastasis. Note that the prognostic value of the three-gene mutation signature was insensitive to 256 
choice of mutation callers (Figure S6). Similar analysis was performed in Song’s cohort[6], and 257 
patients were subdivided by their positive lymph node status compatible with our discovery cohort. 258 
 To further characterize molecular features of the “FAT/FRY” subtype, we performed multiomics 259 
analysis based on the data from TCGA and GSE47404. For transcriptome analysis, the read count 260 
data were transformed to TMM by the R package edgeR to identify differentially expressed 261 
genes[40]. For microarray data, differentially expressed genes was detected by package “limma”. 262 
We used gene set enrichment analysis to identify enriched pathways in the molecular subtypes 263 
(package: Clusterprofiler). To dissect the composition of tumor environment, we calculated the z-264 
score of immune cells to represent their  relative composition in ESCC micro-environment using 265 
package “GSVA” [41-43]. Briefly, this method could evaluated activities of pathway by automatically 266 
catched a subset of genes in the pathway whose combined expression delivers optimal 267 
discriminative power for the disease phenotype. Marker genes representing each immune cell 268 
subset could be sourced from published papers (Table S8). 269 
 To assess the capacity of our molecular subtypes to predict immunotherapy responses, we 270 
applied subclass mapping (SubMap) to measure the similarity of transcriptome profile of our 271 
molecular subtypes and that of the groups with different responses in the immunotherapy cohort. 272 
The SubMap algorithm evaluates the extent of commonality of the different subgroups in 273 
independent datasets. Permutation-based P-values were used to evaluate the similarity, and the 274 
lower the P-values were, the higher the similarity. We applied SubMap (GenePattern) to measure 275 
the similarity of ESCC molecular subtypes with different responses of patients from two melanoma 276 
cohorts and a urothelial cancer cohort treated with immune checkpoint inhibitors[44-46]. 277 
    Furthermore, we evaluated the predictive capacity of FAT/FRY signature in immunotherapy 278 
cohorts. Due to the lack mature sequencing data of ESCC, we chose to perform survival analysis in 279 
a pancancer cohort with microsatellite stable (MSS) tumors and a NSCLC cohort as an 280 
alternative[47-49], because most of ESCC were MSS[50] and the genetic background of ESCC were 281 
similar to that of NSCLC[51]. 282 

Analysis of drug response for different ESCC subgroups 283 

 The drug response data (half maximal inhibitory concentration, IC50) of 22 ESCC cell lines with 284 
Cancer Cell Line Encyclopedia mutational profiling data were retrived from Genomics of Drug 285 
Sensitivity in Cancer[52]. The higher IC50 indicated a more resistant phenotype of the cell. Student 286 
t test was used to compared drug responses of the FAT/FRY mutant cell lines and those with wild 287 
type. 288 
  289 

Statistical analysis 290 

 All analyses were performed in R 4.0.2 and SPSS 25.0 (IBM Corporation). The P value for the 291 
survival curve was calculated from the log-rank test. Student’s t test or the Wilcoxon rank-sum test 292 
was used to test for an association between two groups of continuous variables as appropriate. 293 
Paired t test was used to compare the mRNA levels of FRY in tumors and matched normal tissues 294 
in three available ESCC datasets, GSE23400, GSE44021 and GSE161533. Fisher’s exact test was 295 



used to test for an association between categorical variables, including determining whether the 296 
oncogenic mutations of cancer-associated genes had a bias towards being “clonal”. Clonal events 297 
were deemed early events and subclonal events were acquired relatively later. The fixed (𝐼]<50%) 298 
or random effects (𝐼] ≥ 50%) model was used to pool the HR of the molecular subgroup from three 299 
cohorts using “meta” package. We performed area under the curve (AUC) for the receiver operating 300 
characteristic (ROC) analysis to compare sensitivity and specificity for prediction of death and 301 
relapse at different cutoff times (2, 3 and 4 years) by our molecular subgroups and the AJCC 8$% 302 
TNM stage using “timeROC” package. Similar analysis was performed to compare the performance 303 
of the three-gene signature and TMB in predicting post-immunotherapy outcome. All P values 304 
reported are two-sided. The P value threshold for statistical significance was set at 0.05. Several 305 
packages, including “ggplot2”, “ggsci”, “ggtheme”, “survival”, “maftools”, “trackviewer”, “GridExtra” 306 
and “VennDiagram” was used for data visuallization. To visualize the mutation profile of genes, the 307 
protein sequence annotations were downloaded from Uniprot database 308 
(https://www.ebi.ac.uk/proteins/api/). 309 

RNA extraction, reverse transcription and quantitative PCR 310 

    Among the 201 patients in the discovery set, 90 fresh frozen tumors were available. Reasons 311 
for the absence of samples included the exhaustion of samples and prohibition of obtaining samples 312 
from the biobank due to their age. Total RNA was extracted from clinical samples using TRIzol 313 
reagent (Invitrogen) according to the manufacturer’s instruction. cDNA was synthesized from 1 µg 314 
of total RNA using RevertAid First Strand cDNA Synthesis Kit (Thermo Scientific). cDNA was 315 
subjected to quantitative real-time PCR (qRT-PCT). GAPDH was used as an internal control. The 316 
primers used in this study are shown in Table S11. QRT-PCR was performed using the Power SYBR 317 
Green PCR Master Mix (Applied Bio systems) and LightCycler480 PCR system (Roche Diagnostics).  318 

Cell Lines and Culturing 319 

 Human ESCC cell lines KYSE30, KYSE410 were all preserved in State Key Laboratory Of 320 
Oncology In South China. All of these cells were cultured in DMEM medium supplemented with 10% 321 
fetal bovine serum and 1% antibiotics (100 mg/mL streptomycin and 100 units/mL penicillin) at 37 ℃ 322 
in a humidified incubator under 5% CO2 condition. 323 

Small Interfering RNA Mediated Gene Knockdown 324 

 Depletion of gene expression was performed by transfecting cells with small interfering RNA 325 
(siRNA) oligonucleotides directed against the following target sequences: FRY-si1 ：326 
GCAGGACCCTTCAGCATTA; FRY-si2：GCTACAACTACTTCGAATT. Transfection steps were 327 
performed following the manufacture’s protocols, using Lipofectamine RNAiMAX (Invitrogen, USA). 328 

Overexpression of Truncated protein of FRY 329 

 The plasmid containing human partial length FRY cDNA (1-957) was amplified by PCR and 330 
cloned into pcdna3.1 vector and linked with a HA tag at the N-terminal. Transfection steps were 331 
performed following the manufacture’s protocols, using Lipofectamine 3000 (Invitrogen, USA) 332 



Western Blotting 333 

 Cell lysate was prepared using a RIPA Lysis Buffer (Millpore, USA), and the protein 334 
concentration was measured using a BCA Protein Assay Kit (keyGEN BioTECH, China). Cell lysates 335 
were separated by 6%–10% sodium dodecyl sulfate (SDS)– polyacrylamide gel electrophoresis 336 
(PAGE) gel electrophoresis and transferred to a PVDF membrane. After blocking with 5% skim milk, 337 
the membrane was incubated with one of the following primary antibodies under 4℃ overnight: FRY 338 
(LS-C343004, mouse; LSBio, Germany), HA (3724, rabbit; CST, USA), Vinculin (13901, rabbit; CST, 339 
USA), Tubulin (3873, mouse; CST, USA), and then incubated with the species-specific secondary 340 
antibodies for one hour under room temperature. Finally, the membrane was incubated with Western 341 
Blotting Substrate（Thermo Scientific，USA）and detected by ChemiDoc Touch imaging system 342 
(Biorad，USA). 343 

Cell Proliferation Assays 344 

 For cell viability assay, cells were seeded into a 96-well plate at 103 cells per well and cultured 345 
at 37 ℃. For each day, 10% (volume/volume) CCK-8 (Dojindo, Kumamoto, Japan) was added to 346 
the culture medium and incubation lasted for 1 hour. Cell viability was monitored by measuring 347 
absorbance at 450 nm using a Microplate Reader (MD SpectraMax PlusPower 384, USA). The 348 
experiment was performed in quintuplicate and repeated twice. 349 

Immunohistochemistry staining and digital analysis 350 

    Previous immunogenomic analyses from both TCGA-ESCC and GSE47404 datasets show that 351 
CD8+ tumor inflitrated lymphocytes (TILs) were more abundant in FAT/FRY mutant ESCC. 352 
Therefore, immunohistochemistry(IHC) analysis was performed for CD8 (ZA-0508-3.0, ZSGB-BIO) 353 
to evaluate the CD8+ TIL inflitrations of 170 patiants with available tumor tissue slides from the 354 
discovery cohort. Reasons for absence of tumor slides included exhaustion of FFPE slides and 355 
absence of tumors in the slides. Polaris digital slides scanner (Akoya Biosciences, USA) was used 356 
to scan the slides and HALO digital pathological platform was used to quantify the density of CD8+ 357 
cells. The tumor regions wes mannually annotated by an experienced pathologist and the The RGB 358 
signal of the immunostaining markers was recognized by the multiplex IHC mode of HALO software 359 
and the cutoff of the signal was calibrated by the author (MZH). The positive cell densities of the 360 
tumor area was calculated as the number of positive cells divided by the tumor area measurements 361 
(cell counts/mm2). The proportions of CD8+ cells were also calculated to parallelly evaluate the 362 
abundance of CD8+ TILs, which was not affected by the size of annotated areas. Wilcoxon rank 363 
sum test was performed to compare the density of CD8+ cells between FAT/FRY mutant and wild 364 
type tumors. 365 



Supplementary figure 366 

 367 



Figure S1 Diagram of samples selection workflow. Patients in discovery and validation 368 

cohorts were selected by the same criteria. 369 

 370 

Figure S2 Overview of our analysis schedule 371 

 372 

  373 



 374 

Figure S3 Lolliplot of frequently mutated genes. (A) Mutational hotspots accumulated in 375 

ESCC associated genes, including histone modifiers EP300, CREBBP, KMT2C and JMJD1C. (B) 376 
Sanger sequencing identified somatic mutations of FRY in ESCC cell lines. No FRY mutations 377 
were detected in KYSE410 and KYSE30 cell lines. (C) Multivariable Cox regression analysis of 378 
mutation status of FRY and clinicopathological variables. (D) The mRNA levels of CTGF and 379 
CYR61 in two RNAi KYSE410 cells and the control KYSE410 cells. (E) Western blot and 380 
quantitative analysis of knock down efficiency of FRY in KYSE410 and KYSE30 cells. (F) Western 381 
blot analysis of overexpression of hotspot mutation FRY p.E319X. Data represent mean ± SEM 382 
from 3 independent experiments and each had three replications 383 



 384 

Figure S4 Correlations of expression of several Hippo-associated genes and 385 



FRY in three microarray datasets. Negative correlation of FRY and YAP1 and its target 386 

genes in the combined microarray datasets (A, C-L). (B) Correlation of mRNA levels of FRY and 387 
protein expression of YAP1 in the TCGA-ESCC RPPA datasets. 388 



 389 



Figure S5 Association of the three-gene signature with patient prognosis. (A) 390 

Kaplan-Meier survival analysis showed that patients with mutation(s) in at least one mutation in genes of this 391 
signature had significantly shorter DFS than those patients with wild type genotype. (B) The prognostic value was 392 
further validated in an independent validation cohort (B). (C) Survival curves showed a marginal trend that patients 393 
with two mutations in three-gene signature had worse DFS than patients with one mutations in three-signature. 394 
(D) The ‘FAT/FRY’ subgroup had shorter progression-free survival in TCGA cohort. (E) Multivariate cox regression 395 
analysis in TCGA/ICG cohort showed that three-gene signature is associated with poor survival independent TNM 396 
stage and demographic variables. In TCGA cohort, 95 patients with definitive pathological stage were included in 397 
this analysis. (F) Forest plot of hazard ratio (HR) of relapse for 367 ESCC patients in different molecular subgroups 398 
from three cohorts with the fixed effects model. (pooled HR: 1.70, 95%CI: 1.27-2.93, 𝐼]=38%, P=0.2). TE: effect, 399 
TEVAR: standard error of the effect. (F/G) The negative association between the three-gene signature and the 400 
OS in whole patients (F) and patients with lymph node metastasis (G) in another independent dataset[6]. 401 

 402 

Figure S6 Survival curves of patients according to three-gene signature 403 

stratified by clinicopathological parameters. The three-gene mutation signature reflects poor 404 

prognosis in different demographic subgroups. OS curves of “FAT/FRY” mutant patients and wild type patients 405 
were stratified by gender (A/B), age (C/D), N stage (E) and AJCC 8th TNM stage (F). Patients in wild-type in stage 406 
IIIB had similar OS with patients in stage IIIA. Patients in wild-type group in N2 stage had similar OS with patients 407 
in FAT/FRY subtype in N1 stage. 408 
 409 



 410 

Figure S7 Comparisons of the sensitivity and specificity for prediction of disease 411 

progression and deathby the three-gene signature and the TNM stage. Receiver 412 

operating characteristics (ROC) curves for relapse within 2, 3 and 4 years (a-c), and disease progression within 2, 413 
3 and 4 years (d-f). AUROC, area under the ROC (AUROC). Area under the curve was compared using t test. 414 
 415 

 416 

Figure S8 Prognostic value of the three-gene mutation signature detected by 417 

different methods in TCGA cohort. Patients were assigned into FAT/FRY subgroup according to 418 

their mutation status of FAT1, FAT3 and FRY. 419 



 420 

Figure S9 Representative images of CD8 immunohistochemistry of ESCC tissues 421 

from FAT/FRY muatant and wild type patients. The brown dot indicated the CD8 positive cell 422 

and the blue dot represented the nucleus. 423 
 424 

 425 

 Figure S10 FAT/FRY signature is prognosticator instead of predictor of ajuvant 426 



therapy. (A/B) Adjuvant therapy improved both DFS (A) and OS (B) in pN+ ESCC populations. (C-F) The 427 

effects of adjuvant therapy did not differed between the FAT/FRY subgroup (C/D) and wild-type subgroup (E-F). 428 
(G/H) In patients with surgery alone (without adjuvant therapy), FAT/FRY signature associated with poor DFS (G) 429 
and OS (H). 430 

 431 

Figure S11 Prognostic value of genomic and transcriptomic features of FAT/FRY 432 

subgroup tumors. (A/B) GSEA analysis revealed enrichment of hypoxia related genes (A) and drug-433 

metabolism related genes (B) in FAT/FRY subtype ESCC. (C/D) Survival differences of patients subdivided by 434 
expression levels of hypoxia and drug metabolism associated signature. The red line represented patients with 435 
high score of the signature. (E/F) Prognosis differences of TMB-H and TMB-L patients in MSS tumor cohort (e) 436 
and NSCLC cohort (f). (G/H) As a core component of the FAT/FRY signature, FAT1 mutation was associated with 437 
longer OS and higher TMB in patients treated with ICIs in Samstein’s cohort.  438 
 439 
  440 



 441 

Table S1 Detailed comparison of clinical variables between discovery cohort and  independent 
validation cohort 

Variables Discovery 
set(N=201) N(%) 

Independent validation 
set(N=70) N(%) 

P 
value 

The entire 
set(N=271) 

Sex     0.571   
Female 35(17.4) 15(21.4)   50(18.5) 
Male 166(82.6) 55(88.6)   221(81.5) 
Age 

  
0.854 

 

 ＜59 96(47.8) 35(50) 
 

130(48.0) 
≥60 105(52.2) 35(50) 

 
141(52.0) 

Smoking status     0.631   
  Yes 129(64.2) 42(60.0)   171(63.1) 
  No 72(35.8) 28(40.0)   100(36.9) 
Alcoholism 

  
0.107 

 

  Yes 99(49.3) 26 (37.1) 
 

125(46.1) 
  No 102(50.7) 44(62.9) 

 
146(53.9) 

Differentiation     0.176   
  Well 25(12.4) 14(20.0)   39(14.4) 
  Moderate-poor 176(87.4) 56(80.0)   232(85.6) 
Surgical approach 

  
0.77 

 

Left thoracotomy 66(32.8) 25(35.7) 
 

91(33.6) 
Right thoracotomy 135(67.2) 45(64.3) 

 
180(66.4) 

Lesion location     0.446   
  Upper 16(8.0) 3(4.3)   19(7.4) 
  Middle 115(57.2) 45(64.3)   160(59.0) 
  Lower 70(34.8) 22(31.4)   92(35.1) 
pT classification 

  
0.669 

 

  T1-T2 31(15.4) 13(18.6) 
 

44(16.2) 
  T3-T4a 170(84.6) 57(81.4) 

 
227(83.8) 

pN classification     0.158   
  N1 99(49.3) 42(60.0)   141(52.0) 
  N2-3 102(50.7) 28(40.0)   130(48.0) 
Adjuvant chemo ±
radiotherapy 

    

  Yes 85(42.3) 31(44.3) 0.88 116(42.8) 
  No 116(57.7) 39(55.7)  155(57.2) 

 442 

Table S1 Detailed comparison of clinical variables between discovery cohort 443 

and independent validation cohort 444 

  445 



Table S5 Multivariable Cox regression analysis of the three-gene signature and clinicopathological 
factors 

Variable Discovery cohort (N=201) Validation cohort (N=70) 

HR (95% CI) P HR (95% CI) P 

Sex (male vs female) 0.60 (0.36-0.99) 0.047 0.39 (0.14-1.09) 0.07 

Age (≤60 vs >60) 0.93 (0.65-1.33) 0.68 0.73 (0.23-2.33) 0.60 

pT classification 
 

 
 

1.27 (0.75-2.17) 0.54 3.07 (1.04-10.45) 0.045 

pN classification    
3.22 (1.97-5.28) 
  

  
<0.001 
  

  
2.20 (0.61-4.09) 
  

  
0.14 
  

Differentiation 
  

0.85 (0.51-1.43) 0.54 1.58 (0.61-4.09) 0.35 

Number of lymph nodes examined 
(≤27 vs >27) 

  
1.31 (0.92-1.88) 

  
0.14 

  
1.63 (0.78-3.37) 

  
0.20 

Prognostic subtype 
(FAT/FRY vs wild type) 

1.47 (1.04-2.09) 0.028 2.82 (1.28-6.22) 0.01 

Adjuvant chemo ± radiotherapy 
(Yes vs No) 

0.67 (0.46-0.97) 0.035 0.33 (0.15-0.72) 0.006 

 446 

Table S5 Multivariable Cox regression analysis of the three-gene signature and 447 

clinicopathological factors 448 

  449 
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Table S6 Detailed comparison of clinical variables between "FAT/FRY"  group and  wild type group 
across the 271 ESCC patients 

Variables FAT/FRY (N=105) wild-type (N=166) P Overall (N=271) 

Age     0.85   

≤60  53 (50.4)   87 (52.4)    140 (51.6)  

＞60 52 (49.6) 79 (47.6)   131 (48.4) 

Sex 
  

0.97 
 

Female  19 (18.5)   31 (18.7)  
 

 50 (18.5)  

Male 86 (71.5) 135 (71.3) 
 

221 (81.5) 

T stage      0.85   

T1   7 ( 6.7)   12 ( 7.7)     19 ( 7.0)  

T2  32 (30.5)   48 (28.9)     80 (29.5)  

T3  57 (54.3)   96 (57.8)    153 (56.5)  

T4   9 ( 8.6)   10 ( 6.0)     19 ( 7.0)  

N stage    
 

0.16 
 

N1  48 (45.7)   91 (54.8)  
 

139 (51.3)  

N2  47 (44.8)   55 (33.1)  
 

 102 (37.6)  

N3  10 (9.5)   20 (12.0)  
 

 30 (11.1)  

Surgical procedure      0.93   

Right thoracotomy  70 (68.0)  112 (66.7)    180 (65.7)  

Left thoracotomy 33 (32.0) 56 (33.3)   91 (34.3) 

Differentiation 
  

0.84 
 

G2-3  87 (82.9)  145 (87.3)  
 

232 (85.6)  

G1 18 (17.1) 21 (12.7) 
 

39 (14.4) 

smoking status      1   

  Yes  66 (62.8)  105 (63.3)    171 (63.1)  

  No 39 (37.1) 61 (36.7)   100 (36.9) 

alcohoism = 1 (%) 
  

0.31 
 

  Yes  53 (50.5)   72 (43.4)  
 

125 (46.1)  

  No 52 (49.5) 94 (56.6) 
 

146 (53.9) 

position (%)     0.10   

  Upper   3 ( 2.9)   16 (9.6)     19 ( 7.4)  

  Middle  66 (62.9)   94 (56.6)    160 (59.0)  

  Lower  36 (34.3)   56 (33.7)     92 (33.9)  

Adjuvant therapy   0.16  

  Yes 39 (37.1) 77 (46.4)  116 (42.8) 

  No 66 （62.9) 89 (53.6)  155 (57.2) 

Table S6 Detailed comparison of clinical variables between "FAT/FRY" group 450 

and wild type group across the 271 ESCC patients 451 

 452 
 453 
 454 



Signature Name Resource Supplmentary 
reference 

CD 8 T cells Charoentong et al. Cell Rep 
2017;18:248-262. 

[41] 

Eosinophils Charoentong et al. Cell Rep 
2017;18:248-262. 

[41] 

Gamma delta T cells  Charoentong et al. Cell Rep 
2017;18:248-262. 

[41] 

Activated dendritic cells  Charoentong et al. Cell Rep 
2017;18:248-262. 

[41] 

IFN gamma signature Ayers M, et al. J Clin Invest 
2017;127:2930-2940 

[53] 

GO BP Hippo signaling MsigDB http://www.gsea-
msigdb.org/ 

LEONARD_HYPOXIA MsigDB http://www.gsea-
msigdb.org/ 

LEONARD_HYPOXIA MsigDB http://www.gsea-
msigdb.org/ 

FARDIN_HYPOXIA MsigDB http://www.gsea-
msigdb.org/ 

WINTER_HYPOXIA_DN MsigDB http://www.gsea-
msigdb.org/ 

KEGG_DRUG_METABOLISM_OTHER_ENZYMES MsigDB http://www.gsea-
msigdb.org/ 

KEGG_DRUG_METABOLISM_CYP450 MsigDB http://www.gsea-
msigdb.org/ 

KEGG_DRUG_XENOBIOTICS_CYP450 MsigDB http://www.gsea-
msigdb.org/ 

 Table S8 Publicly-available gene signatures used in the study 455 

CTGF former CTCGCGGCTTACCGACTG 

CTGF reverse GGCTCTGCTTCTCTAGCCTG 

CYR61 former GTTTGGCCCAGACCCAACTA 

CYR61 reverse GGCTCTGCTTCTCTAGCCTG 

LATS2 former CAGGATGCGACCAGGAGATG 

LATS2 reverse CAGGATGCGACCAGGAGATG 

FAT1 former TTCAAAATAGGTGAAGAGACAGGTG 

FAT1 reverse TTCAAAATAGGTGAAGAGACAGGTG 

 Table S11 Primers used in our qRT-PCR experiment. 456 
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