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Mitochondrial Clustering 3 

All image processing steps were performed in MATLAB using an approach established 4 
previously(1). Several masks were created and combined in order to isolate cytoplasmic 5 
autofluorescence. An SHG mask was primarily created to remove contributions from collagen and 6 
stromal autofluorescence at the interface of the epidermis and dermis. Contrast-limited adaptive 7 
histogram equalization (CLAHE) was applied to SHG images and features were subsequently 8 
segmented using Otsu’s global thresholding. The SHG mask was finalized by applying a median 9 
filter to remove noise and taking the complement of the image to mask features corresponding to 10 
the segmented signal. Features corresponding to highly autofluorescent biomolecules such as 11 
keratin and melanin were masked using similar methods. CLAHE was applied to TPEF images 12 
and an Otsu’s global threshold was calculated. Pixels with intensity values 1.5X greater than the 13 
Otsu’s global threshold were segmented and masked. This empirically determined threshold was 14 
applied to all optical sections and was determined based on the propensity to remove highly 15 
autofluorescent signatures without masking pixels from intermediate cell layers which would not 16 
contain fluorophores such as keratin and melanin. The removal of nuclear and interstitial regions 17 
was achieved by applying 3 serial bandpass filters to contrast-limited adaptive histogram equalized 18 
TPEF images. Remaining features were segmented using Otsu’s global thresholding. A circular 19 
mask with a 500-pixel diameter was created to remove dim image corner artifacts. Masks were 20 
finalized with the removal of objects less than 8-pixels in size. The final mask was applied to raw 21 
TPEF images, which were then subjected to a digital object cloning (DOC) process. The DOC 22 
process randomly fills any void pixels from the masking process with signal that was identified as 23 
cytoplasm. No pixels are overwritten during this process and it is replicated 5 times. The average 24 
power spectral density (PSD) of the 5 DOC images was then computed and fitted with an equation 25 
of the form R(k) = Ak-β for spatial frequencies (k) less than 0.118 µm-1 (features smaller than 8.5 26 
µm). The absolute value of the fitted exponent, β, represents the degree of mitochondrial clustering 27 
within the cytoplasm. Mitochondrial clustering was computed for optical sections ranging from 28 
the stratum corneum to the stratum basale. Depth-dependent metrics of mitochondrial clustering 29 
were computed for each stack of images. β variability represents the sample variance of β values 30 
as a function of depth and aims to capture depth-dependent changes in metabolism. Median β 31 
represents the median β value as a function of depth and aims to capture the overall level of 32 
metabolic activity.  33 

Mitochondrial clustering was calculated in the same manner for single-cell analysis. Due to the 34 
relatively low levels of contrast in the basal layer of the epidermis, single cells had to be manually 35 
segmented. One optical section per patient region of interest was segmented for single cells. 36 
Approximately 5 – 10 single cells were masked per image. A total of 182 cells from lesional  and 37 
258 cells from non-lesional regions were included for analysis. All vitiligo patients included in the 38 
imaging studies were represented in the total cell populations. The heterogeneity level of the 39 
corresponding distributions was quantified using a previously established heterogeneity index(2), 40 
based on fitting a 2-Gaussian mixture model to each distribution. Briefly, the heterogeneity index, 41 



H, can be computed using the equation 𝐻 =	−∑𝑑!𝑝! ln 𝑝!, where i denotes each subpopulation, 42 
d denotes the absolute value of the difference between the median of a subpopulation and the 43 
median of the total population, and p denotes the Gaussian mixing proportion of the subpopulation. 44 
2-Gaussian mixture models were derived using SAS JMP Pro 14 statistical software. 45 

Processing and quality control of scRNA-seq data  46 

Sequencing libraries were prepared using the Chromium Single Cell 3/ v2 protocol (10x 47 
genomics). Sequencing was performed on Illumina HiSeq4000 platform (Illumina). FASTQ files 48 
were aligned utilizing 10x Genomics Cell Ranger 2.1.0. Each library was aligned to an indexed 49 
hg38 genome using Cell Ranger Count. Cell Ranger Aggr function was used to normalize the 50 
number of mapped reads per cells across the libraries. Patient B sample and nonlesional skin of 51 
Patient G sample did not have enough viable cells and was excluded from further analysis (table 52 
S1). Quality control parameters were used to filter cells with 200-4000 genes with a mitochondrial 53 
percentage under 18% for subsequent analysis.  54 

Integation and clustering analyses of scRNA-seq data 55 

Integration and clustering of cells was performed using the scMC R package, which is a R toolkit 56 
for integrating and comparing multiple scRNA-seq experiments across different conditions. And 57 
scMC learns a corrected matrix, which is a shared reduced dimensional embedding of cells that 58 
preserves the biological variation while removing the technical variation(3). The data of each 59 
lesional and nonlesional skin of each patient were treated as one condition. Therefore, the input of 60 
the scMC is a list with 11 elements, with each element being one condition.  The parameters used 61 
for this data are shown as follows: resolution =1;  quantile.cutoff = 0.5; similarity.cutoff = 0.65. 62 
To identify cell clusters, principle component analysis (PCA) was first performed on the corrected 63 
matrix of scMC and the top 40 PCs with a resolution = 1 were used to obtaining 14 clusters for all 64 
the samples. 65 

Calculation of signature score of a gene set 66 

For gene scoring analysis, most gene sets were acquired from the MSigDB database 67 
(https://www.gsea-msigdb.org/gsea/msigdb/). Gene sets of metabolic pathways were from 68 
published literature (4). Specific genes in each gene set and their sources are listed in Table S3. 69 
The AddModuleScore function in Seurat R package was then used to calculate the signature score 70 
of each gene set in each cell. The two-sided Wilcoxon rank sum test was used to evaluate whether 71 
there are significant differences in the computed signature scores between two groups of cells. 72 

Cell-cell communication analyses 73 
Recently we developed a new computational tool CellChat to systematically infer and analyze 74 
intracellular communication from scRNA-seq data. CellChat infers the biologically significant 75 
cell-cell communication by assigning each interaction with a probability value (i.e., interaction 76 
score or weight) and peforming a permutation test. CellChat models the probability of cell-cell 77 
communication by integrating gene expression with prior known knowledge of the interactions 78 
between signaling ligands, receptors and their cofactors including soluble agonists and antagonists, 79 
as well as co-stimulatory and co-inhibitory membrane-bound receptors. The intercellular 80 



communication networks for the nonlesional and lesional skin were separately inferred and then 81 
jointly analyzed using CellChat (version 1.1.0). The average expression of signaling genes per cell 82 
cluster was computed using the truncated mean, where 10% of expression levels were trimmed 83 
from each end of data. Since CellChat infers intracellular communications based on cell clusters, 84 
the interactions associated with cell clusters with very few cells were potentially artifacts. We thus 85 
filtered out the inferred interactions associated with stressed keratinocyte population in nonlesional 86 
skin because of the extremely low percent of stressed keratinocytes compared to other 87 
keratinocytes in nonlesional skin (fig. 3d). Genes and relevant pathways used by CellChat are 88 
listed in Table S4. 89 
 90 

Pseudotime and trajectory analysis 91 

The PHATE dimensional reduction of keratinocytes from all samples was performed by taking the 92 
shared low dimensional space obtained by scMC as an input. The parameters used in PHATE on 93 
the data are as follows: npca = 30, t = 3. When inferring pseudotemporal trajectory of 94 
keratinocytes, the PHATE space was used the reduced dimensional space in Monocle 3(5). A 95 
principal graph is learnt by learn_graph function with the parameters: minimal_branch_len = 5, 96 
rann.k = 18 and Euclidean_distance_ratio = 2. Pseudotime values of cells were obtained once 97 
cells were ordered based on the learnt graph. In addition, we also inferred the possible transitions 98 
between different cell subpopulations using PAGA by using the PHATE space as a reduced 99 
dimensional space. 100 

RNA velocity analysis 101 
RNA velocity was calculated based on the spliced and unspliced counts as previously reported (6), 102 
and cells that were present in the pseudotemporal trajectory analysis were used for the analysis. We 103 
used the python implementation “scvelo” with PHATE space as an input. 104 
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 125 

Fig. S1. Mitochondrial Clustering Distributions for Basal Keratinocytes. Mitochondrial 126 
clustering values were calculated for individually segmented cells from basal optical sections of 127 
vitiligo patients. The distributions were acquired by analyzing 182 cells from lesional regions 128 
and 258 cells from non-lesional regions. Counts were normalized to the corresponding cell totals.  129 
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 149 
Fig S2. Quality control metrics of the scRNA-seq data. A) Violin plots of number of 150 
expressed genes (nFeature_RNA), number of detected counts (nCount_RNA) and percentage of 151 
mitochondrial genes (percent.mt) across all patients.   B) Overlay the quality control metrics to 152 
the UMAP plot of integrative space.  153 
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 170 

Fig S3. The difference between DC and TC. A) Heatmap of top 10 differentially expressed 171 
genes between DC and TC.  B) Barplot of enrichment scores (-log10(p-value)) of enriched 172 
human cell types inferred by Enrichr (https://maayanlab.cloud/Enrichr/). 173 
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 193 
Fig S4. Analysis results of scRNA-seq data of normal skin from previously published data 194 
sets (7). A) UMAP plot of healthy skin data generated from mammoplasty skin discards with cell 195 
clusters labeled.  B) Feature plots showing expression of the stressed keratinocytes markers in 196 
the UMAP plot.  197 
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 215 
Fig S5. Analysis results of scRNA-seq data of all patients by Seurat. A) UMAP plot of the 216 
combined data of all patients with cell clusters labeled in both lesional (left) and nonlesional skin 217 
(right).  B) Feature plots showing expression of the stressed keratinocytes markers in the UMAP 218 
plot.  219 
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 224 
Fig S6. Pseudotime analysis results of scRNA-seq data of all patients. A) Marker genes’ 225 
expression levels change across PAPG graph.  B) PAPG graph of the PHATE space. C) RNA 226 
velocity across PHATE space.  227 
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 235 
Fig S7. Analysis Results of Published Acute Vitiligo Data Set. A) TSNE plot of recently 236 
published healthy and patient-matched acute vitiligo nonlesional and lesional skin according to 237 
disease phenotype (left) and previously identified cell clusters (right)  B) Feature plots showing 238 
expression of the stressed keratinocytes markers in the TSNE plot. C) Violin plot of stress 239 
markers in the acute vitiligo data set.  240 
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Fig S8. Integrated Analysis of Cells from Both Acute and Stable Vitiligo. A) UMAP plot of 243 
the cells from all cells in healthy, lesional (acute), nonlesional (acute), nonlesional (stable) and 244 
lesional (stable). Cells are colored by identity (top) and original annotated cell types 245 
(bottom). B) Feature plots showing expression of KRT6A, KRT16, CXCL10 and PMEL in the 246 
UMAP space of all cells. C) Heatmap of similarity scores between published cell types 247 
and our cell types. The similarity scores are computed by Spearman correlation coefficients 248 
between ratios of the number of each cell type in each identity. D) Heatmap of scaled expression 249 
levels of selected markers between healthy, lesional (acute), nonlesional (acute), nonlesional 250 
(stable) and lesional (stable) of cellular cluster identities 6 (Krt-ECR in acute vitiligo), 12 251 
(stress1 in stable vitiligo) and 15 (stress 2 in stable vitiligo). 252 
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 273 
Fig S9. Metabolic signature scores from integrated analysis of cells from both active and 274 
stable vitiligo data sets. Violin plots of signature scores of OxPhos and Glycolysis across 275 
healthy, lesional and nonlesional keratinocytes from active vitiligo and nonlesional, lesional and 276 
stress keratinocytes from stable vitiligo.  277 
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Table S1. Clinical Characteristics of Stable Vitiligo Patients for MPM Imaging and 302 
RNAscope 303 

Patient 
ID 

Age Sex Imaging 
Location 

Disease Status Previous Treatments Punch Grafting 
Treatment 

Status 
1 61 M Bicep Stable vitiligo 

Generalized 
Oral steroids, 

NBUVB, topical 
steroids 

Responsive 

2 34 M Hand Stable vitiligo 
Acrofacial 

Topical steroids and 
tacrolimus, topical & 

oral Janus kinase 
inhibitor, NBUVB, 

PUVA, excimer  

N/A 

3 73 F Neck/Back Stable vitiligo 
Generalized 

NBUVB, excimer, 
topical steroid, topical 

tacrolimus  
Nonresponsive 

4 45 F Hand Stable vitiligo 
Acrofacial 

NBUVB, topical 
tacrolimus, topical 

steroid 
Responsive 

5 74 M Hand Stable vitiligo 
Acrofacial 

Oral steroids, PUVA, 
NBUVB, Excimer, 

topical steroid, topical 
tacrolimus  

N/A 

6 58 M Leg Stable vitiligo 
Generalized 

Oral steroids, 
NBUVB, Excimer, 

topical steroid, topical 
tacrolimus 

Responsive 

7 36 M Leg Stable vitiligo 
Generalized 

NBUVB, topical 
tacrolimus Nonresponsive 

8 50 F Face Stable vitiligo 
Acrofacial 

Oral steroids,  
Excimer, NBUVB, 
topical steroid and 
topical tacrolimus 

N/A 

9 72 F Hand Stable vitiligo 
Acrofacial 

Oral steroids, 
Excimer, PUVA, 

NBUVB, Top 
tacrolimus, oral dexa, 

top steroid,  
Excimer,PUVA, 
NBUVB, punch 

grafting, topical Janus 
kinase inhibitor 

N/A 

10* 39 F Leg Stable vitiligo 
Generalized 

 N/A 

11* 20 F Ankle Stable vitiligo 
Acrofacial 

 N/A 

12* 36 M Lower 
extremity 

Stable vitiligo 
Generalized 

NBUVB, topical 
steroid & tacrolimus Nonresponsive 

NBUVB, narrow band ultraviolet B; PUVA, psoralen + ultraviolet A; N/A, not available 304 
*Denotes patients who underwent punch grafting procedure and samples were used for RNAscope 305 



 306 
Table S2. Clinical Characteristics of Stable Vitiligo Patients for scRNA-seq. The number of 307 
cells after quality control are shown.  308 

Patient 
ID 

Age Sex Areas of 
Involvement 

Disease 
Status 

Nonlesional 
cell count 

Nonlesional 
Skin 

Suction 
Blister Site 

Lesional 
cell 

count 

Lesional 
Skin 

Suction 
Blister 

Site 
 

A 
 

69 F Face, hands Acrofacial 604 Upper thigh 1109 Dorsal 
hands 

 
B 
 

56 F Face, neck, 
back, leg Generalized * Upper thigh * 

Lower 
extremity/ 

trunk 
 

C 
 

38 M Feet and legs Generalized 1235 Upper thigh 798 Lower 
extremity 

 
D 
 

30 F Back Focal 2729 Upper thigh 2568 Trunk 

 
E 
 

28 M Face, hands Acrofacial 2613 Upper thigh 3886 Dorsal 
hand 

 
F 
 

37 F Legs Generalized 747 Upper thigh 340 Lower 
extremity 

 
G 
 

67 F Trunk Focal * Upper thigh 553 Trunk 

 309 
*Insufficient viable cells and not included in analysis  310 
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