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Fig. S1. Changes in circulating metabolites involved in glycine deficiency in response to sepsis. (A-E) Schematic
representation of plasma metabolites contributing to glycine depletion during chronic sepsis. Red denotes a metabolite increased
in response to sepsis; green indicates a metabolite decreased in response to sepsis; black indicates a metabolite unchanged in

response to sepsis; grey indicates a metabolite not measured in our metabolomic screening.
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Fig. S2. Enzymes that lead to glycine deficiency during sepsis. Enzymes involved in glycine synthesis are shown in rectangle
in the glycine and serine metabolic pathway. Green indicates a metabolite decreased in response to sepsis; black indicates a
metabolite unchanged in response to sepsis; grey indicates a metabolite not measured in our metabolomic screening.
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Fig. S3. Food intake after DCA administration. Mice were individually housed and food intake was measured every 3 h
for 2 days after intraperitoneal administration of vehicle (Veh) or dichloroacetate (DCA). n = 5 mice per group.
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Fig. S4. Hepatic gene expression involved in glycine metabolism in response to CLP, DCA and food restriction.
(A-H) Relative gene expression involved in glycine metabolism assessed by qRT-PCR from livers of sham, CLP,
CLP+DCA, and CLP+DCA+Food restriction (FR) 30 h post-surgery (n = 4 sham; 8-10 CLP; 8-10 CLP+DCA; 10
CLP+DCA+FR). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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Fig. S5. Alterations in circulating glycine levels in response to CLP, DCA and food restriction. Glycine levels were
measured by glycine assay kits from plasma of sham, CLP, CLP+DCA, and CLP+DCA+Food restriction (FR) 30 h post-
surgery (n = 8 sham; 13 CLP; 9 CLP+DCA; 7 CLP+DCA+FR). Values outside of lower outlier gate and upper outlier gate were
removed from analysis (See Statistics for detail). **p < 0.01, ***p < 0.001.



