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Supplementary Methods 

Low Post-Mortem Interval (PMI) Initiative 

During the initial COVID-19 surge in New York City, the Columbia University Irving 

Medical Center (CUIMC) Departments of Pathology and Medicine implemented a multi-

disciplinary initiative to lower post-mortem interval (PMI). Clinicians directly involved in the care 

of decedents obtained autopsy consent from next-of-kin at the time of death notification or 

shortly thereafter. Witnessed verbal consent was approved and accepted by New York 

Presbyterian-CUIMC since all hospital visitations were prohibited during this period. 

Documentation of informed autopsy consent was protocolized for the electronic medical record; 

a copy of the document was sent to the decedents’ next-of-kin by electronic or postal mail. 

Timely transfer to the autopsy suite was coordinated immediately upon attainment of autopsy 

consent. Infographics, cloud-based resources, and multiple daily HIPAA-compliant text 

communications to frontline clinicians were created and used to support the low PMI initiative. 

Measurement of ventricular SARS-CoV-2 viral load 

Total RNA was extracted from formalin-fixed paraffin-embedded (FFPE) tissue samples 

of left (LV) and right ventricles (RV) of all 69 hearts, using the Quick-RNA FFPE Miniprep Kit 

(Zymo Research, Irvine, CA) according to the manufacturer’s instructions.  RNA elution was 

performed with nuclease free double-distilled H2O at a final volume of 75 μl. We performed 

quantitative reverse transcription-polymerase chain reaction (RT-qPCR), using primer/probe 

sets for the N1 and N2 regions of the SARS-CoV-2 nucleocapsid gene and for the human 

RNase P gene (RP) (Integrated DNA Technologies), as described previously (1). All samples 

were run in triplicate. A standard curve of N2 ranging from 101-105 viral copies was generated 

from the 2019-nCoV_N_Positive Control (Integrated DNA Technologies, Coralville, IA). Samples 

were considered positive for SARS-CoV-2 only if all three transcripts--- N1, N2, and RP--- were 

detected.  
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For each RT-qPCR reaction, we used 5 μL of the total 75 μL of extracted RNA per 

ventricular tissue sample. Hence, the calculated viral load of each N2 RT-qPCR reaction was 

multiplied by 15 to yield the ventricular viral load of the sample. To account for potential 

differences in ventricular tissue sample sizes, ventricular viral loads were normalized to RP 

expression using the ∆ cycle threshold (Ct) method. Specifically, a normalization ratio for RP 

expression was calculated as 2-∆Ct, whereby ∆Ct was the difference between each sample’s RP 

Ct and the mean RP Ct of all samples. Thus, the normalized viral load for each ventricular 

tissue sample was calculated by dividing the raw ventricular viral load by the normalization ratio.  

RT-qPCR of canonical genes of fibroblast activation 

Total RNA was extracted from formalin-fixed paraffin-embedded (FFPE) tissue samples 

of the RV of all COVID-19 hearts for which PMI was less than 24 hours. Total RNA was 

extracted using the Quick-RNA FFPE Miniprep Kit (Zymo Research, Irvine, CA) according to the 

manufacturer’s instructions.  Only those samples with detectable housekeeping genes GAPDH 

and RPS13 were included in summary analysis.  

Data Processing of single nuclei RNA sequences 

Raw base call sequencing files were de-multiplexed; FASTQ files were generated using 

the 10x Genomics CellRanger 4.0.0 in the Cumulus workflow (2).  To remove homopolymers 

(A30, T30, G30, and C30) and the template switch oligo sequence 

(CCCATGTACTCTGCGTTGATACCACTGCTT and its complement 

AAGCAGTGGTATCAACGCAGA GTACATGGG), reads were trimmed using Cutadapt v2.8 (3) 

with default parameters. Trimmed reads were aligned to the GRCh38 pre-mRNA human 

reference with SARS-CoV2 annotations (NC_045512). Count matrices were generated using 

CellRanger Count v12. 

We inspected each sample for mapping quality based on the number of mapped reads 

per nucleus, percentage of mapped mitochondrial reads (%mitochondrial reads), and the shape 

of the unique molecular identifier (UMI) decay curve. One sample (SID 69-RV) demonstrated 
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high levels of mitochondrial reads and was removed from further analyses. The remaining 

samples were filtered using CellBender v2.0 (4) with default settings to remove the ambient 

RNA byproducts of nuclear isolation. From this, 108,016 nuclei remained.  

Quality control was performed on the individual sample level. For each droplet, we 

calculated the ratio of reads mapping to exonic regions to total mapped reads using Scrinvex 

v13 (https://github.com/getzlab/scrinvex). Droplets with an exon ratio greater than the 75th 

percentile + IQR range were removed from downstream analyses due to increased cytoplasmic 

transcripts (3,182 nuclei). We also excluded droplets which contained more than one nucleus as 

identified by Scrublet (5) (10,866 nuclei). Samples were also filtered to remove nuclei with reads 

mapped to less than 200 genes (11,280 nuclei) and nuclei with greater than 5% mitochondrial 

reads (9,825 nuclei).  

The gene list was filtered for highly variable genes (minimum mean 0.0125, maximum 

mean 3, minimum dispersion 0.5), using a subset of 6,255 genes for graph-based clustering. To 

account for variable complexity per nucleus, counts were normalized to 10,000 unique 

molecules per nucleus and logarithmized. Total read count and % mitochondrial reads were 

regressed out (Scanpy preprocessing regress_out); data was scaled to a maximum value of 10. 

Ischemic time for non-COVID-19 reference controls (6) was unavailable. Hence, we could not 

account for effects of ischemic time; results relating to hypoxic signaling should be interpreted 

with caution. 

We calculated principal components from the highly variable gene subset 

(scanpy.tl.pca(adata, svd_solver='arpack')) and then corrected the normalized data for batch 

effects using Harmonypy version 0.0.5 (7) with each sample considered as a unique batch. We 

used the batch-corrected PCs to calculate neighbors (scanpy.pp.neighbors(adata, 

n_neighbors=10, n_pcs=40)) and generate a UMAP (scanpy.tl.umap(adata)). Nuclei were then 

clustered using leiden clustering (scanpy.tl.leiden(adata)) at a resolution of 0.225.  
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Marker gene and cell type identification 

Genes were ranked using a Wilcoxon rank sum test (scanpy rank_genes_groups) for 

each cell-type cluster versus all others; and log2-fold change (FC) and percentage of nuclei 

expressing each gene were calculated.  Area under the receiver operator curve (AUC) scores 

were calculated for all genes within each cluster using SciKit Learn roc_auc_score. Genes were 

considered markers of a given cluster with an AUC score >0.7 or a log2-FC >0.6.  

Compositional analyses 

The proportion of each cell type was compared across samples using scCODA version 

0.1.1 (8). Briefly, we constructed a Markov-Chain Monte Carlo model with Hamiltonian Monte 

Carlo sampling using cell type proportions between conditions (non-COVID-19 reference control 

versus COVID-19, or COVID-19 microthrombi-positive versus COVID-19 microthrombi-

negative). Credible interval differences in cell type proportions were determined using spike-

and-slab inclusion probabilities. Importantly, the proportion of a given cell type in a sample is 

governed by our ability to liberate the nuclei equivalently from the tissue and our ability to 

successfully identify cells compared to empty droplets. The former may be affected by cell death 

or increased fibrosis which our sectioning protocol is designed to mitigate. The latter is a more 

challenging problem for single nucleus RNA sequencing, which is influenced by the relative 

transcriptional complexity of various cell types, making transcript rich cell types such as 

cardiomyocytes and fibroblasts easy to identify with transcript poor cells such as immune cells 

more apt to be assigned as an empty droplet. Use of a probabilistic cell calling mechanism in 

CellBender(4) is used to overcome this challenge.  

 

Differential expression testing 

Differentially expressed genes (DEGs) were calculated for each major cell cluster 

separately using the MAST(9) pipeline. We constructed a Hurdle model (zlm(~condition + 

ngenes + (1 | sample_ID), sca,method='glmer', ebayes = FALSE, strictConvergence = FALSE)) 
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with the normalized reads based on the cellular detection rate, the set condition (either donor 

control versus COVID-19, or COVID-19 microthrombi-positive versus COVID-19 microthrombi-

negative), and biological individual. Only genes with non-zero expression in at least 15% of all 

nuclei were included. DEGs were identified based on an Benjamini-Hochberg false discovery 

rate (FDR) adjusted P-value <0.05. Importantly, each droplet is contaminated by ambient RNA, 

which is imperfectly removed informatically by design. Therefore, DE results should be 

interpreted with caution, particularly when examining non-major cell types (e.g., intracardiac 

neurons, lymphatic endothelial, mast cells) and genes highly expressed in those as numerous 

as cardiomyocytes. Genes which serve as markers of another cluster (AUC > 0.7) were 

blacklisted to exclude potential differential contamination by ambient RNA as a driver of such 

effect. Gene lists were also compared to the secreted protein list obtained from the Human 

Protein Atlas (proteinatlas.org). Full lists of DE genes, including those which were blacklisted, 

are contained in Supplementary Table ST3.  

Reactome pathway enrichment 

For each major cell type, we performed gene pathway enrichment using Reactome(10) 

(Pathway browser version 3.7, database release 75) on DEGs with log2-FC >0.25, separated 

into up or downregulated genes. We also calculated pathway enrichment using the Reactome 

pathway from GSEA Msigdb(11) (MSigDB database v7.2). Pathways were considered enriched 

within a cell type if identified as such by both Reactome and GSEA Msigdb (BH FDR adjusted 

P-value of < 0.05). Reactome terms for all comparisons are available in Supplementary Table 

ST11. 

Cell-Cell Communication 

 Cell-cell communication was tested with CellphoneDB version 2.1.7 (12) on each sample 

separately using normalized count data for the 9 largest cell types. Afterward, significant 

interactions were aggregated between microthrombi-positive and microthrombi-negative 

samples.  Briefly, CellphoneDB identifies and compares ligand-receptor interaction pairs 
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between cell types and compares the observed interactions to the expected interactions of a 

null distribution generated from randomly permuted cell labels.   Default parameters were used 

for the analysis (10% threshold for cells expressing ligands and receptors, p-value = 0.05, 1000 

iterations for generation of null distribution, curated interactions list compiled by CellphoneDB 

from UniProt, Ensembl, PDB, IMEx consortium, and IUPHAR). 

Regulator Genes 

To identify regulator genes that function within and likely drive gene networks within a 

biological context, we analyzed DEGs with a log2-FC >0.5 for each cell type using 

GeneWalk(13) (direction of differential expression was not incorporated). GeneWalk builds 

biologically relevant networks from provided gene lists, connecting genes and GO terms, and 

compares the network to random networks.  GeneWalk was used with default parameters and 

an FDR-corrected P-value of 0.1. The identified regulator genes were compared to a list of 

druggable genes.(14) The full list of regulator genes identified is available in Supplementary 

Table ST13. 
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Table ST1. Cardiac histopathology and ventricular viral load of COVID-19 decedents  

COVID-19  
Overall 
(n=69) 

Microthrombi-
Positive* 

(n=48) 

Microthrombi-
Negative 

(n=21) 

Ventricular Viral load    

   Detectable viral load  43 (62.3) 31 (64.5) 12 (57.1) 

   SARS-CoV-2 viral load* (copies) 
1055 

[307, 13285] 
1594 

[562,13285] 
387  

[196, 21811] 

Cardiac Autopsy Findings, n(%)     

   Left ventricular hypertrophy  45 (65.2) 34 (70.8) 11 (52.4) 

   Left ventricular dilation  18 (26.1) 16 (33.3)§ 2 (9.5) 

   Right ventricular hypertrophy  21 (30.4) 16 (33.3) 5 (23.8) 

   Right ventricular dilation  37 (53.6) 27 (56.3) 10 (47.6) 

   Coronary atherosclerosis  39 (56.5) 26 (54.2) 13 (61.9) 

   Myocardial infarction  14 (20.3) 10 (20.8) 4 (19.0) 

   Thrombus†  2 (2.9) 2 (4.2) 0 (0.0) 

   Interstitial edema  5 (7.2) 3 (6.3) 2 (9.5) 

   Perivascular fibrosis  23 (33.3) 16 (33.3) 7 (33.3) 

   Interstitial fibrosis  27 (39.1) 21 (43.8) 6 (28.6) 

   Wavy myocytes  7 (10.1) 3 (6.3) 4 (19.0) 

   Contraction bands  5 (7.2) 3 (6.3) 2 (9.5) 

   Pericardial findings 12 (17.4) 8 (16.7) 4 (19.0) 

Cardiac Histopathologic Findings‡, n(%)     

   Microvascular endothelial cell damage    25 (36.2) 19 (39.6)§ 6 (28.6) 

   Scattered individual cardiomyocyte necrosis 25 (36.2) 16 (33.3) 9 (42.8) 

   Focal cardiac necrosis 14 (20.3) 11 (22.9) 3 (14.3) 

   Focal inflammatory infiltrate  12 (17.4) 6 (12.5) 6 (28.6) 

   Focal myocarditis 4 (5.8) 2 (4.2) 2 (9.5) 

Pulmonary Autopsy Findings, n(%)    

   Diffuse alveolar damage  38 (55.1) 27 (56.3) 11 (52.4) 

   Pulmonary artery thrombosis  10 (14.5) 7 (14.6) 3 (14.3) 

   Pulmonary microvascular thrombi  42 (60.9) 31 (64.6) 11 (52.4) 

Data are presented as counts with percentages in parenthesis and median with interquartile 
range in brackets.  
* Based upon the higher value detected in either the left or right ventricle of decedent 
† Intraventricular, intra-atrial, or epicardial coronary arterial thrombus 
‡ Based upon detection in either left or right ventricle of decedent 
§ P<0.05  
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Table ST2. Association between microthrombi and other acute histopathologic features 
at the ventricular level.  

Dependent Variable 
Independent 

Variable 

Univariate Model Multivariate Model 

OR (95% CI) p OR (95% CI) p 

Microthrombi 
Microvascular 
endothelial cell 

damage 
3.44 (1.42, 8.32) 0.006 3.58 (1.46, 8.80) 0.005 

Scattered individual 
necrotic cardiomyocytes 

Microthrombi 1.00 (0.46, 2.20) 1.00 1.05 (0.47, 2.34) 0.90 

Focal cardiac necrosis Microthrombi 1.23(0.37, 4.14) 0.74 1.03 (0.30, 3.56) 0.96 

Focal inflammatory 
infiltrate  

Microthrombi 0.43 (0.14, 1.35) 0.15 0.39 (0.12, 1.25) 0.11 

Focal myocarditis Microthrombi 1.27 (0.21, 7.85) 0.80 1.30 (0.20, 8.52) 0.78 

 
All histopathologic features listed above were identified on immunohistologic microscopy with 

the exception of focal inflammatory infiltrate and myocarditis, which were identified by H&E 

staining. Details in Supplementary Methods. Multivariate model is adjusted with age and sex.  
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Table ST3. Association between detectable SARS-CoV-2 and acute histopathologic 

features at the ventricular level  

Histopathologic Feature 
Univariate Model Multivariate Model 

OR (95% CI) p OR (95% CI) p 

Microthrombi 1.52 (0.78, 2.99) 0.22 1.62 (0.81, 3.22) 0.17 

Microvascular endothelial cell damage  2.24 (1.00, 5.03) 0.05 2.36 (1.04, 5.35) 0.04 

Scattered individual necrotic 
cardiomyocytes 

1.42 (0.66, 3.04) 0.37 1.43 (0.67, 3.04) 0.35 

Focal cardiac necrosis 0.40 (0.12, 1.27) 0.12 0.42 (0.13, 1.36) 0.15 

Focal inflammatory infiltrate or 
myocarditis 

0.30 (0.08, 1.03) 0.06 0.28 (0.08, 1.04) 0.06 

 
All histopathologic features listed above were identified on immunohistologic microscopy with 

the exception of focal inflammatory infiltrate or myocarditis, which was identified by H&E 

staining. Details in Supplementary Methods. Multivariate model is adjusted with age and sex. 
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Table ST4. Association between cardiac microthrombi and ESR as a categorical variable. 

ESR Unadjusted  
OR (95% CI) 

P-value 
Adjusted  

OR (95% CI) 
P-Value 

Quartile mm/hr 

1st 27.0-80.0  Reference 

2nd 81.0-107.1 1.70 (0.65-4.50) 0.280 0.87 (0.24-3.23) 0.840 

3rd  107.2-126.0 2.78 (1.08-7.17) 0.034 3.76 (1.17-12.04) 0.026 

4th 130.0-169.1 1.95 (0.77-4.91) 0.160 6.65 (1.53-28.79) 0.011 

 
Logistic regression model was adjusted for possible confounders by calculating a covariate 

balancing propensity score (CBPS) and using it as a single covariable. The covariates used to 

calculate CBPS were: age, sex, race/ethnicity, body mass index, duration of Covid-19 illness, 

outpatient ACEi/ARB use, outpatient antiplatelet therapy, and inpatient administration of 

corticosteroids, remdesivir, interleukin-6 (IL-6) receptor antagonists, and therapeutic 

anticoagulation.  

ESR = Erythrocyte sedimentation rate, OR = odds ratio, CI = confidence interval  
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Table ST5. Clinical characteristics of COVID-19 (+) snRNAseq subset 

n/a=not available (undocumented) 
✓ Represents presence of trait/therapy/finding 
·   Represents absence of trait/therapy/finding  
VTE = venous thromboembolic disease 
ACE = angiotensin converting enzyme 
ARB = angiotensin receptor blocker 
hs = high-sensitivity 
ESR = erythrocyte sedimentation rate 
* Detected on IHC of right ventricle   

† Body mass index (BMI) ≥30 kg/m2 
‡ History of coronary artery disease, cerebro-

vascular disease, or peripheral arterial disease 
§ Chronic obstructive pulmonary disease, asthma, or 

interstitial lung disease 
¶ Deep venous thrombosis or pulmonary embolism 
ǁ Reflects the number of patients receiving only 

prophylactic and not therapeutic anticoagulation 

 Microthrombi (+) * Microthrombi (-) 

Study ID 05 39 61 19 45 51 66 

Baseline Characteristics        

Age – yr 83 71 58 68 65 63 69 

Sex  Male Male Male Male Male Male Female 

Race/ethnicity Hispanic Hispanic Hispanic Hispanic Hispanic Hispanic n/a 

Body mass index – kg/m2 24.0 34.7 28.5 32.0 29.0 34.5 23.0 

Obesity†  · ✓ · ✓ · ✓ · 

Hypertension  ✓ ✓ · ✓ ✓ ✓ ✓ 

Diabetes · ✓ ✓ · · · · 

Insulin-dependent · · ✓ · · · · 

Atherosclerotic disease‡ · · · · · ✓ · 

Chronic lung disease§ · · · · ✓ · ✓ 

History of VTE¶ · · · · · · ✓ 

Number of Comorbidities  1 2 1 1 2 2 3 

Outpatient Medication Use        

   ACE inhibitor/ARB · ✓ · · · · · 

   Anticoagulation · · · · · · · 

   Antiplatelet ✓ · · · ✓ · · 

   Immunosuppressant · · · · ✓ · · 

Clinical Course        

Duration of illness – days  9 26 57 26 24 21 40 

Mechanical ventilation · ✓ ✓ ✓ ✓ ✓ · 

Duration – days  · 0 57 21 7 9 ·  

Renal replacement therapy · · ✓ · ✓ · · 

Vasoactive support · · ✓ ✓ ✓ ✓ · 

Laboratory Studies, peak values        

   hs Troponin T, ng/dL 410 24 292 542 212 30 61 

Lactate, ng/mL  1.7 4.2 4.5 3.1 10.1 11.1 3.9 

D-dimer, µg/dL 1.01 5.30 20.00 20.00 20.00 20.00 10.00 

Interleukin-6, pg/mL 207.0 315.0 315.0 315.0 315.0 273.0 108.0 

hs C-reactive protein, mg/L 124 300 300 278 234 109 278 

ESR, mm/hr 35 109 130 63 39 27 130 

Covid-19 Therapies        

Corticosteroids  · ✓ ✓ ✓ ✓ ✓ ✓ 

Tocilizumab ✓ ✓ · ✓ ✓ · · 

Remdesivir · · · · · · · 

Convalescent plasma · · · · ✓ · · 

In-hospital Anticoagulation         

Prophylactic dosing  ✓ ✓ ✓ · ✓ ✓ · 

Therapeutic dosing   · · · ✓ · · ✓ 
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Table ST6. Sample level quality control metrics for snRNAseq 

 
Study ID: COVID-19(+) sample ID 

Estimated Number of Nuclei: Number of droplets called as nuclei from CellRanger pipeline 

Mean Reads per Nucleus: Average number of mapped reads per nucleus 

Median Genes per Nucleus: Median number of genes detected in nuclei 

Number of Reads: Total number of reads with multiplexing index matching a given sample 

Total Genes Detected: Total unique gene IDs detected across all nuclei 

Median UMI Counts per Nucleus: Median number of unique transcript molecules detected per nucleus 

Microthrombi: Detection of cardiac microthrombi by immunohistochemistry (CD61 staining of corresponding ventricular tissue) 

Included in Analysis: Use of this sample in downstream analysis pipeline 

Post-QC Number of Nuclei: Number of nuclei retained following filtering for aberrant mitochondrial reads, intron/exon ratio, and 

doublet score  

 

 

Study 
ID 

Estimated 
Number of 

Nuclei 

Mean 
Reads per 
Nucleus 

Median 
Genes per 
Nucleus 

Number of 
Reads 

Total Genes 
Detected 

Median UMI 
Counts per 

Nucleus 
Microthrombi 

Included 
in 

Analysis 

Post QC 
Number 
of Nuclei 

05 9,575 10,223 791 97,892,749 28,791 1,122 Positive TRUE 7208 

39 3,497 56,326 758 196,972,045 26,402 1,285 Positive TRUE 1846 

51 9,886 21,626 1,910 213,804,137 35,115 3,979 Negative TRUE 5787 

19 14,427 34,978 2,072 504,630,120 38,265 3,735 Negative TRUE 9947 

45 9,683 31,419 1,670 304,235,656 35,936 3,092 Negative TRUE 6851 

66 9,150 11,807 1,607 108,041,509 33,527 3,059 Negative TRUE 7840 

61 5,412 15,253 1,158 82,552,819 31,457 1,871 Positive TRUE 4014 

69 3,905 13,434 266 52,460,970 26,291 416 Positive FALSE 0 
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Table ST7 is attached as an excel spreadsheet. 
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Table ST8. Compositional analysis from snRNAseq using scCODA comparing COVID-19 (+) vs COVID-19 (-) reference 

samples 

Cell Type 
log2-FC 

Ref1 
Inclusion 

Probability Ref1 
Credible 

Ref1 
log2-FC 

Ref2 
Inclusion 

Probability Ref2 
Credible 

Ref2 

Cardiomyocyte 2.33904 1 TRUE 2.344553 1 TRUE 

Fibroblast -1.67547 0.962867 TRUE -1.656135 0.963267 TRUE 

Pericyte 0.898065 0.962333 TRUE 0.902993 0.9368 TRUE 

Endothelial -1.461012 0.831733 TRUE -1.465264 0.855 TRUE 

Macrophage -2.257872 0.998267 TRUE -2.26632 1 TRUE 

Lymphocyte -0.381312 0.3492 FALSE -0.38268 0 FALSE 

Smooth Muscle -0.381312 0 FALSE -0.38268 0.4374 FALSE 

Adipocyte -0.381312 0.389667 FALSE -0.38268 0.5376 FALSE 

Endocardial -0.381312 0.438 FALSE -0.38268 0.546 FALSE 

Neuronal -0.381312 0.378867 FALSE -0.38268 0.3857 FALSE 

MAST -0.381312 0.586333 FALSE -0.38268 0.560333 FALSE 

Lymphatic Endothelial -0.381312 0.562867 FALSE -0.38268 0.602733 FALSE 

 

Ref1 = Smooth Muscle  
Ref2 = Lymphocyte  

  

  
Cell Type Identified cell type from marker genes 

log2-FC  
Log2 fold change of cell type in COVID-19(+) samples compared to cell type in COVID-19(-) reference 
controls 

Inclusion Probability Spike-and-slab inclusion probability 

Credible True if inclusion probability is above the Spike-and-slab threshold 
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Table ST9. Compositional analysis from snRNAseq using scCODA comparing COVID-19 (+) samples with vs without 

microthrombi 

Cell Type 
log2-FC 

Ref1 
Inclusion 

Probability Ref1 
Credible 

Ref1 
log2-FC 

Ref2 
Inclusion 

Probability Ref2 
Credible 

Ref2 

Cardiomyocyte -0.600618 0.664333 TRUE -0.65457 0.685267 TRUE 

Fibroblast 0.061448 0.392867 FALSE 0.06737 0.383867 FALSE 

Pericyte 0.061448 0.472667 FALSE 0.06737 0.418067 FALSE 

Endothelial 0.061448 0.440867 FALSE 0.06737 0.438333 FALSE 

Macrophage 0.061448 0.452933 FALSE 0.06737 0 FALSE 

Lymphocyte 0.061448 0.4988 FALSE 0.06737 0.524533 FALSE 

Smooth Muscle 0.061448 0 FALSE 0.06737 0.476 FALSE 

Adipocyte 0.061448 0.446267 FALSE 0.06737 0.494933 FALSE 

Endocardial 0.061448 0.508867 FALSE 0.06737 0.521533 FALSE 

Neuronal 0.061448 0.469 FALSE 0.06737 0.5274 FALSE 

MAST 0.061448 0.533133 FALSE 0.06737 0.4994 FALSE 

Lymphatic Endothelial 0.061448 0.524267 FALSE 0.06737 0.479067 FALSE 

 

Ref1 = Smooth Muscle  
Ref2 = Macrophage  

  

  
Cell Type Identified cell type from marker genes 

log2-FC  Log2 fold change in cell types in microthrombi(+) compared to microthrombi(-) COVID-19(+) samples 

Inclusion Probability Spike-and-slab inclusion probability 

Credible True if inclusion probability is above the Spike-and-slab threshold 
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Tables ST10-ST13 are attached as excel spreadsheets 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



19 
 

Figure S1. Forest plot of the association between outpatient and in-hospital treatments 

and cardiac microthrombi. Logistic regression models were adjusted for possible confounders 

by calculating a covariate balanced propensity score (CBPS) for each model and using it as a 

single covariable. The covariates used to calculate CBPS were: age, sex, race/ethnicity, body 

mass index (BMI), duration of COVID-19 illness, outpatient ACEi/ARB use, outpatient 

antiplatelet therapy, and inpatient administration of corticosteroids, remdesivir, interleukin-6 (IL-

6) receptor antagonists, and therapeutic anticoagulation. For variables that were also listed as a 

covariate, the redundant covariate was excluded from the respective CBPS for that model. 
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Figure S2: Principal components analysis of sample level transcript abundance. 

Transcript abundance data were collapsed by sample in order to generate a “pseudo-bulk” RNA 

sequencing dataset. The first two principal components derived from comparison of these data 

are shown below, where PC1 discriminates the presence of microthrombi, while PC2 separates 

samples based upon COVID-19 infection. 
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Figure S3: Identification and removal of low-quality nuclei in snRNAseq data. Low quality 

nuclei were identified according to mitochondrial gene count, high ratio of exonic to intronic 

mapping reads and doublet score. Droplets flagged in yellow were removed from the data 

matrix with the resulting post QC UMAP displayed on the right. These filtered data were used 

for all downstream analyses. 
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Figure S4: Volcano plots displaying differential expression results for presence of COVID-19 and for presence of 

microthrombi.  
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Figure S5: Genewalk regulators for COVID-19 (+) versus COVID-19 (-) reference samples. 

Regulator genes for each cell type which drive ontology differences when comparing COVID-19 

(+) to COVID-19 (-) reference samples. Color corresponds to the cell types as displayed in 

Figure 3 of the main text. 

 

 

 

 

 

 



 

24 
 

Figure S6: Ontology analysis for select fibroblast regulator genes identified by Genewalk. 
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Figure S7: Ventricular expression of FAP and POSTN in COVID-19(+) samples with vs. 

without microthrombi (PMI<24 hrs). The relative expression of fibroblast activation gene 

markers FAP and POSTN were measured at the ventricular level by multiplex RT-qPCR. 

GAPDH was used for normalizing target gene expression. n = 21 per microthrombi subset.   

p=0.96 for FAP and p=0.14 for POSTN on Welch’s t test.  
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