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Recent studies highlighted the clinicopathologic importance of the tumor microenvironment
(TME) in delineating molecular attributes and therapeutic potentials. However, the overall

TME cell infiltration landscape in nonsquamous non-small cell lung cancer (NSCLC) has not

been comprehensively characterized. In this study, we used consensus non-negative matrix
factorization molecular subtyping to determine TME cell infiltration patterns and identified 3

TME clusters (TME-C1, -C2, -C3) characterized by distinct clinicopathologic features, infiltrating
cells, and biological processes. Proteomics analyses revealed that cyclic GMP-AMP-stimulator of
interferon genes immune signaling-mediated protein and phosphorylation levels were significantly
upregulated in inflammation-related TME-C2 clusters. The score extracted from the TME-related
signature (TMEsig-score) divided patients with NSCLC into high- and low-score subgroups, where
a high score was associated with favorable prognosis and immune infiltration. The genomic
landscape revealed that patients with low TMEsig-score harbored more somatic copy number
alterations and higher mutation frequency of driver genes involving STK11, KEAP1, SMARCA4, and
others. Drug sensitivity analyses suggested that tumors with high TMEsig-score were responsible
for favorable clinical response to immune checkpoint inhibitor treatment. In summary, this study
highlights that comprehensive recognizing of the TME cell infiltration landscape will contribute to
enhancing our understanding of TME immune regulation and promote effectiveness of precision
biotherapy strategies.

Introduction

Nonsquamous non—small cell lung cancer (NSCLC) is the most common cancer worldwide and
accounts for approximately 55%—-60% of lung cancer deaths (1). Despite great advances in the treat-
ment of nonsquamous NSCLC, the prognosis remains poor due to the presence of locally advanced or
widely metastatic tumors in the majority of patients at the time of diagnosis (2). Thus, reliable markers
that can precisely estimate clinical prognosis and therapeutic response would have tremendous value
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in guiding the management of lung cancer (3). The critical role of the tumor immune microenviron-
ment on cancer development and metastasis has been recently recognized, suggesting that infiltration
of various types of immune and stroma cells in tumor parenchyma might be a promising source of
drug target and prognostic biomarkers (4). Indeed, assessment of the extent of tumor-infiltrating lym-
phocytes has been confirmed to be an important supplemental marker to the TNM staging system for
relapse and mortality prediction (5). Therefore, understanding of the tumor microenvironment (TME)
in NSCLC is critical and remains to be investigated.

A growing appreciation of the role of the TME in promoting lung carcinogenesis has also driven the
development of anticancer therapies that target the TME (6). Recent immunotherapies targeting specific
immune checkpoint molecules, such as programmed cell death 1 (PD-1) (e.g., pembrolizumab and nivolum-
ab) or programmed cell death ligand 1 (PD-L1) (e.g., atezolizumab), have demonstrated a remarkable clini-
cal benefit in NSCLC (7, 8). Moreover, drugs targeting other components of the TME, including transform-
ing growth factor—f (TGF-p), vascular endothelial growth factor (VEGF), and aromatase, have already been
used in clinical practice or trials (2, 4). Besides immune cells, tumors are also surrounded by vasculature,
cancer-associated fibroblasts (CAFs), extracellular matrix (ECM), and more (9), which are considered to
have a complex impact on tumorigenesis and immune surveillance. Therefore, understanding the hetero-
typic reciprocal crosstalk among cancer cells, various stromal cells, and ECM is an area of active research.

However, conventional methods of measuring the tumor immune and stromal cells, such as immu-
nohistochemistry or flow cytometry, are not capable of comprehensively assessing the immune effects
of different cell types or do not show effective discriminating power among closely related cell popula-
tions, which is largely due to the limitation in the number of immune markers that can be simultane-
ously measured with current techniques (10). As an alternative, continuously accumulating multiomics
data provided an ideal resource for large-scale analysis of the TME landscape, and various computa-
tional approaches (e.g., xCell, CIBERSORT, MCP-counter) (11) have been developed and utilized to
dissect the TME. Therefore, a comprehensive dissection of the heterogeneity and complexity of TME
landscape would contribute to identifying different tumor immune phenotypes and guiding patients
into personalized therapeutic regimens (12). Certain transcriptomic and genomic signatures, such as T
cell-inflamed gene expression profile (GEP), ImmuneScore, aneuploidy, and tumor mutation burden
(TMB), have also been associated with immune modulation and immunotherapy benefits (13). Addi-
tionally, phosphoproteomics provided abundant resources to investigate the potential immune modu-
lation mechanism and therapeutic vulnerabilities in NSCLC. Therefore, promising biomarkers could
be revealed, which will prove highly effective in recognizing patients’ response to immunotherapy and
will benefit the search for new therapeutic targets.

In this study, we systematically characterized the fractions of 64 immune and stromal cell types based
on the xCell-annotated nonsquamous NSCLC immune profile. Three distinct TME cell-infiltrating pat-
terns (termed as TME-C1, -C2, and -C3) with unsupervised consensus clustering were identified, and the
distribution of cell subsets was corroborated by CIBERSORT and MCP-counter algorithms. The molec-
ular characteristics and clinicopathologic features of these 3 TME clusters were closely linked to 3 previ-
ously reported immunophenotypes: immune excluded, inflamed, and desert (14, 15). Proteomics analyses
revealed that cyclic GMP-AMP—-stimulator of interferon genes (cCCAMP-STING) immune signaling—medi-
ated protein and phosphorylation levels were significantly augmented in the TME-C2 subtype. Moreover,
we constructed a scoring scheme to quantify the immune infiltration level of individual tumors and guide
patients’ immune checkpoint inhibitor (ICI) therapy regimens. These findings will contribute to enhancing
our cognition of TME infiltration characterization and developing more effective immunotherapy strate-
gies for NSCLC.

Results

Cellular landscape and immune profile of TME cell infiltration patterns in NSCLC. We first summarized the work-
flow of our study design to illustrate the construction scheme of nonsquamous NSCLC TME cell-infil-
trating patterns and TME signatures (Figure 1). The meta—National Center for Biotechnology Information
Gene Expression Omnibus (meta-GEO) cohort of 681 NSCLC tumors with matched TME cell profiles
were stratified into 3 distinct clusters by unsupervised hierarchical clustering analysis (Supplemental Fig-
ure 1, A and B; supplemental material available online with this article; https://doi.org/10.1172/jci.
insight.152815DS1). The 3 TME cluster pattern was dominated by different TME cell infiltration profiles,
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respectively termed TME-C1, TME-C2, and TME-C3 (Figure 2A). The 3D projection of tumors per TME
clusters (subnetworks) based on uniform manifold approximation and projection (UMAP) unsupervised
clustering corroborated the classification effect of non—negative matrix factorization (non-NMF) (Figure
2B). Based on the box plot of xCell-annotated cell enrichment score, most of the cell subpopulations had
a significant difference among the 3 TME clusters (Supplemental Figure 1C). TME-C1 was characterized
by upregulation in the infiltration of endothelial cells, hepatocytes, fibroblasts, monocytes, epithelial cells,
and others; TME-C2 was distinguished by CD8" T cells, CD4" T cells, macrophage M1 cells, NK cells, and
others; and TME-C3 was enriched for Th2 cells, multipotent progenitors, smooth muscle cells, basophils,
and others (Figure 2A and Supplemental Figure 1C). Consistent with the above results, we also classified
the TME cell profiles of The Cancer Genome Atlas lung adenocarcinoma (TCGA-LUAD) tumors into 3
clusters and noticed the similar distribution of cell subpopulations among the 3 TME clusters (Supplemen-
tal Figure 1D). We further used the ESTIMATE algorithm to quantify the overall immune infiltration (Esti-
mate-ImmuneScore) and tumor cell purity (Estimate-tumor purity) among the 3 TME patterns. TME-C2
exhibited the highest immune scores, followed by TME-C1 and TME-C3 in meta-GEO and TCGA cohorts
(Kruskal-Wallis H test, both P < 0.001, Figure 2C and Supplemental Figure 2A). Conversely, TME-C3
had a higher tumor purity than TME-C1 and TME-C2, suggesting that TME-C3 subtype tumors were
surrounded by fewer nontumor components (e.g., immune cells and stromal cells) (Kruskal-Wallis H test,
P <0.001, Figure 2D). Moreover, we separately investigated the distribution of T cell-inflamed GEP score
and PD-L1 (CD274) expression among the 3 TME clusters and found that TME-C2 exhibited the highest T
cell-inflamed score and PD-L1 level compared with TME-C1 and TME-C3 (Kruskal-Wallis H test, meta-
GEO cohort, Figure 2, E and F; TCGA-LUAD, Supplemental Figure 2, B and C; both P < 0.001). We also
employed the CIBERSORT and MCP-counter algorithms to infer the microenvironment cell subsets and
noticed a significant difference of immune and stroma cell distributions within the 3 TME clusters (Supple-
mental Figure 2, D and E).

Furthermore, prognosis analyses revealed significant differences between the 3 TME cell-infiltrating
subgroups, in which TME-C2 exhibited a prominent survival advantage, whereas TME-C3 represented
the worst prognosis in the meta-GEO cohort (P < 0.001, log-rank test, Figure 2G). Multivariate Cox pro-
portional hazards regression analysis further demonstrated that the TME clustering model was associated
with patients’ survival outcome after adjusting for clinicopathologic factors in these 2 cohorts (meta-GEO
cohort: TME-C1 vs. TME-C2, HR 0.66 [95% CI, 0.50 to 0.86], P = 0.002; Figure 2H). We also performed
identical analyses in TCGA-LUAD cohort, and similar results were ascertained (P = 0.016, log-rank test,
Figure 2I; TME-C1 vs. TME-C2, HR 0.69 [95% CI, 0.49 to 0.99], P = 0.042, Figure 27J).

TME infiltration patterns characterized by specific clinical features and molecular processes. Next, we
explored the relationship between TME clustering patterns and conventional clinical characteristics
in nonsquamous NSCLC (Figure 3A). The TCGA genomic analysis revealed an overall molecular
characterization of LUAD and suggested LUAD was classified into 3 transcriptional subtypes (proxi-
mal-inflammatory [PI], proximal-proliferative [PP], and terminal respiratory unit [TRU]) or 3 methyl-
ation subtypes (significantly altered CpG island methylator phenotype-high [CIMP-high], CIMP-low,
CIMP-intermediate) (16). In this study, TME-C2 tumors were predominantly clustered into prognosti-
cally favorable subtypes of TRU and CIMP-intermediate, whereas TME-C3 tumors were mainly con-
centrated within the worse outcome subtypes of PP and CIMP-low (Supplemental Figure 3, A and B).
Cigarette smoking—caused genomic instability is a common factor that contributes to TME remodeling.
We observed that the proportion of current smokers in the TME-C2 subtype was significantly higher
than other subtypes (Supplemental Figure 3C), which suggested that tobacco smoking may promote the
formation of a proinflammatory TME. Emerging evidence has shown that oncogenic driver mutations
(e.g., TP53, KRAS, KEAPI, STKI11, and EGFR) are associated with discrete immune phenotypes in
LUADs (17, 18). We also investigated the association between gene mutation and TME clusters and
noticed that KEAPI- and STKI-mutated tumors exhibited a significantly lower proportion of TME-C2
cluster than wild-type tumors (Figure 3B). However, marginal differences were observed in terms of
TP53, EGFR, and KRAS mutations (Supplemental Figure 3D). Recent immunogenomic analysis also
identified 6 immune subtypes across cancer types (19). Subsequent studies showed that the identified
immune subtypes of macrophage regulation, lymphocyte infiltration signature, and IFN-y response
were markedly elevated in the TME-C2 subgroup, yet wound healing and proliferation were enhanced
in TME-C1 and TME-C3 subgroups (Supplemental Figure 3E). We further compared the somatic copy
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Figure 1. The overview of study design to evaluate the construction scheme of TME cell-infiltrating patterns and TMEsig-score in nonsquamous NSCLC.

number alterations (SCNAs) and aneuploidy score with TME clusters and observed a lower SCNA and
aneuploidy level in TME-C2 (Figure 3, C and D), consistent with the previous conclusions that SCNA
and aneuploidy score correlated positively with immune evasion and tumor cell proliferation (20).

To explore the biological molecular changes underlying 3 distinct TME phenotypes, we performed gene
set variation analysis (GSVA) against the Hallmark gene set in NSCLC tumors (Figure 3E and Supplemental
Figure 3F). GSVA results indicated that TME-C2 was significantly enriched in immune infiltration—related
circuits, including IFN-y/a response, allograft rejection, IL-6/JAK/STAT3 signaling, inflammatory response,
and so on; TME-C1 was highly enriched in stroma-related signaling pathways, including TGF-f pathway,
epithelial-mesenchymal transition (EMT), P53 pathway, and so on; TME-C3 presented enrichment path-
ways prominently associated with carcinogenic activation and highly proliferative features, such as fatty
acid metabolism, PI3K/AKT/mTOR, G2M checkpoint, E2F targets, MYC target V1/V2, mitotic spindle,
and so on. Interestingly, moderate immune activation and immune cell infiltration were also observed in
the TME-C1 cluster and consistent with the previously reported immunophenotype of immune excluded,
in which immune cells are retained in the stroma surrounding tumor cell nests rather than penetrating their
parenchyma (14, 15). Subsequent analyses by using the Mariathasan et al. curated signaling signature set (21)
demonstrated that stroma and angiogenesis activity were significantly enhanced in TME-C1 while immune
activation was markedly elevated in TME-C2, which confirmed our speculation (Supplemental Figure 3G).

We further investigated the enriched pathways between TME-C2 and TME-C3 against a REAC-
TOME gene set with gene set enrichment analysis (GSEA). Strikingly, STING-mediated innate
immune response to cytosolic DNA was significantly enriched in TME-C2 clusters (Figure 3F).
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Figure 2. Association of TME cell-infiltrating patterns with immune signature and prognosis in NSCLC. (A) Unsupervised clustering of TME cell landscape
for 681 lung cancer patients in meta-GEO cohort. Stage, sex, age, GEO database cohort, and TME cluster are shown as patient annotations. The numbers

of patients with TME-C1, TME-C2, and TME-C3 phenotypes are 292, 253, and 136, respectively. (B) 3D UMAP projection of NSCLC tumors per TME subtype
(subnetworks) based on unsupervised clustering. (C-F) Indicator of immune infiltration level was compared by Kruskal-Wallis test among 3 TME clusters,
including immune score (C), tumor purity (D), T cell immune GEP score (E), and PD-L1 expression (F). When P < 0.05, pairwise comparisons were made using
Dunn’s test with Benjamini-Hochberg adjustment for multiple comparisons. (G) Kaplan-Meier curves for overall survival of 3 TME phenotypes in NSCLC
meta-GEO cohort. (Log-rank test, P < 0.001.) (H) Forest plot representation of multivariate Cox model depicted association between TME clusters and over-
all survival (OS) after being adjusted for age, sex, and stage. Square data markers indicate estimated hazard ratios (HRs) and the length of the horizontal
line represented the 95% confidence interval for each variable. (I) Kaplan-Meier curves for OS of 3 TME clusters in TCGA-LUAD cohort; log-rank test, P =
0.016. The numbers of patients in TME-C1, TME-C2, and TME-C3 clusters are 199, 195, and 106, respectively. (J) Forest plot representation of multivariate Cox
model-calculated association between 0S and TME cluster with other clinical factors taken into account.

Considering the activation of cGAS-STING pathway resulted in TBK1 and IRF3 protein phosphoryla-
tion and further induced the production of IFNs and inflammatory cytokines (CXCLI0 and CCLY5), we
downloaded and curated the Clinical Proteomic Tumor Analysis Consortium LUAD (CPTAC-LUAD)
multiomics data to validate the potential regulation mechanism. Inferred TME cell infiltration pat-
terns based on the NMF algorithm were compared with CPTAC-LUAD-defined immune clusters (hot
tumor enriched [HTE], cold tumor enriched [CTE], and normal adjacent tissue—enriched [NAT-en-
riched]) and noticed that TME-C2 was significantly dominated by HTE, whereas TME-C1 and -C3
were mainly clustered in CTE (P < 0.001, Figure 3G). Similarly, TME-C2 exhibited the highest Esti-
mate-ImmuneScore, followed by TME-C1 and TME-C3 in the CPTAC-LUAD cohort (Kruskal-Wallis A
test, P < 0.001, Supplemental Figure 3H). In order to comprehensively characterize the cGAS-STING
milieu across 3 clusters, we analyzed the expression of crucial STING-related mRNAs and proteins
(including TMEM173, cGAS, TBK1, IRF3, NFKB1, NFKB2, RELB, CCL5, CCLI0, and STATI) in the
CPTAC samples. A significant elevation of STING-related mRNA and protein levels was observed
in the TME-C2 cluster (Figure 3H and Supplemental Figure 3I). We further compared the /RF3 and
NFKBIE protein phosphorylation level between the 3 TME clusters and noticed a pronounced upregu-
lation in the TME-C2 cluster (Figure 3, I and J).

Based on these findings, we speculated that the identified 3 TME cell infiltration patterns were charac-
terized by distinct immune phenotypes. TME-C2 was recognized as an immune-inflamed phenotype and
characterized by immune pathway activation and abundant immune cell infiltration, as well as downregu-
lation of SCNAs and aneuploidy. TME-C3 was recognized as an immune-desert phenotype and represent-
ed by tumor cell proliferation, glycolysis, and suppression of immunity, coupled with a higher mutation
rate of KEAPI and STK11. TME-C1 was recognized as an immune-excluded phenotype and distinguished
by stromal activation and exclusion of immune cell infiltration.

TME phenotype-related DEGs in NSCLC. To identify the underlying genetic alterations and expression
perturbations of each TME phenotype, we applied the empirical Bayes algorithm to determine the over-
lapping DEGs between the 3 TME phenotypes. A total of 657 DEGs that represented the critical distin-
guishing index of the 3 TME patterns were considered TME signature genes and illustrated in a Venn
diagram (Figure 4A). Based on the representative TME phenotype-related signature genes, we performed
unsupervised consensus clustering analysis and obtained 3 stable TME transcriptomic subtypes. These
stratifications divided NSCLC patients into 3 distinct TME gene signature subgroups characterized by
distinct clinicopathologic features, which were defined as TMEsig-S1, TMEsig-S2, and TMEsig-S3, respec-
tively (meta-GEO cohort, Figure 4B; TCGA cohort, Supplemental Figure 4A). We found that patients in
the TMEsig-S2 subgroup were dominated by a higher proportion of male sex and advanced tumor stage,
and patients with TME-C3 infiltration pattern were mainly concentrated in the TMEsig-S2 subgroup. Gene
ontology (GO) enrichment and Metascape analyses of these signature genes revealed that immune-relat-
ed biological processes were significantly overrepresented (Figure 4, C and D). Further prognosis anal-
ysis indicated that the survival outcomes of the 3 TME signature subtypes were significantly different
in NSCLC samples. The TMEsig-S1 signature was proved to be associated with better prognosis, while
TMEsig-S2 was associated with a worse survival outcome (meta-GEO cohort: P < 0.001; TCGA-LUAD
cohort: P = 0.001, log-rank test, Figure 4, E and F). Similarly, the TME signature subtype could stratify
patients into subgroups with significantly different prognoses in the independent validation cohorts (GEO
GSE72094, GSE68465, GSE41271, all P < 0.05; Supplemental Figure 4, B-D). The association between
the TME gene signatures and survival remained statistically significant after taking into account age, sex,
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Figure 3. Clinical characteristics and biological processes among 3 TME cell infiltration patterns. (A) An overview of the association between TME
clusters and nonsquamous NSCLC clinical and molecular characteristics in TCGA cohort. (B) The mutational proportion of STK17 and KEAPT among 3
TME clusters (Fisher's exact test). (C and D) SCNA (C) and aneuploidy score (D) was compared between 3 TME clusters (Kruskal-Wallis H test followed
by Dunn'’s test for pairwise comparisons). (E) Heatmap shows the top enriched biological pathways calculated by GSVA algorithm in distinct TME
phenotypes. Hallmark gene set (h.all.v7.0) curated from Molecular Signatures Database (MSigDB) was regarded as the reference gene signatures.

(F) GSEA plots showing the cGAS-STING-IRF3-mediated gene sets were enriched in TME-C2. (G) Comparison of TME clusters with CPTAC annotated
immune groups in CPTAC-LUAD proteomics cohort (Fisher’s exact test). (H) Comparison of the protein expression levels of STING pathway-related
molecules among 3 TME clusters in CPTAC cohort. (1 and J) Violin plot shows the phospho-IRF3 (5157) and phospho-NFKBIE (5157) protein levels
among different TME clusters. The bottom and top of the boxes were the 25th and 75th percentiles (interquartile range). The whiskers encompassed
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1.5 times the interquartile range. The statistical difference of 3 gene clusters was compared through the Kruskal-Wallis H test. ***P < 0.001. PI,
proximal-inflamed; PP, proximal-proliferation; TRU, terminal respiratory unit.

and tumor stage in the meta-GEO cohort (Cox proportional hazards model, TMEsig-S2 vs. TMEsig-S3,
HR 0.78 [95% CI, 0.60 to 1.00], P = 0.054; TMEsig-S2 vs. TMEsig-S1, HR 0.48 [95% CI, 0.36 to 0.65], P
< 0.001; Supplemental Figure 4E). Consistent results were obtained in TCGA-LUAD cohort (Cox model,
TMEsig-S2 vs. TMEsig-S3, HR 0.64 [95% CI, 0.44 to 0.93], P = 0.019; TMEsig-S2 vs. TMEsig-S1, HR
0.49 [95% CI, 0.33 to 0.73], P < 0.001; Supplemental Figure 4F).

The immune cell subsets and gene sets were also compared among the 3 TME gene signature subtypes.
Here, we utilized Charoentong et al.’s (22) curated 28 representative immune cells to explore the immune
infiltration level. We observed a significant elevation in cytotoxic T lymphocytes, B cells, and dendritic cells
yet a reduction of neutrophils, regulatory T cells, and Th cells in the TMEsig-S2 subgroup (Supplemental Fig-
ure 4G). Then we analyzed the expression of inflammatory, stroma-related mRNAs in the NSCLC samples
to explore the relationship between the 3 gene clusters and the molecular perturbation milieu (Supplemental
Figure 4H). CXCL9, GZMA, PRF'1, CD8A, TNF, PDCDI, LAG3, and CTLA4 were considered immune-activat-
ed-related transcripts; TGFBI, ACTA2, COL4Al, TWISTI1, ADAMI2, FSTL3, SMADY, and TPMI were con-
sidered to be TGF-B/EMT pathway-relevant transcripts; CCNEI, RFC3, MKI67, POLD2, LIG1, BRCAI, FAN-
CA, FANCD2, CDK2, and POLE were considered to be cell cycle/proliferation—related transcripts. We found
the mRNAs relevant to the immune-activated pathway were substantially upregulated in TME-S1, which
suggested this subtype was deemed as an immune-activated group, while TME-S2 and TME-S3 showed high
expression of mRNAs related to stroma-activated and cell proliferation—related transcripts.

Construction of the TMEsig-score and exploration of its clinical and molecular relevance. The aforementioned
results validated the role of TME phenotype in regulation of prognosis and immune infiltration, but these
analyses were only based on patient populations and cannot accurately predict the pattern of TME phe-
notype in individual tumors. Therefore, we developed a scoring scheme termed TMEsig-score (Methods),
which based on specified TME signature genes related to prognosis, quantifies the TME immune infiltration
of individuals with NSCLC. Multivariate Cox regression model analysis considering patient age, sex, and
tumor stage showed the TMEsig-score served as an independent prognostic biomarker for evaluating patient
outcomes in NSCLC (meta-GEO cohort, HR 0.98 [95% CI, 0.97 to 0.99], P < 0.001; TCGA-LUAD cohort,
HR 0.98 [95% CI, 0.96 to 0.99], P < 0.001, Supplemental Figure 5, A and B). Considering the stability of the
developed scoring system, we compared the prognostic value of our TMEsig-score with previous identified
risk score models (23-26) in lung cancer: the Harrell concordance index (C-index) for the overall survival
of TMEsig-score was 0.696 [95% CI 0.657-0.734] and marginally larger than the other 4 score models (risk
model by Li et al. 0.650 [0.611-0.690], risk score by Zhao et al. 0.630 [0.590-0.678], immune risk score
by Zhang et al. 0.609 [0.569-0.649], immune signature by Song et al. 0.627 [0.586—0.668]; Supplemental
Figure 5C). We further stratified the nonsquamous NSCLC tumors into high versus low TMEsig-score sub-
group based on the optimal cutoff point of the meta-GEO cohort (Methods, Figure 5A). Kaplan-Meier plot
showed that the high TMEsig-score subgroup was significantly associated with a better prognosis (HR, 0.44
[95% CT, 0.35 to 0.57], P < 0.001, Figure 5B). This cutoff value was also employed in TCGA-LUAD cohort
and revealed a similar result (HR, 0.54 [95% CI, 0.40 to 0.73], P < 0.001, log-rank test, Figure 5C).

Furthermore, we also compared the TMEsig-score with TME cell infiltration patterns and TMEsig
subtype and noticed that TME-C3 and TMESsig-S2 exhibited a lower TMEsig-score, whereas TME-C2
and TMEsig-S1 were linked to a higher TMEsig-score (Figure 5D and Supplemental Figure 5D). We also
explored the relationship between the TMEsig-score and TCGA molecular subtype to find that the TRU
subtype was linked to the highest TMEsig-score, and the PP subtype was linked to a lower TMEsig-score
than the PI subtype (Figure 5E). An alluvial graph was used to further show the dynamic change of spec-
imens’ flow in different TME phenotypes (Supplemental Figure 5E). Next, we examined the relationship
between ESTIMATE algorithm—inferred overall immune infiltration (ImmuneScore) and the TMEsig-score
through Spearman analysis to find a significantly positive correlation between the TMEsig-score and the
ImmuneScore (r = 0.67, P < 0.001, Figure 5F). Meanwhile, it was found that the high TMEsig-score sub-
group had a higher level of immune subtype of lymphocyte infiltration signature, macrophage regulation,
and IFN-y response but lower level of proliferation and wound healing compared with patients with a low
TMEsig-score (Supplemental Figure 5F).
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Figure 4. TME phenotype-related DEGs in nonsquamous NSCLC. (A) A total of 657 overlapped differential expressed genes of the 3 TME clusters were recognized
as the TME phenotype-related gene signature and shown in a Venn diagram. (B) Unsupervised clustering of TME phenotype-related gene signatures to classify
patients into different transcriptomic subtypes, termed as TME gene S1-53, respectively. The stage, sex, age, TME clusters, and TME signature subtype were used
as patient annotations. (€) Functional annotation for TME phenotype-related genes using GO enrichment analysis. The color depth of the bar plots represented
the statistical significance of enriched pathways. (D) Metascape enrichment network visualization showed the intracluster and intercluster similarities of enriched
terms, up to 20 terms per cluster. Cluster annotations are shown in the color key. (E and F) The survival curves of the TME gene signature subtypes were estimated

by the Kaplan-Meier plotter in Meta-GEO and TCGA-LUAD cohort (meta-GEO cohort, P < 0.001; TCGA-LUAD cohort, P = 0.

007; log-rank test).

We further constructed the TMEsig-score model in the CPTAC cohort and found that the majority
of HTE tumors were concentrated in the high TMEsig-score subgroup (3 test, P < 0.001, Figure 5G).

ImmuneScore was significantly upregulated in the high TMEsig-Score group likewise (Supplemental Fig-

ure 5G). Aforementioned results revealed the enrichment of STING-mediated innate immune response
in TME-C2. We also investigated the association between TMEsig-score and cGAS-STING-related pro-
teins in the CPTAC-LUAD cohort. A protein expression heatmap illustrated the STING-related molecules
(IRF3, TBK1, cGAS), inflammatory cytokines (CCL5, CXCL10, CD8A, GZMA), and immune checkpoint
molecules (CD274, TAPI), and others were significantly positively correlated with TMEsig-score (all Spear-
man 7> 0.25, P < 0.001, Figure 5H). We further collected the expression profile of nonsquamous NSCLC

cell lines (n = 100) from the Cancer Cell Line Encyclopedia (CCLE)

project (27) and divided them into

2 TMEsig-score subgroups (Supplemental Table 1). The 10 highest and lowest TMEsig-score cell lines
were separately illustrated in Figure 5I. We selected the top-ranked and ATCC-sourced cell lines (high
TMEsig-score: NCI-H23, NCI-H1299, NCI-H358, NCI-H838; low TMEsig-score: Calu-3, NCI-H1395,
NCI-H2126) and performed Western blot analysis on cGAS-STING pathway-related molecules. Cell lines
of high TMEsig-score subtype showed an obviously upregulated expression of STING signaling molecules
(¢cGAS, STING, phosphorylated [p-] STING, TBK1, NF-«B, p—-NF-kB, IRF3, CCL5, and CXCL10) than low
TMEsig-score subgroup (Figure 5, J and K; see complete unedited blots in the supplemental material).
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Figure 5. Construction of the TME score and exploration of its biological relevance. (A) Identification of the cutoff point of the TMEsig-score subgroup in
nonsquamous NSCLC. TMEsig-score with the highest standardized log-rank statistics was regarded as the optimal cutoff point. (B) Kaplan-Meier curves
for high versus low TMEsig-score subgroups in meta-GEO cohort (log-rank test, P < 0.001). (C) Kaplan-Meier curves for high versus low TMEsig-score
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man'’s correlation between TMEsig-score and ImmuneScore in TCGA-LUAD cohort (r = 0.67). (G) Comparison of TMEsig-score group with CPTAC-annotated
immune group in CPTAC-LUAD proteomics cohort (Fisher’s exact test). (H) Heatmap shows correlation of TMEsig-score with STING-related molecules
(IRF3, TBK1, cGAS), inflammatory cytokines (CCL5, CXCL10, CD8A, GZMA), and immune checkpoint molecules (CD274, TAP1) in the CPTAC-LUAD cohort. (I)
The nonsquamous NSCLC cell subsets of 10 highest and lowest TMEsig-score in CCLE data set. (J) Western blot analyses of cGAS-STING pathway-relat-
ed molecules in selected ATCC-sourced cell lines of different TMEsig-score subgroups. (K) Comparison of relative level of cGAS-STING pathway-related
molecules in different TMEsig-score cell subsets by Western blot. Data represented with mean + SD. The differences between the 2 groups were compared
through the Student’s t test (*P < 0.05, **P < 0.01, ***P < 0.001).
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Genomic alterations between high and low TMEsig-score subgroups. Mounting evidence has demonstrated
that there is a correlation between tumor genomic mutations and responsiveness to immunotherapy (28,
29). Therefore, to gain further insights into the mutational processes operative in nonsquamous NSCLC
tumors, we extracted 3 mutational signatures with varying numbers of somatic mutations from the muta-
tional profiles (Figure 6A). The extracted mutational signatures included 4POBEC somatic mutations
(signature 2, 30888 of 208063), smoking-related mutations (signature 4, 158725 of 208063), and DNA
mismatch repair deficiency-related (AIMMR) mutations (signature 6, 18450 of 208063). Samples with
high TMEsig-score had a higher frequency of signature 6 and a lower frequency of signature 2 (P =
0.003, ? test, Figure 6B). We next investigated the distributions of somatic alterations and performed
significantly mutated gene (SMG) analysis for nonsquamous NSCLC samples between the TMEsig high-
score and low-score subgroups. The mutational landscapes showed that 7P53 (60% vs. 34%), KEAPI
(25% vs. 10%), STK11 (19% vs. 11%), and SMARCA4 (13% vs. 4%) had higher somatic mutation rates
in the TMEsig low-score subgroup, compared with high-score subgroup (Fisher’s exact test, P < 0.05,
Figure 6C and Supplemental Figure 5H). Consequently, we also noticed a higher level of SCNAs in the
TME low-score subgroup (Figure 6D). We further analyzed the Genomic Identification of Significant
Targets in Cancer—derived (GISTIC-derived) scores and copy number gain/loss frequencies in the high
and low TMEsig-score subtypes. The results showed that the low TMEsig-score subgroup had higher
GISTIC scores and specific copy number variation (CNV) regions than the high-score subgroup (1q21.3,
1922, and 8q24.21 in low subgroup; 9p23, 12q14.1, and 14q13.1 in high subgroup; Figure 6E). Then, we
compared the differences in fraction genome altered (FGA) and segments among different subtypes and
observed a significant augmentation in low TMEsig-score group (Wilcoxon rank-sum test, P < 0.001,
Figure 6, F and G). Above results enabled us to more comprehensively assess the association between
the TMEsig-score and genomic variation and facilitated revealing the underlying complex relationship
between individual somatic mutations and immune regulation.

Identification of potential immunotherapy response of TMEsig-score. ICI treatment represented by PD-1/
PD-L1 inhibitors has undoubtedly made a major breakthrough in NSCLC antitumor therapy. Recent
evidence demonstrated that newly identified molecular markers (such as Tumor Immune Dysfunction
and Exclusion [TIDE] and T cell-inflamed GEP) are widely and strongly recommended to evaluate the
response to anti—-PD-1/PD-L1 immunotherapy. We found that the TIDE was significantly decreased in
the TMEsig high-score group, and T cell-inflamed GEP was significantly elevated in the high TME-
sig-score subgroup (TIDE and T cell-inflamed GEP distribution in meta-GEO and TCGA-LUAD, all
P < 0.001, Figure 7, A-D). Due to the strong connection of the TME signatures with the immune
response, we further investigated whether the TMEsig-score can predict patients’ response to ICI therapy
in 2 independent immunotherapy cohorts. In the anti-PD-1 cohort, the significant therapeutic bene-
fits and immune response were confirmed in patients with high TMEsig-score compared with those
with low TMEsig-score (HR 0.44 [95% CI, 0.24 to 0.80], P = 0.008, Figure 7E; response rate: 51.3%
vs. 32.9%, Figure 7F). Consistent results were also validated in the anti-PD-L1 cohort (HR 0.71 [95%
CI, 0.53 to 0.95], P = 0.021, Figure 7G; response rate: 31.5% vs. 16.1%, Figure 7H). The distribution
of TMEsig-score in groups with different immunotherapy clinical response is shown in Figure 7I, and
it was found that patients with higher TMEsig-score were more likely to benefit from immunothera-
py (Kruskal-Wallis H test, P < 0.001). Tumor tissue is genomically heterogeneous, with varying tumor
mutation burden (TMB), and presents a correlation with durable clinical response to anti-PD-1/PD-L1
immunotherapy (30, 31). A significant positive correlation between TMEsig-score and TMB was iden-
tified among the anti-PD-L1 data set (Spearman » = 0.24, P < 0.001, Figure 7J). Therefore, we divided
the overall population into 4 subgroups according to the TMEsig-score and TMB distribution, TMEsig-
score-H+TMB-H, TMEsig-score-H+TMB-L, TMEsig-score-L+TMB-H, and TMEsig-score-L+TMB-L.
Finally, the TMEsig-score-H+TMB-H subgroup exhibited the best survival compared with the other 3
subgroups (log-rank test, P = 0.008, Figure 7K).

TMEsig-score model in clinical practice. We further validated the relationship between TMEsig-score and prog-
nosis in 3 independent cohorts of lung cancer (GEO GSE72094, GSE68465, and GSE41271). TMEsig-score
was significantly elevated in TMEsig-S1 and -S3 subtypes (Supplemental Figure 6, A—C). Patients with a higher
TMEsig-score exhibited significant clinical benefits and survival advantage (GSE72094, HR 0.40 [95% CI, 0.27
to 0.60], P < 0.001, Supplemental Figure 6D; GSE68465, HR 0.63 [95% CI, 0.48 to 0.83], P = 0.001, Supple-
mental Figure 6E; GSE41271, HR 0.41 [95% CI, 0.26 to 0.64], P < 0.001, Supplemental Figure 6F).
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Figure 6. Genetic alternations between high and low TMEsig-score subgroups based on TCGA-LUAD cohort. (A) Cosine similarity analysis of extracted 3
mutational signatures against the 30 identified signatures in Catalogue of Somatic Mutations in Cancer (COSMIC, v2) with heatmap illustration. (B) The
proportion of extracted TCGA-LUAD mutational signatures (smoking-, APOBEC-, and MMR-related signature) across different TMEsig-score subgroups (P
=0.003, o test). (C) Mutational landscape of SMGs in TCGA-LUAD stratified by low (left panel) versus high TMEsig-score (right panel) subgroups. Individ-
ual patients are represented in each column. The upper bar plot showed TMB. Mutational frequencies of SMGs in different TMEsig subtypes were depicted
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in 2 sides of the plot and highlighted in red for those statistically significant. TME cluster, age, stage, sex, smoking status, and mutational signatures
were shown as patient annotations. (D) Relative distribution of SCNA in TMEsig-score high versus low subgroups (P < 0.001, Wilcoxon rank-sum test). (E)
Significant amplifications and deletions of CNVs were detected and compared between the TMEsig-score low and high subgroups. (F and G) Differences of
fraction genome altered (FGA) and segment numbers values in different TMEsig-score groups (P < 0.001, Wilcoxon's rank-sum test).

We also integrated all the collected nonsquamous NSCLC data sets into a combined cohort and explored
the prognostic value of the TMEsig-score. Concurrently, OS and relapse-free survival were significantly asso-
ciated with TMEsig-score (Supplemental Figure 6, G and H), and the results of the receiver operating char-
acteristic (ROC) curves analysis validated the predictive advantage of the established risk model (AUC =
0.739, Supplemental Figure 6I). To better predict the lung cancer prognosis, a nomogram was developed
based on the multivariate Cox proportional hazards analysis to calculate the 3- and 5- year survival probabil-
ity for an individual patient by the points associated with 4 risk factors (age, sex, TNM stage, TMEsig-score;
Supplemental Figure 6J). The TMEsig-score showed the largest range of risk points in the nomogram, fol-
lowed by the age and tumor stage. Based on these results, we concluded that TMEsig-score was supported as
a favorable prognostic biomarker and a higher score indicated a better survival outcome.

Discussion

A comprehensive understanding of the molecular and biological features of the TME will extend our
knowledge of immune contexture in tumorigenesis and provide potential markers for prognosis assessment
and therapeutic vulnerabilities for nonsquamous NSCLC. Our findings highlight the value of integrat-
ing abundant clinical information with molecular tumor characterization and the need to generate such
multimodal data. In this study, we elucidated the interactions between the clinical characteristics of non-
squamous NSCLC and TME cell-infiltrating patterns and identified 3 TME clusters with distinct immune
phenotypes and survival outcomes. Stroma activation, angiogenesis, and moderate immunity, similar to
immune-excluded phenotypes, were predominately in TME-C1. Activation of STING innate immunity
and IFN signaling, similar to immune-inflamed phenotypes, was predominately in TME-C2. Highly pro-
liferative features and paucity of T cell infiltration, similar to the immune-desert phenotype, were predom-
inately in TME-C3. With the integration of TME phenotype-related gene signature, a scoring framework
that adopted multiple algorithms (termed TMEsig-score) was established to quantify the TME infiltration
pattern of individual tumors. Integrated analysis revealed that the TMEsig-score was an effective biomark-
er for NSCLC prognosis estimation and was markedly associated with immune signaling enrichment and
inflammation infiltration, implying its molecular insights into characterization of the TME landscape. Fur-
thermore, TMEsig-score was proved to be a crucial factor that predicted the genomic alterations and clini-
cal response to anti-PD-1/PD-L1 immunotherapy.

Human lung cancer often exhibits desmoplasia, which is characterized by the presence of CAFs, ECM,
and immune cells (32, 33). Previous studies reported that preexisting immunity in the immune-excluded
phenotype was rendered ineffective by a block in tumor penetration through the stroma or by the retention
of immune cells in the stroma (14, 34). Therefore, the surrounding stroma impeded the antitumor response
of immune-excluded tumors and restricted clinical benefits from ICI agents. Specific molecular inhibitors
targeting TGF-B or VEGF have been shown to reprogram the TME and restore antitumor immunity (21,
35). Based on these findings, we speculated that NSCLC patients with the TME-C1 pattern may benefit
from combination treatment with ICI agents and TGF-B/VEGF blockade. TME-C3 tumors were devoid of
T cell infiltration and primarily presented with highly proliferative features with increased Wnt/f-catenin,
cell mitosis, and fatty acid metabolism activation. Therefore, a synergic therapy of chemotherapy, radio-
therapy, or target therapy was more suitable for such a TME pattern. Platinum-based alkylating agents and
pemetrexed-based antimetabolite agents are frequently used in nonsquamous NSCLC treatment (36) and
are proposed to combine with immune-activated drugs to treat the TME-C3 subtype. Therefore, combi-
nation of the specific anticancer agents based on the identified TME subtype will strengthen the potential
efficacy of identified patient subgroups and provide new insights into tumor precision therapy. Of course,
further prospective clinical studies are needed to verify the treatment options of patients with different
TME clusters or TMEsig-scores.

In addition, we observed that the TMEsig-score was strongly associated with biomarkers of response to
ICI treatment, including TMB, T cell-inflamed GEP, and TIDE, implying this score could predict immu-
notherapy efficacy. Actually, we identified the robust prediction ability of the TMEsig-score in response
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Figure 7. High TMEsig-score predicts immunotherapeutic benefits. (A and B) The relative distribution of TIDE was compared between TMEsig-score
high versus low subgroups in meta-GEO (A) and TCGA-LUAD (B) cohort, respectively (Wilcoxon's rank-sum test). (C and D) Relative distribution of T
cell-inflamed GEP score was also compared between TMEsig-score high versus low groups in meta-GEO (C) and TCGA-LUAD (D) cohort (Wilcoxon’s rank-
sum test). (E) Kaplan-Meier curves for high versus low TMEsig-score subgroups in the anti-PD-1/PD-L1immunotherapy cohort. Log-rank test, P = 0.008.
(F) The fraction of patients with clinical response to anti-PD-1therapy in high or low TMEsig-score subgroups. CR/PR vs. SD/PD: 51.3% vs. 48.7% in the
high TMEsig-score groups, 32.9% vs. 67.1% in the low TMEsig-score groups. (G) Kaplan-Meier curves for high versus low TMEsig-score patient in the anti-
PD-L1immunotherapy cohort. Log-rank test, P = 0.021. (H) The fraction of patients with clinical response to anti-PD-L1immunotherapy in low or high
TMEsig-score groups. CR/PR vs. SD/PD: 31.5% vs. 68.5% in the high TMEsig-score groups, 16.1% vs. 83.9% in the low TMEsig-score groups. CR, complete
response; PR, partial response; SD, stable disease; PD, progressive disease. (I) The distribution of TMEsig-score in groups with different clinical response to
immunotherapy were shown (Kruskal-Wallis H test, P < 0.001). (J) A significant positive correlation between TMEsig-score and TMB was identified within
the anti-PD-L1cohort (Spearman r = 0.24, P < 0.001). (K) The overall population were divided into 4 subgroups according to the TMEsig-score and TMB
level, and the TMEsig-score-H+TMB-H subgroup exhibited the best survival compared with the other 3 subgroups (log-rank test, P = 0.008).
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to ICI treatment via 2 independent ICI cohorts. These findings verified our hypothesis that the expression
profile-based TME cell infiltration pattern could be applied in clinical practice to determine immune phe-
notypes and guide therapeutic regimens.

Recent proteogenomic characterization delineated tumor heterogeneity and therapeutic vulnerabilities
in LUAD (37, 38). We also integrated multiomics data and revealed the cGAS-STING-related mRNA
and proteins were significantly altered in different TME modification subgroups. Activation of the STING
innate immune pathway has been demonstrated to promote IFN secretion and lymphocyte infiltration
and enhance immunotherapy response in tumors (39, 40). Here, we found that STING-related molecules
(including ¢GAS, TBKI, STING, p-STING, and IRF3) and IFN-I-targeted genes (CCL5, CXCLI10, and
IFI35) were obviously enhanced in TME-C2 and high TMEsig-score subgroups, which indicated its sus-
tainable benefit from cancer immunotherapy. Considering the low or defective STING pathway activity in
TME-C2/C3 and low TMEsig-score subgroups, STING agonist coadministrated with ICI agents would
hold a promise of treating such patients. However, the specific application of STING agonist combined
with immunotherapy needs further prospective clinical trials.

Moreover, our data revealed that TMEsig-score had a crucial role in genomic alteration and was asso-
ciated with SCNAs, mutational burden, and dMMR mutational signatures. Recent studies demonstrated
that SCNAs and aneuploidy were widespread in cancer and correlated with immune evasion and cancer
cell proliferation (20, 41). In our study, the low TMEsig-score subgroup was characterized by heightened
SCNAs, FGA, and segments, which indicated the immune-repressive role on the low TMEsig-score sub-
type. Evaluation of the mutated driver genes/signatures underlying human tumors is also a critical foun-
dation for cancer diagnostics, prognosis, and targeted therapy selection (29, 42). Recent studies reported
that variants in STK7I (LKBI) suppress the STING pathway and T cell inactivation and are associated
with a lack of benefit from anti-PD-1/PD-L1 treatment (43, 44). In this study, we found that patients
who harbored mutations of STK// had a higher proportion in TME-C1/-C3 and low TMEsig-score sub-
groups, which implied the STK7] mutation played a role in induction of immune suppression. Moreover,
on the basis of KEAPI mutational co-occurrences, Marinelli et al. identified mutations in 4 genes (KEAPI,
STK11, SMARCA4, PBRM]I) that were potentially associated with reduced efficacy of immunotherapy in
LUAD (45). We also observed a higher mutation frequency of KEAPI, STK11, and SMARCA4 in the low
TMEsig-score subgroup, manifesting the molecular significance of tumor driver mutation in reprograming
of immune phenotype. In addition, AIMMR mutational signature was significantly associated (P = 0.003)
with the high TMEsig-score subtype, which indicated again that genomic instability plays a crucial role in
mediating tumor immunogenicity.

Tissue digital parsing methods (xCell, CIBERSORT, and so on) are an emerging tool for large-scale
characterization and dissection of tumor cellular heterogeneity. Although we utilized the canonical gene sig-
nature algorithm to portray the cellular landscape, the actual TME was not completely recognized because
of the technical and method limitations. Furthermore, heterogeneity in sequencing approaches and data
normalization between cohorts hindered our ability to develop more standardized and precise immune fea-
tures to improve the accuracy and stability of the prediction model. The clinical relevance of the identified
TME molecular signatures for subtyping was validated mostly on the bulk RNA database, but not single-cell,
level, because of limited single-cell transcriptome-sequencing resources in nonsquamous NSCLC clinical
practice. In order to evaluate the distribution of cell subpopulations in TME subtyping more accurately, sin-
gle-cell sequencing and spatial transcriptome sequencing are worthy of consideration. We also realized that
the self-owned, large-scale, independent sequencing database was absent from this study and limited conclu-
sion reliability and strength. Hence, we are collecting relevant cases from a hospital alliance to complete the
verification of the findings in nonsquamous NSCLC, and it has been listed as one of our subsequent priority
tasks. Besides, the TME infiltration patterns and TMEsig-score were identified by using retrospective data
sets; thus, a prospective cohort of NSCLC patients receiving immunotherapy is needed to validate clinical
utility. In addition, patient-derived xenograft model validation that can simulate the authentic in vivo tumor
microenvironment is also necessary for accurately evaluating the effectiveness of this finding.

In summary, comprehending the TME cell infiltration landscape mediated by multiple cell subsets
will contribute to enhancing our understanding of TME immune regulation. Our findings provided ideas
for predicting clinical outcome and guiding treatment strategies based on TME infiltration pattern in non-
squamous NSCLC. Meanwhile, the constructed TMEsig-score quantified the TME immune infiltration of
individual tumors and promoted personalized cancer immunotherapy in the future.
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Methods

Collection and preprocessing of publicly attainable data sets. Multiomics sequencing data and clinical annota-
tion of nonsquamous NSCLC samples were retrospectively collected from publicly available data sets of
the NCBI GEO (https://www.ncbi.nlm.nih.gov/geo/), TCGA (https://cancergenome.nih.gov/), and the
CPTAC databases (https://cptac-data-portal.georgetown.edu/cptac). The selection criteria of nonsqua-
mous NSCLC data sets were adopted from the workflow of Li et al. (46) in which a sample size less than 100
was excluded. Finally, a total of 2324 nonsquamous NSCLC patients were enrolled for this analysis, includ-
ing those from the GSE30219 (n = 187), GSE31210 (n = 226), GSE37745 (n = 130), GSE50081 (n = 138),
GSE41271 (n = 194), GSE68465 (n = 442), GSE72094 (n = 398), TCGA-LUAD (n = 499), and CPTAC-LU-
AD (n=110) (37) (Supplemental Table 2). GSE42127 (47) was excluded from this analysis because its probe
cell intensity (CEL) files extensively overlapped with the GSE41271 series. Since the GSE30219, GSE31210,
GSE37745, and GSE5008 data sets adopted the same microarray sequencing platform (Affymetrix HG-U133
plus 2.0), we downloaded the raw CEL files and performed identical background adjustment and quantile
normalization by affy and simpleaffy packages. We then further integrated them into a meta-cohort by using
ComBat function from R package sva for batch removal. GSE41271, GSE68465, GSE72094, TCGA-LU-
AD, and CPTAC-LUAD were recognized as the independent validation cohorts. TCGA RNA-sequenc-
ing data (FPKM format) were downloaded from the UCSC Xena (https://gdc.xenahubs.net/download/
TCGA-LUAD.htseq_fpkm.tsv.gz) and transformed into transcripts per kilobase million (TPM) format. The
clinical information and cluster subtyping of the meta-GEO and TCGA data sets are listed in Supplemental
Tables 3 and 4 In addition, gene-level proteomics and phosphoproteomic data were downloaded from the
CPTAC website, and protein abundances were log2-transformed and median-centered.

Comparison of genomic alterations. The somatic mutation (MuTect2) and CNV data of TCGA-LUAD were
downloaded from TCGA database (https://portal.gdc.cancer.gov/). Nonsynonymous mutation (including
frameshift mutation, inflame mutation, missense mutation, nonsense mutation and splice site mutation)
counts were recognized as TMB. The GISTIC score and gene copy number amplification and deletion data
for each sample were analyzed by GISTIC 2.0 software and plotted by maftools package. The FGA, SCNA,
and aneuploidy score of each lung cancer sample was determined and curated from previous studies (20).

Inference of infiltrating cells in the TME. To fully portray the cellular heterogeneity of the TME land-
scape in the NSCLC, we utilized the gene signature—based xCell algorithm (48) to infer 64 immune
and stromal cell types, spanning multiple adaptive and innate immunity cells, hematopoietic progen-
itors, epithelial cells, and ECM cells. The xCell employed a curve fitting approach for linear compar-
ison of cell types and introduced a novel spillover compensation technique to reduce dependencies
between closely related cell types. Gene expression profiles were prepared using standard annotation
files, and data were uploaded to the xCell web portal (https://xcell.ucsf.edu/), with the algorithm run
using the xCell signature. Moreover, we also employed the CIBERSORT and MCP-counter algorithms
to quantify the immune cell subsets and validate the reliability of xCell-identified 3 TME clusters of
NSCLC. CIBERSORT (49) is a deconvolution algorithm that uses a set of reference gene expression
values (a signature with 547 genes) considered a minimal representation for each cell type and, based
on those values, infers cell type proportions in data from bulk tumor samples with mixed cell types
using support vector regression. MCP-counter (50) is a transcriptomic marker-based approach, which
allows the robust quantification of the absolute abundance of 8§ immune and 2 stromal cell populations
in heterogeneous tissues.

Consensus molecular clustering for TME-infiltrating cells. We performed hierarchical consensus clustering
with non-NMF algorithm to identify distinct TME immune patterns based on the infiltration level of 64
cell subpopulations. The xCell-derived cell profiles were factorized into 2 non-negative matrices, W and
H (i.e., AWH). Repeated factorization of matrix A was performed, and its outputs were aggregated to
obtain consensus clustering of NSCLC samples. The optimal number of clusters was selected according to
cophenetic, dispersion, and silhouette coefficients. The R package NMF (version 0.22.0) with the Frobe-
nius algorithm and 200 nruns was used to perform the consensus clustering in both the meta-GEO data set
and TCGA cohort. Besides, 3D projection on NSCLC tumor clustering was performed by UMAP-based
dimension reduction and visualized by plotly package.

GSVA and GO annotation. We utilized the GSVA algorithm within the R package GSVA to investi-
gate the variation in biological processes among different TME cluster patterns. The well-defined bio-
logical signatures were derived from the Hallmark gene set (downloaded from MSigDB database v7.1),
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Mariathasan et al. constructed gene set (21) (curated from IMvigor210CoreBiologies packages), and
Thorsson et al. constructed gene sets (19). GO annotation for TME phenotype-related genes was per-
formed in the R package clusterProfiler with the cutoff value of FDR < 0.01.

Quantifying the predictors of immune response: T cell GEP score, TIDE, and ESTIMATE. T cell-inflamed GEP
is a superior predictor of response to anti-PD-1 regimens, which contains IFN-y-responsive genes related to
antigen presentation, cytotoxic activity, and adaptive immune resistance (51). The T cell-inflamed scores were
calculated and weighted by averaging of the included genes for the IFN-y (6-gene) and expanded immune (18-
gene) signatures. The TIDE algorithm proposed by Jiang et al. was utilized to model distinct tumor immune
evasion mechanisms (52), including dysfunction of tumor-infiltrating cytotoxic T lymphocytes (CTLs) and
exclusion of CTLs by immunosuppressive factors. A higher TIDE score indicated cells more likely to induce
immune escape, thus indicating a lower response rate to ICI treatment. The ESTIMATE algorithm (53),
which takes advantage of the unique properties of the transcriptional profiles, was used to infer the infiltration
level of immune and stromal cell score in tumor tissues and to estimate tumor purity. Tumor tissues with
abundant immune cell infiltration represented a higher immune score and lower level of tumor purity.

SMGs and tumor mutational signatures. We utilized the MutSigCV algorithm described in a prior
study and filtration criteria to identify SMGs (54, 55). The mutational landscape of identified SMGs in
TCGA cohort was depicted by the waterfall function of the R GenVisR package. Mutational signatures
extracted from TCGA genomic data adopted the maftools package. ExtractSignatures function, based
on Bayesian variant non-NMF, factorized the mutation portrait matrix into 2 non-negative matrix
signatures and contributions, where signatures represent mutational processes and contributions rep-
resent the corresponding mutational activities. The SignatureEnrichment function can automatically
determine the optimal number of extracted mutational signatures and assign them to each sample
based on the mutational activities. The extracted mutational portrait of lung cancer was compared and
annotated by cosine similarity analysis against the COSMIC.

Identification of DEGs between distinct TME modification phenotypes. Our consensus clustering algorithm
divided patients into 3 distinct TME infiltration patterns, and we next determined TME infiltration pat-
tern—related DEGs between distinct TME phenotypes. The R package limma was used to evaluate DEGs
in lung cancer samples between different TME clusters. Specifically, gene expression data were normalized
by voom and then fed to ImFit and eBayes functions to calculate the differentially expressed statistics. The
significance filtering criteria of DEGs was set as an adjusted P value less than 0.001.

Construction of the TME signature score. We constructed a TMEsig scoring scheme to quantify the relative
TME infiltration level of individual patients by using principal component analysis (PCA). Specifically,
the overlapping DEGs identified from different TME clusters were curated and employed to perform prog-
nostic analysis for each gene using a univariate Cox regression model (Supplemental Table 5). The genes
with a significant prognostic impact were extracted for further feature selection by using recursive feature
elimination with random forest and the 10-fold cross-validation method in the caret R package. We then
curated the expression profile of the final determined genes to perform PCA, and principal components
1 and 2 were extracted and served as the signature score. This method mainly focuses on the score on the
set with the largest block of well-correlated (or inverse-correlated) genes in the set, while downweighting
contributions from genes that do not track with other set members. We then adopted a formula similar to
previous study to define the TMEsig-score (56): TMEsig-score = Y>(PC1 +PC2), where , is the expression of
final determined TME phenotype-related genes.

Cell lines and culture conditions and reagents. Calu-3 cells, NCI-H23 cells, NCI-H1299 cells, NCI-H358
cells, NCI-H838 cells, NCI-H1395, and NCI-H2126 cells were purchased from ATCC. Authentication of
the cells was performed by short tandem repeat analysis at Beijing Microread Genetics Co., Ltd. NCI-H23
cells, NCI-H1299 cells, NCI-H358 cells, NCI-H838 cells, NCI-H1395 cells, and NCI-H2126 cells were cul-
tured in 1640 medium (Gibco) supplemented with 10% fetal bovine serum (Gibco) in a 5% CO, incubator
at 37°C, while Calu-3 cells were in DMEM (Gibco).

Western blot analysis and antibodies. In brief, total cell lysates were prepared with cell lysis buffer.
After denaturing via boiling, total protein was quantified using a BCA protein assay kit (Solarbio).
Equivalent amounts of protein were separated by SDS-PAGE at 80 V for 2.5 hours and transfected to
PVDF membranes for 1.5 hours. The membranes were washed using 1% TBST by 3 cycles of 5 min-
utes after incubation with primary antibodies targeting cGAS (Santa Cruz Biotechnology, SC-515777),
STING (Cell Signaling Technology, CST13647S), p-STING (Cell Signaling Technology, CST19781S),
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TBK1 (Cell Signaling Technology, CST3504S), NF-«B (Cell Signaling Technology, CST4764S), p-NF-xB
(Cell Signaling Technology, CST3033S), /IRF3 (Santa Cruz Biotechnology, SC-33641), p-IRF3 (Cell Sig-
naling Technology, CST29047S), CCL5 (Santa Cruz Biotechnology, SC-514019), CXCLI10 (Santa Cruz
Biotechnology, SC-374092), and B-actin (Proteintech, 20536-1-AP) at 4°C overnight. Then membranes
were treated with secondary antibodies (Proteintech, SA00001-1 and SA00001-2).

Collection of transcriptomic and clinical information of the ICI-based cohort. We systematically searched the
gene expression profiles in ICIs, which could be publicly obtained and coupled with detailed clinical infor-
mation. Two immunotherapeutic cohorts were finally included in our study: metastatic melanoma treated
with nivolumab/pembrolizumab (anti-PD-1 monoclonal Ab) (57) and metastatic urothelial cancer treated
with atezolizumab (anti-PD-L1 mcAb) (21). The gene expression profiles of pretherapy biopsy samples
were curated and transformed into the TPM format for further analysis.

Statistics. The statistical analyses in this study were generated by R 3.6.1. For quantitative data, statistical
significance for normally distributed variables was estimated by Student’s 2-tailed ¢ tests, and non-normally
distributed variables were analyzed by the Wilcoxon’s rank-sum test. For comparisons of more than 2 groups,
Kruskal-Wallis tests and 1-way ANOVA were used as nonparametric and parametric methods, respectively.
The y? test and Fisher’s exact test were used to analyze contingency tables depending on specific grouping con-
dition. Cox proportional hazards model was used to analyze the association between the TME modification
pattern and prognosis with the R package forestmodel. The surv-cutpoint function from the survminer package
utilized the maximally selected rank statistics to determine the optimal cutpoint, and was applied to stratify
samples into high and low TMEsig-score subgroups. The C-index proposed by Harrell et al. (58) and the ROC
curve were used to assess the prognosis classification performance of the TMEsig-score model, and the C-in-
dex and AUC were calculated by using survcomp and timeROC packages, respectively. Nomogram model
combined with TMEsig and detailed clinical information was utilized for calculating the survival probability by
using rms package. All comparisons were 2 sided with an a level of 0.05, and the Benjamini-Hochberg method
was applied to control the FDR for multiple-hypothesis testing.

Study approval. This study was approved by the Shandong Provincial Hospital Institutional Review
Board (Jinan, China), which waived additional informed consent because all data used in this study were
obtained from public databases. Participants in the original studies have provided informed consent.
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