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SUPPLEMENTAL MATERIALS AND METHODS 

Study design  

This prospective cross-sectional study included women that underwent cesarean section at 

term (≥ 37 weeks of gestation) and were divided into the following groups: term not in labor (N = 

13) and term in spontaneous labor (N = 11). The demographic and clinical characteristics of the 

study groups are shown in Supplemental Table 1. Myometrial biopsies were collected from eligible 

women at term enrolled in our research protocols at the Detroit Medical Center, Wayne State 

University School of Medicine, and the Perinatology Research Branch, an intramural program of 

the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National 

Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), 

Detroit, MI, USA.  

 

Laboratory Procedures  

Sample Collection 

Immediately after the delivery of the placenta, myometrial biopsies were obtained from the 

lower uterine segment at the time of cesarean section. Biopsies were obtained from the midpoint 

of the superior edge of the uterine incision and transported to the laboratory in Dulbecco’s 

Modified Eagle Medium (DMEM; Life Technologies Corporation, Grand Island, NY, USA) for 

single-cell dissociation and formalin fixation/paraffin embedding for further histological 

characterization. Additionally, a fraction of the myometrial biopsy and samples from the umbilical 

cord tissues were obtained, snap-frozen in liquid nitrogen, and kept at -80°C for maternal and fetal 

genotyping, respectively. Placentas were also collected and processed for histological evaluation. 
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Histological characterization of the myometrial tissues 

Hematoxylin & eosin staining 

Formalin-fixed paraffin-embedded uterine tissues were cut in 5-μm-thick sections. Slides 

were deparaffinized in xylene and rehydrated with a series of decreasing ethanol concentrations. 

Tissue sections were stained with Richard-Allan Scientific Modified Harris Hematoxylin and 

Eosin Y (both from Thermo Fisher Scientific, Waltham, MA, USA). Brightfield images were taken 

using the Vectra Polaris Multispectral Imaging System (Akoya Biosciences, Inc., Marlborough, 

MA, USA). 

 

Smooth muscle actin (SMA) immunohistochemistry 

Formalin-fixed paraffin-embedded uterine tissues were cut in 5-μm-thick sections. Slides 

were deparaffinized in xylene and rehydrated with a series of decreasing ethanol concentrations. 

Immunohistochemistry staining for smooth muscle actin (SMA, Monoclonal Mouse Anti-Human 

SMA Clone 1A4; Cat. No. M0851, Dako, Glostrup, Denmark) was performed using the Leica 

Bond Max automatic staining system (Leica Microsystems, Wetzlar, Germany). The Bond™ 

Polymer Refine Detection Kit (Leica Microsystems) was used to detect the chromogenic reaction 

of horseradish peroxidase upon oxidation of 3’3-Diaminobenzidine (DAB) substrate. The mouse 

negative control antibody (FLEX Universal Negative Control, Agilent, Santa Clara, CA, USA) 

was used as negative control. Brightfield images were taken using the Vectra Polaris Multispectral 

Imaging System. 

 

Masson’s trichrome staining 



3 
 

After deparaffinization and rehydration as described above, 5-μm-thick myometrial tissue 

sections were stained using the Masson’s 2000 Trichrome Stain Kit (Cat. No. KTMTR2; American 

MasterTech, Lodi, CA), according to the manufacturer’s protocol. Following staining, the sections 

were dehydrated with increasing concentrations of ethanol and then a coverslip was placed. 

Brightfield images were taken using the Vectra Polaris Multispectral Imaging System. 

 

Multiplex immunofluorescence 

Five-µm-thick sections of formalin-fixed, paraffin embedded myometrial tissues were cut 

and mounted on microscope slides. Using OPAL Multiplex 7-color IHC kit (Cat. no. 

NEL811001KT; Akoya Biosciences), myometrial tissue slides were stained according to 

manufacturer’s instructions. Prior to multiplex immunofluorescence staining, each analyte was 

individually optimized by single-plex antibody staining combined with different fluorescent TSA 

reagents (Akoya Biosciences). Briefly, after slides were deparaffinized and rehydrated, antigen 

retrieval (AR) was performed using AR buffer and boiling using a microwave oven. The slides 

were then incubated in blocking buffer to eliminate non-specific binding prior to incubation with 

selected primary antibody at room temperature. Next, the slides were rinsed in TBST prior to 

incubation with anti-mouse and anti-rabbit secondary antibody-HRP conjugate followed by 

selected fluorescent TSA reagents. Antigen detection steps were performed sequentially using 

antibodies in the following order: SMA; OXTR (Oxytocin receptor; Polyclonal Rabbit Anti-

Human OXTR; Cat. No. LS-A244-50; LifeSpan BioSciences, Seattle, WA, USA); interferon 

gamma (IFNγ; Polyclonal Rabbit Anti-Human IFNγ; Cat. No. 15365-1-AP, Thermo Fisher 

Scientific); Neutrophil Elastase (Polyclonal Rabbit Anti-Human Neutrophil Elastase; Cat. No. 

ab68672; Abcam, Waltham, MA, USA). At the end of the sequential staining of antigens, slides 
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were incubated with DAPI (4′,6-diamidino-2-phenylindole) as nuclear counterstain and mounted 

using AquaSlip™ Aqueous Permanent Mounting Medium (American MasterTech). Depending on 

the host species of the primary antibody, mouse or rabbit isotype (FLEX Universal Negative 

Control, both from Agilent) was used as negative control. Multiplex staining was performed by 

consecutively staining slide-mounted tissues using the same antibody concentrations and 

conditions validated through single-plex staining.  Immunofluorescence images were taken using 

the Vectra Polaris Multispectral Imaging System. 

 

Placental histopathological examination 

Placentas were obtained at the time of cesarean section and examined histologically by 

perinatal pathologists blinded to clinical diagnoses and obstetrical outcomes, according to standardized 

Perinatology Research Branch protocols (1). Briefly, three to nine sections of the placenta were 

examined, and at least one full-thickness section was taken from the center of the placenta; others were 

taken randomly from the placental disc. Acute inflammatory lesions of the placenta were diagnosed 

according to established criteria (2-4), as shown in Supplemental Table 1. 

 

Myometrial tissue dissociation 

 Immediately following myometrial biopsy collection, tissues were mechanically and 

enzymatically homogenized to prepare single-cell suspensions, modified from previously 

described protocols (5-7). Briefly, myometrial tissues were minced into small pieces until a fine 

consistency is achieved. Then, the tissues were enzymatically digested using the Umbilical Cord 

Dissociation Kit (Miltenyi Biotec, San Diego, CA, USA) and incubating at 37°C. The tissues were 

further dissociated using the gentleMACS Dissociator (Miltenyi Biotec), and the resulting cell 

suspensions were washed with 1X phosphate-buffered saline (PBS, Thermo Fisher 
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Scientific/Gibco, Grand Island, NY, USA) and filtered through 100 µm cell strainers (Miltenyi 

Biotec). Cells were pelleted after centrifugation at 300 x g for 10 min. at room temperature. 

Erythrocytes were removed using ACK lysing buffer (Life Technologies, Grand Island, NY, 

USA). Finally, cells were resuspended with 0.04% Bovine Serum Albumin (BSA) (Sigma Aldrich) 

in 1X PBS and filtered through 30 µm cell strainers (Miltenyi Biotec). Cell concentrations and 

viability were determined using an automatic cell counter (Cellometer Auto 2000, Nexcelom 

Bioscience, Lawrence, MA, USA). The Dead Cell Removal Kit (Miltenyi Biotec) was used to 

remove dead cells to reach a viability of ≥80%. 

 

Cytospin preparations from myometrial cell suspensions 

Myometrial tissue biopsies were dissociated as described above. Using a Shandon Cytospin 

3 cytocentrifuge (Thermo Fisher Scientific), the resulting single-cell suspensions (5x104 cells in 

200 μL) were cytospun at 800 rpm for 5 min at room temperature onto Fisherbrand Superfrost Plus 

microscope slide (Thermo Fisher Scientific, Rochester, NY, USA). The slides were fixed with 4% 

paraformaldehyde (Electron Microscopy Sciences, Hatfield, PA, USA) for 15 minutes and rinsed 

with 1X PBS prior to H&E and manual SMA immunohistochemistry staining. 

 

Single-cell GEM generation and library construction  

Single-cell RNA sequencing library preparation was performed on viable cells using the 

10x Genomics Chromium Single Cell 3’ Gene Expression Version 3.1 Kit (10x Genomics, 

Pleasanton, CA, USA), according to the manufacturer’s protocol. Briefly, the Chromium 

Controller was used to generate Gel Bead-in-Emulsions (GEMs) from viable single cell 

suspensions, whereby a single cell and a single Gel Bead with barcoded oligonucleotides are 
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encapsulated. Representative images of GEMs were obtained at 200X magnification using an 

Olympus BX60F microscope (Olympus, Tokyo, Japan) with an Olympus DP71 camera and 

cellSens Entry version 1.14 software (Olympus). Reverse transcription of mRNA into 

complementary (c)DNA was performed using the Veriti 96-well Thermal Cycler (Thermo Fisher 

Scientific, Wilmington, DE, USA), and the resulting cDNA was purified using Dynabeads MyOne 

SILANE (10x Genomics) and the SPRIselect Reagent (Beckman Coulter, Indianapolis, IN, USA). 

Enzymatic fragmentation, end-repair, and A-tailing were performed to optimize cDNA amplicon 

size. Next, adaptors and sample index were incorporated by ligation. The sample index PCR 

product was then amplified using the Veriti 96-well Thermal Cycler. After performing a post-

sample index double-sided size selection using the SPRIselect Reagent kit, the Agilent Bioanalyzer 

High Sensitivity DNA Chip (Agilent Technologies, Wilmington, DE, USA) was used to analyze 

and quantify the final library construct as part of quality control. 

 

RNA sequencing 

The Kapa DNA Quantification Kit for Illumina platforms (Kapa Biosystems, Wilmington, 

MA, USA) was used to quantify the post-library constructs prior to sequencing, following the 

manufacturer’s instructions. The sequencing of 10x scRNA-seq libraries was performed on the 

Illumina NextSeq 500 at the Genomics Services Center (GSC) of the Center for Molecular 

Medicine and Genetics (Wayne State University School of Medicine, Detroit, MI, USA). The 

Illumina 75 Cycle Sequencing Kit (Illumina, San Diego, CA, USA) was used with 58 cycles for 

R2, 26 for R1, and 8 for I1. 

 

DNA isolation for genotyping 
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Genomic (g)DNA was extracted from uterine and umbilical cord tissues using the DNeasy 

Blood and Tissue Kit (Qiagen, Hilden, Germany), following the manufacturer’s instructions 

modified with the addition of 4 μl RNase A (100 mg/mL) (Qiagen) and incubation at 56°C. 

Purified gDNA samples were quantified using the QubitTM dsDNA HS Assay Kit (Invitrogen, 

Carlsbad, CA, USA). For genotyping Infinium Global Diversity Array-8 v1.0 Kit microarrays were 

processed by the Advanced Genomics Core of University of Michigan (Ann Arbor, MI, USA). 

 

Data analysis 

1. Genotyping analysis 

Genotype information was converted to vcf format using “iaap-cli gencall” and 

“gtc_to_vcf.py” from Illumina. Imputation to 37.5 M variants using the 1000 Genomes haplotype 

references was performed using the University of Michigan Imputation Server 

(https://imputationserver.sph.umich.edu/). The maternal/fetal relationship of the genotyped 

samples was verified using plink2 KING-robust kinship analysis (8). The vcf files were then 

filtered for high quality imputation and coverage for at least ten scRNA-seq transcripts using 

bcftools before they were used for demultiplexing. 

 

2. scRNA-seq data normalization and pre-processing   

Sequencing data were processed using Cell Ranger version 4.0.0 (10x Genomics). The 

fastq files were then aligned using kallisto (9), and bustools (10) was used to summarize the 

cell/gene transcript counts in a matrix for each sample. In parallel, “cellranger counts” was also 

used to align the scRNA-seq reads by using the STAR aligner (11) to produce the bam files 

necessary for demultiplexing the individual of origin based on genotype information using 
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souporcell (12) and demuxlet (13). The following quality metrics were calculated for each library: 

the average number of unique molecular identifiers (UMIs), the average number of detected genes, 

cell count, the average number of reads per cell, the fraction of reads in cells, the percentage of 

reads mapping to the mitochondrial genome, and valid barcodes across the prepared libraries 

(Supplemental Table 9). All libraries had excellent quality based on 10X Genomics 

recommendations. After demultiplexing, we removed any droplet/Gel Bead-in-Emulsion (GEM) 

barcode that was assigned to doublet or ambiguous cells in demuxlet or souporcell, and only those 

cells that could be assigned to a pregnancy case were kept. Additionally, we further filtered any 

cell with less than 100 genes or more than 10,000 genes detected or that had > 25% mitochondrial 

reads. All count data matrices were then normalized and combined using the Seurat package in R 

(Seurat version 4.0.1, R version 4.0.3) (14, 15). The total number of cells per donor is provided in 

Supplemental Table 9. The first 100 principal components were obtained, and the different 

libraries were integrated and harmonized using the Harmony package in R version 1.0 (16). The 

top 30 harmony components were then processed to embed and visualize the cells in a two-

dimensional map via the Uniform Manifold Approximation and Projection for Dimension 

Reduction (UMAP) algorithm (17, 18). A resolution of 0.8 was used to cluster the single cells.  

 

3. Cell type annotation  

SingleR (19) package in R version 1.4.1 was used to identify cell types based on their 

similarities to reference datasets (7, 20, 21) with known labels. SingleR annotates single cells from 

query data by computing the Spearman coefficient between the single-cell gene expression data 

and samples from the reference dataset. The correlation is measured only based on the variable 

genes in the reference dataset. The multiple correlation coefficients per cell type are combined 
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according to the cell type labels of the reference dataset to assign a score per cell type in the single-

cell data. In addition to these previously labeled datasets, a publicly available dataset of 2,700 

Peripheral Blood Mononuclear Cells (PBMCs) generated by 10x Genomics (22) was used to 

annotate the immune single cells. An anchor-based supervised mapping workflow was used to 

integrate reference and query single-cell samples and annotate query cells based on the shared 

biological states using the FindTransferAnchors and MapQuery functions from Seurat version 

4.0.1. More specifically, the query data were first normalized and scaled using the SCTransform 

function. Then, the anchors between the query and reference data were found by a supervised 

principal component analysis (sPCA) (23). sPCA identifies the set of principal components that 

maximizes the dependency between the reference and query data, where the structure of the 

multimodal dataset is best captured based on the Hilbert-Schmidt Independence Criterion measure. 

Next, the labels were transferred by a binary classification model built on the reference cell type 

labels. Finally, the neighbor sets representing the nearest neighbors from the reference to each 

query cell were identified. The UMAP projection was performed using the neighbor sets and the 

query data was projected onto the coordinates of the provided reference UMAP. Using different 

annotations obtained from the supervised reference-mapping workflows (SingleR and Seurat) on 

four datasets (7, 20-22), the final cell type labels were assigned based on majority vote. We further 

confirmed their identity and profile by identifying the top differentially expressed genes (DEGs) 

and performing functional enrichment analysis (see below). If multiple clusters were assigned to 

the same consensus cell type, we added a sub-index to that cell type for each different original 

Seurat cluster: Clusters 0 and 9 were annotated as Stromal-1 and Stromal-2; clusters 12, 17, and 

20 were annotated as SMC-1, SMC-2 and SMC-3; clusters 1, 2, 14, and  21 were annotated as 

Macrophage-1 to Macrophage-4, respectively; and clusters 3 and 15 were annotated as 
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Endothelial-1 and Endothelial-2. All remaining clusters were assigned a unique cell type identifier 

(Supplemental Table 2).  

 

4. Differential gene expression for cell type analysis 

For this analysis, the differential expression of selected marker genes for each cell 

type/cluster were identified using the Wilcoxon Rank Sum test and the FindAllMarkers function 

from Seurat. For this analysis, we first compared each cluster to all cell types (Supplemental Table 

10). Additionally, we further analyzed clusters of closely related cell types in three major 

subgroups: i) smooth muscle cells (Supplemental Table 3), ii) stromal cells (Supplemental Table 

4), and iii) macrophages (Supplemental Table 5). For this analysis, we compared each sub-cluster 

to the others in each sub-group to focus on the smaller differences between each sub-type. We 

further used the top 100 cell markers [ranked based on log2(Fold change) and requiring q < 0.1] 

assigned to each sub-cluster to analyze the enrichment of pathways in sub-clusters by performing 

an over-representation analysis based on the Gene Ontology (GO) database (Supplemental Figure 

1-3).  

 

5. Differential gene expression in parturition 

The identification of labor-associated DEGs between study groups was performed using 

the DESeq2 R package version 1.32.0 (24). A term for each library was added to the DESeq2 

model to correct for technical batch effects (library identifier). For each combination, we only used 

samples with more than 20 cells; otherwise, it was treated as a non-observed combination. Cell 

types found in less than 3 samples per study group in each combination were dropped 

(Supplemental Table 6 shows all of the DEGs).  
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6. Gene ontology and pathway enrichment analysis of genes affected by parturition  

The clusterProfiler in R version 4.0.4 (25) was used to perform Gene Set Enrichment 

Analysis (GSEA) and Over-Representation Analysis (ORA) based on the Gene Ontology (GO), 

Kyoto Encyclopedia of Gene and Genomes (KEGG), WikiPathways (26), and Reactome 

databases. The functions “enrichPathway”, “enrichKEGG”, and “gseGO” from “clusterProfiler” 

were used to perform the ORA and GSEA analyses separately for each list of genes obtained as 

differentially expressed for each cell type. In ORA analyses, the universe of genes for each cell 

type was the subset that was expressed at a level sufficient to be tested in differential gene 

expression analysis. When results are combined across cell types, any genes tested (with a 

calculated p-value) in any of the cell types are used for the universe. Only ORA results that were 

significant after correction were reported with q < 0.05 being considered statistically significant. 

STRING analysis was performed using the STRINGdb version 2.4.1 and ggplot2 version 3.3.5 R 

packages together with the STRING database (https://string-db.org) (27).  

 

7. Multivariate Adaptive Shrinkage (MASH) analysis of parturition associated genes. 

A meta-analysis of the measured changes between the two study groups across cell types 

was performed using the mashr R package version 0.2.50 (28). This approach, referred to as 

MASH analysis, tests and estimates multiple effects (e.g., genes) in many conditions (e.g., cell 

types) by allowing sparse effects and correlation among non-zero effects in different conditions. 

This method performs a condition-by-condition analysis to estimate the effect of each gene and its 

corresponding error in each cell type. Using the estimates from condition-by-condition results, the 

empirical Bayes procedure learns the sparsity pattern as well as correlation among effects and 

aggregates the learned patterns to improve the effect estimates and the corresponding measures of 

https://string-db.org/
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significance across the different cell types. The metaplot function from the rmeta R package 

version 3.0 was used to visualize the result of meta-analysis based on selected labor-associated 

DEGs. 

 

8. Cell-cell communication analysis  

CellChat (29) was used to infer the cell-cell communications using the single-cell gene 

expression data and a database of prior knowledge of the interactions between signaling ligands, 

receptors, and their cofactors. CellChat database integrates the signaling molecule interaction 

information from KEGG and experimental studies. The curated interactions are categorized into 

299 signaling pathways.  Herein, the CellChat database was customized by adding the ligand-

receptor interaction information for myometrial contraction, which was not included in the original 

database. CellChat predicts significant communication between cell groups (clusters) by 

identifying significantly over-expressed ligands and receptors between the cell groups. It 

calculates the communication probabilities using a mass action-based model based on the average 

expression values of a ligand and its cognate receptors from two cell groups. The signaling 

communication probabilities are modeled based on the proportions of cells in each cell group 

across all cells, as abundant cell groups are more likely to send stronger signals in comparison to 

rare groups. In the estimated cell-cell communication network with weights as probabilities, the 

major signaling roles are identified based on centrality metrics from graph theory. CellChat 

predicts the key sending and receiving signals between specific cell groups. The top 10% of 

significant cell-cell communications (p < 0.05) were selected across different pathways and 

visualized using the CellChat R package version 1.1.2, ggalluvial R package version 0.12.3, and 

ggplot2 R package version 3.3.5. The major sending and receiving signaling roles based on 
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context-specific pathways across different cell groups were identified using a cut-off of 0.7 when 

visualizing the connection.  

 

9. Comparison to myometrial bulk transcriptomic studies at term pregnancy 

Myometrial microarray bulk data comparing women in labor (N = 19) and not in labor (N 

= 20) were obtained from a previous study (30), and the log2(Fold change) from this previous 

study were compared to those obtained in the current study across different cell types. The 

comparison was visualized with scatter plots using the ggplot2 R package version 3.3.3 and 

Spearman correlation analysis. Additionally, the ranked lists of DEGs from a previous myometrial 

study and DEGs detected in myometrial tissues from the current study were used to identify 

enriched cell types in the given list based on GSEA performed using clusterProfiler in R version 

3.18.1.  

 

10. Deconvolution analysis  

Cibersortx (31), a deconvolution analysis method, was used to de-convolute previously 

collected bulk myometrium transcriptome data (30). Cibersortx employs a linear support vector 

regression to impute sample-level gene expressions of different cell types from the bulk dataset 

using the single-cell signature matrix derived from the current study. The single-cell matrix 

includes the average cell counts across 16 main cell types: Monocyte, stromal (Stromal-1 and 

Stromal-2), endothelial (Endothelial-1 and Endothelial-2), NK cell, DC, macrophage 

(Macrophage-1, Macrophage-2, and Macrophage-3), smooth muscle cell (SMC-1, SMC-2, and 

SMC-3), LED, Decidual, T cell (CD4+ and CD8+), ILC, Myofibroblast, B cell, Unciliated 

epithelial, Plasmablast, and EVT.  
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The comparison of log2(Fold change) values between women at term in labor and not in 

labor was calculated based on the negative binomial model implemented in the DESeq2 R package 

version 1.30.1 (24). The P-values were adjusted using false discovery rate (32). The DEGs were 

selected based on an adjusted P-value (q) < 0.1. The combined list of DEGs across cell types from 

the bulk data after deconvolution, and the DEGs from single-cell analysis on the “smooth muscle 

cell-1” cluster were used to perform ORA using the clusterProfiler in R version 4.0.4 (25).  

 

11. Comparison to maternal peripheral blood bulk transcriptomic longitudinal data  

Longitudinal transcriptomic data from maternal peripheral blood collected throughout 

gestation (N = 49) were taken from a previous study (33) and used to analyze the gestational age-

related changes in average expression of cell type-specific gene signatures (cell type markers) at 

the time of the blood draw (only non-labor samples were available for the longitudinal analysis). 

The cell type-specific gene signatures were defined using the top 20 DEGs for each cell type 

(Supplemental Table 8). The expression of cell type-specific gene signatures was averaged based 

on the gestational age at sampling. The change trend was identified using a linear mixed-effect 

model fitted based on the quadratic splines. The significant trends were analyzed using linear 

mixed-effects models for the cell types defined from myometrial scRNA-seq data. 

 

12. Comparison to maternal peripheral blood bulk transcriptomic studies at term pregnancy 

Maternal peripheral blood bulk transcriptomic data from women at term in labor (N = 21) 

and not in labor (N = 28) were obtained from a previous study (34). The ranked list of DEGs in 

maternal whole blood and DEGs detected in the myometrial tissues from the current study were 

used to identify enriched cell types in the given list based on GSEA performed using clusterProfiler 
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in R version 3.18.1. Overlapping DEGs between the single-cell and bulk transcriptomic datasets 

are shown in Supplemental Table 11. 

 

13. Statistical analysis of the demographic data 

 Statistical analyses were performed in SPSS v19.0 (IBM, Armonk, NY, USA) or the R 

package (as described above). Human demographic data were compared using two-tailed Fisher’s 

exact tests for proportions and Mann-Whitney U-tests for non-normally distributed continuous 

variables. 
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Supplemental Figure 1. Pathway analysis of differentially expressed genes among different Smooth Muscle Cell (SMC) types. ClusterProfiler dot plots
showing Gene Ontology (GO) terms enriched for (A) SMC-1, (B) SMC-2, and (C) SMC-3 cell types found in the myometrial tissues (n = 24) based on over-
representation analysis (ORA), where the size and color of the dots represent gene ratio and significance level, respectively. Highlighted in cell-type colored insets
are pathways that are representative of function in specific SMC subsets. Significant GO terms (q < 0.1) terms were identified based on the one-sided Fisher’s
exact test.
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Supplemental Figure 2. Pathway analysis of differentially expressed genes between Stromal cell types. ClusterProfiler dot plots showing Gene Ontology
(GO) pathways enriched for (A) Stromal-1 and (B) Stromal-2 cell types found in the myometrial tissues (n = 24) based on over-representation analysis (ORA),
where the size and color of the dots represent gene ratio and significance level, respectively. Highlighted in cell-type colored insets are pathways that are
representative of function in specific Stromal subsets. Significant GO terms (q < 0.1) were identified based on the one-sided Fisher’s exact test.
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Supplemental Figure 5. Top 10 labor-associated differentially expressed genes in selected cell types from the human

myometrium. Violin plots showing the distribution of single-cell gene expression levels for the top ten upregulated and
downregulated genes from the myometrial tissues of women in labor (n = 11, red) versus not in labor (n = 13, blue). Abbreviations
used: LED, lymphoid endothelial decidual cell; SMC, smooth muscle cell.
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Supplemental Figure 6. Overlapping cell types of the human myometrium based on

labor-associated differentially expressed genes. UpSet plot showing intersections between
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Supplemental Figure 7. Pathway analyses of labor-associated genes in all myometrial cell types.

ClusterProfiler dot plots showing (A) Reactome pathways, (B) Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways, and (C) Gene ontology (GO) terms enriched for labor-associated differentially
expressed genes (DEGs) in all cell types found in the myometrial tissues (n = 24). Significant pathways (q
< 0.05) were identified based on the over-representation analysis using the one-sided Fisher’s exact test.
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Supplemental Figure 9. Cell type-specific KEGG pathway analysis of labor-associated genes in the human

myometrium. ClusterProfiler dot plot showing Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
enriched for labor-associated DEGs in CD4+ T cell, Decidual, Endothelial-1, Endothelial-2, Macrophage-1,
Macrophage-2, Macrophage-3, Monocyte, Smooth Muscle Cell (SMC)-1, Stromal-1, and Stromal-2 cell types of
myometrial tissues (n = 24) based on the over-representation analysis, where the size and color of the dots
represent enrichment score and significance level, respectively. Significant KEGG pathways (q < 0.05) were
identified based on the over-representation analysis using the one-sided Fisher’s exact test.
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Supplemental Figure 10. Cell type-specific

Reactome pathway analysis of labor-associated

genes in the human myometrium. ClusterProfiler
dot plot showing Reactome pathways significantly
enriched for labor-associated differentially expressed
genes (DEGs) in CD4+ T cell, Decidual, Endothelial-
1, Endothelial-2, Macrophage-1, Macrophage-2,
Macrophage-3, Monocyte, Smooth Muscle Cell
(SMC)-1, Stromal-1, and Stromal-2 cell types based
on the over-representation analysis, where the size
and color of the dots represent enrichment score and
significance level, respectively. Significant Reactome
pathways (q < 0.05) were identified based on the
over-representation analysis using the one-sided
Fisher’s exact test.
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Supplemental Figure 11. Correlation of gene expression changes associated with term labor between the single-cell and bulk

transcriptomic data of the human myometrium. Bar plot showing correlations between Log2(Fold change) of labor-associated differentially
expressed genes (DEGs) from single-cell (n = 24) and bulk transcriptomic analyses (n = 39) (significant with q < 0.1) using the Spearman
correlation test. P-values are considered significant when P < 0.05. NS = not significant, * P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001, **** P ≤ 0.0001.
Abbreviations used: ILC, innate lymphoid cell; LED, lymphoid endothelial decidual cell; NK cell, natural killer cell; SMC, smooth muscle cell.
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Supplemental Figure 12. Projection of the “SMC-1” signature to infer the underrepresented functions of smooth muscle cell types in labor. (A) Diagram
illustrating the deconvolution analysis using signatures from the single-cell dataset of the human myometrium in labor (n = 11, red) and not in labor (n = 13, blue) to
obtain differentially expressed genes (DEGs) from inferred cell types in the bulk dataset from myometrial tissues in labor (n = 19, red) and not in labor (n = 20, blue).
(B) Visualization of “Myometrial relaxation and contraction pathways” from WikiPathway (https://www.wikipathways.org/index.php/Pathway:WP289) that was
significant based on the over-representation analysis of DEGs obtained from deconvolution analysis and single-cell SMC-1 (shown in Fig. 8E). Purple and pink lines
depict pathways associated with myometrial relaxation and contraction, respectively. DEGs in bold indicate overlap between WP289 pathway and single cell SMC-1
(shown in Supplementary Figure 13A).
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Supplemental Figure 13. Genes and pathways involved in smooth muscle cell physiology of the human myometrium. (A) Forest plot showing
upregulated and downregulated labor-associated differentially expressed genes (DEGs) from myometrial tissues in labor (n = 11) and not in labor (n =
13) overlapping with the “Myometrial relaxation and contraction pathways” (WP289) q < 0.1. Opaque light pink lines highlight the expression of
DEGs in inferred “smooth muscle cell-1”, while transparent lines which are color-coded according to cell type represent expression of DEGs in other
cell types. (B) Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) analysis of labor-associated DEGs (q < 0.1) in “SMC-1” showing
the gene interactions of enriched GO terms: muscle structure development (green), striated muscle tissue development (blue), and regulation of muscle
contraction (red).



Supplemental Table 1. Clinical and demographic characteristics of the study population. Differences 
between groups were evaluated by two-sided Mann-Whitney U-test and two-sided Fisher’s exact test. P-
values < 0.05 were used to denote a significant result. 

 
Data are given as median (interquartile range, IQR) and percentage (n/N).   
aMann-Whitney U-test, bFisher’s exact test. 
 
 
 
 
 
 
 
 
 
 

 
Women without 

labor at term 
(n = 13) 

Women with 
labor at term 

(n = 11) 
P-value 

Maternal age (years; median 
[IQR])a 32 (28-36) 29 (25.5-31.5) 0.2 

Body mass index (kg/m2; median 
[IQR])a 32.2 (31.2-36.4) 33.4 (29.4-49.9) 0.6 

Primiparityb 0% (0/13) 18.2% (2/11) 0.2 
Race/ethnicityb   1.0 

African American 76.9% (10/13) 81.8% (9/11) 

 
White 7.7% (1/13) 9.1% (1/11) 
Asian 7.7% (1/13) 0% (0/11) 
Not provided 7.7% (1/13) 9.1% (1/11) 

Gestational age at delivery (weeks; 
median [IQR])a 39 (39-39.1) 39.4 (38.5-39.6) 0.4 

Birthweight (grams; median 
[IQR])a 3380 (3015-3850) 3360 (2998-3508) 0.6 

Apgar score at 1 min (median 
[IQR])a 8 (8-8) 8 (8-8) 0.8 

Apgar score at 5 min (median 
[IQR])a 9 (9-9) 9 (9-9) 1.0 

Acute maternal inflammatory 
responseb    

Stage 1 (Early acute 
subchorionitis or chorionitis) 7.7% (1/13) 27.3% (3/11) 0.3 

Stage 2 (Acute chorioamnionitis) 7.7% (1/13) 18.2% (2/11) 0.6 
Stage 3 (Necrotizing 
chorioamnionitis) 0% (0/13) 0% (0/11) 1.0 

Acute fetal inflammatory responseb    
Stage 1 (Chorionic vasculitis or 
umbilical phlebitis) 23.1% (3/13) 9.1% (1/11) 0.6 

Stage 2 (Umbilical arteritis) 0% (0/13) 9.1% (1/11) 0.5 
Stage 3 (Necrotizing funisitis) 0% (0/13) 0% (0/11) 1.0 



Supplemental Table 2. Summary of cell populations identified in the human myometrium at term 
pregnancy. Table showing different cell types found in the myometrium with corresponding cluster 
number (as shown in Fig. 1B) and number of cells encapsulated within the 10x Genomics Gel-bead-in-
emulsion (GEM). 
 

Cluster number Cell type Cell count 

0 Stromal-1 6,697 cells 

1 Macrophage-2 4,968 cells 

2 Macrophage-1 4,205 cells 

3 Endothelial-1 3,934 cells 

4 Monocyte 3,528 cells 

5 CD4+ T cell 3,434 cells 

6 Decidual 3,311 cells 

7 CD8+ T cell 3,182 cells 

8 Lymphoid Endothelial Decidual (LED) 1,914 cells 

9 Stromal-2 1,709 cells 

10 Innate Lymphoid Cell (ILC) 1,418 cells 

11 Natural Killer (NK) cell 1,363 cells 

12 Smooth Muscle Cell-1 (SMC-1) 1,347 cells 

13 Myofibroblast 984 cells 

14 Macrophage-3 530 cells 

15 Endothelial-2 509 cells 

16 Dendritic Cell (DC) 440 cells 

17 Smooth Muscle Cell-2 (SMC-2) 270 cells 

18 Extravillous Trophoblast (EVT) 259 cells 

19 Plasmablast 237 cells 

20 Smooth Muscle Cell-3 (SMC-3) 180 cells 

21 Macrophage-4 164 cells 

22 B cell 149 cells 

23 Unciliated epithelial 112 cells 
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