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Introduction
Nonsquamous non–small cell lung cancer (NSCLC) is the most common cancer worldwide and 
accounts for approximately 55%–60% of  lung cancer deaths (1). Despite great advances in the treat-
ment of  nonsquamous NSCLC, the prognosis remains poor due to the presence of  locally advanced or 
widely metastatic tumors in the majority of  patients at the time of  diagnosis (2). Thus, reliable markers 
that can precisely estimate clinical prognosis and therapeutic response would have tremendous value 

Recent studies highlighted the clinicopathologic importance of the tumor microenvironment 
(TME) in delineating molecular attributes and therapeutic potentials. However, the overall 
TME cell infiltration landscape in nonsquamous non–small cell lung cancer (NSCLC) has not 
been comprehensively characterized. In this study, we used consensus non-negative matrix 
factorization molecular subtyping to determine TME cell infiltration patterns and identified 3 
TME clusters (TME-C1, -C2, -C3) characterized by distinct clinicopathologic features, infiltrating 
cells, and biological processes. Proteomics analyses revealed that cyclic GMP-AMP–stimulator of 
interferon genes immune signaling–mediated protein and phosphorylation levels were significantly 
upregulated in inflammation-related TME-C2 clusters. The score extracted from the TME-related 
signature (TMEsig-score) divided patients with NSCLC into high- and low-score subgroups, where 
a high score was associated with favorable prognosis and immune infiltration. The genomic 
landscape revealed that patients with low TMEsig-score harbored more somatic copy number 
alterations and higher mutation frequency of driver genes involving STK11, KEAP1, SMARCA4, and 
others. Drug sensitivity analyses suggested that tumors with high TMEsig-score were responsible 
for favorable clinical response to immune checkpoint inhibitor treatment. In summary, this study 
highlights that comprehensive recognizing of the TME cell infiltration landscape will contribute to 
enhancing our understanding of TME immune regulation and promote effectiveness of precision 
biotherapy strategies.
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in guiding the management of  lung cancer (3). The critical role of  the tumor immune microenviron-
ment on cancer development and metastasis has been recently recognized, suggesting that infiltration 
of  various types of  immune and stroma cells in tumor parenchyma might be a promising source of  
drug target and prognostic biomarkers (4). Indeed, assessment of  the extent of  tumor-infiltrating lym-
phocytes has been confirmed to be an important supplemental marker to the TNM staging system for 
relapse and mortality prediction (5). Therefore, understanding of  the tumor microenvironment (TME) 
in NSCLC is critical and remains to be investigated.

A growing appreciation of  the role of  the TME in promoting lung carcinogenesis has also driven the 
development of  anticancer therapies that target the TME (6). Recent immunotherapies targeting specific 
immune checkpoint molecules, such as programmed cell death 1 (PD-1) (e.g., pembrolizumab and nivolum-
ab) or programmed cell death ligand 1 (PD-L1) (e.g., atezolizumab), have demonstrated a remarkable clini-
cal benefit in NSCLC (7, 8). Moreover, drugs targeting other components of  the TME, including transform-
ing growth factor–β (TGF-β), vascular endothelial growth factor (VEGF), and aromatase, have already been 
used in clinical practice or trials (2, 4). Besides immune cells, tumors are also surrounded by vasculature, 
cancer-associated fibroblasts (CAFs), extracellular matrix (ECM), and more (9), which are considered to 
have a complex impact on tumorigenesis and immune surveillance. Therefore, understanding the hetero-
typic reciprocal crosstalk among cancer cells, various stromal cells, and ECM is an area of  active research.

However, conventional methods of  measuring the tumor immune and stromal cells, such as immu-
nohistochemistry or flow cytometry, are not capable of  comprehensively assessing the immune effects 
of  different cell types or do not show effective discriminating power among closely related cell popula-
tions, which is largely due to the limitation in the number of  immune markers that can be simultane-
ously measured with current techniques (10). As an alternative, continuously accumulating multiomics 
data provided an ideal resource for large-scale analysis of  the TME landscape, and various computa-
tional approaches (e.g., xCell, CIBERSORT, MCP-counter) (11) have been developed and utilized to 
dissect the TME. Therefore, a comprehensive dissection of  the heterogeneity and complexity of  TME 
landscape would contribute to identifying different tumor immune phenotypes and guiding patients 
into personalized therapeutic regimens (12). Certain transcriptomic and genomic signatures, such as T 
cell–inflamed gene expression profile (GEP), ImmuneScore, aneuploidy, and tumor mutation burden 
(TMB), have also been associated with immune modulation and immunotherapy benefits (13). Addi-
tionally, phosphoproteomics provided abundant resources to investigate the potential immune modu-
lation mechanism and therapeutic vulnerabilities in NSCLC. Therefore, promising biomarkers could 
be revealed, which will prove highly effective in recognizing patients’ response to immunotherapy and 
will benefit the search for new therapeutic targets.

In this study, we systematically characterized the fractions of  64 immune and stromal cell types based 
on the xCell-annotated nonsquamous NSCLC immune profile. Three distinct TME cell–infiltrating pat-
terns (termed as TME-C1, -C2, and -C3) with unsupervised consensus clustering were identified, and the 
distribution of  cell subsets was corroborated by CIBERSORT and MCP-counter algorithms. The molec-
ular characteristics and clinicopathologic features of  these 3 TME clusters were closely linked to 3 previ-
ously reported immunophenotypes: immune excluded, inflamed, and desert (14, 15). Proteomics analyses 
revealed that cyclic GMP-AMP–stimulator of  interferon genes (cCAMP-STING) immune signaling–medi-
ated protein and phosphorylation levels were significantly augmented in the TME-C2 subtype. Moreover, 
we constructed a scoring scheme to quantify the immune infiltration level of  individual tumors and guide 
patients’ immune checkpoint inhibitor (ICI) therapy regimens. These findings will contribute to enhancing 
our cognition of  TME infiltration characterization and developing more effective immunotherapy strate-
gies for NSCLC.

Results
Cellular landscape and immune profile of  TME cell infiltration patterns in NSCLC. We first summarized the work-
flow of  our study design to illustrate the construction scheme of  nonsquamous NSCLC TME cell–infil-
trating patterns and TME signatures (Figure 1). The meta–National Center for Biotechnology Information 
Gene Expression Omnibus (meta-GEO) cohort of  681 NSCLC tumors with matched TME cell profiles 
were stratified into 3 distinct clusters by unsupervised hierarchical clustering analysis (Supplemental Fig-
ure 1, A and B; supplemental material available online with this article; https://doi.org/10.1172/jci.
insight.152815DS1). The 3 TME cluster pattern was dominated by different TME cell infiltration profiles, 
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respectively termed TME-C1, TME-C2, and TME-C3 (Figure 2A). The 3D projection of  tumors per TME 
clusters (subnetworks) based on uniform manifold approximation and projection (UMAP) unsupervised 
clustering corroborated the classification effect of  non–negative matrix factorization (non-NMF) (Figure 
2B). Based on the box plot of  xCell-annotated cell enrichment score, most of  the cell subpopulations had 
a significant difference among the 3 TME clusters (Supplemental Figure 1C). TME-C1 was characterized 
by upregulation in the infiltration of  endothelial cells, hepatocytes, fibroblasts, monocytes, epithelial cells, 
and others; TME-C2 was distinguished by CD8+ T cells, CD4+ T cells, macrophage M1 cells, NK cells, and 
others; and TME-C3 was enriched for Th2 cells, multipotent progenitors, smooth muscle cells, basophils, 
and others (Figure 2A and Supplemental Figure 1C). Consistent with the above results, we also classified 
the TME cell profiles of  The Cancer Genome Atlas lung adenocarcinoma (TCGA-LUAD) tumors into 3 
clusters and noticed the similar distribution of  cell subpopulations among the 3 TME clusters (Supplemen-
tal Figure 1D). We further used the ESTIMATE algorithm to quantify the overall immune infiltration (Esti-
mate-ImmuneScore) and tumor cell purity (Estimate-tumor purity) among the 3 TME patterns. TME-C2 
exhibited the highest immune scores, followed by TME-C1 and TME-C3 in meta-GEO and TCGA cohorts 
(Kruskal-Wallis H test, both P < 0.001, Figure 2C and Supplemental Figure 2A). Conversely, TME-C3 
had a higher tumor purity than TME-C1 and TME-C2, suggesting that TME-C3 subtype tumors were 
surrounded by fewer nontumor components (e.g., immune cells and stromal cells) (Kruskal-Wallis H test, 
P < 0.001, Figure 2D). Moreover, we separately investigated the distribution of  T cell–inflamed GEP score 
and PD-L1 (CD274) expression among the 3 TME clusters and found that TME-C2 exhibited the highest T 
cell–inflamed score and PD-L1 level compared with TME-C1 and TME-C3 (Kruskal-Wallis H test, meta-
GEO cohort, Figure 2, E and F; TCGA-LUAD, Supplemental Figure 2, B and C; both P < 0.001). We also 
employed the CIBERSORT and MCP-counter algorithms to infer the microenvironment cell subsets and 
noticed a significant difference of  immune and stroma cell distributions within the 3 TME clusters (Supple-
mental Figure 2, D and E).

Furthermore, prognosis analyses revealed significant differences between the 3 TME cell–infiltrating 
subgroups, in which TME-C2 exhibited a prominent survival advantage, whereas TME-C3 represented 
the worst prognosis in the meta-GEO cohort (P < 0.001, log-rank test, Figure 2G). Multivariate Cox pro-
portional hazards regression analysis further demonstrated that the TME clustering model was associated 
with patients’ survival outcome after adjusting for clinicopathologic factors in these 2 cohorts (meta-GEO 
cohort: TME-C1 vs. TME-C2, HR 0.66 [95% CI, 0.50 to 0.86], P = 0.002; Figure 2H). We also performed 
identical analyses in TCGA-LUAD cohort, and similar results were ascertained (P = 0.016, log-rank test, 
Figure 2I; TME-C1 vs. TME-C2, HR 0.69 [95% CI, 0.49 to 0.99], P = 0.042, Figure 2J).

TME infiltration patterns characterized by specific clinical features and molecular processes. Next, we 
explored the relationship between TME clustering patterns and conventional clinical characteristics 
in nonsquamous NSCLC (Figure 3A). The TCGA genomic analysis revealed an overall molecular 
characterization of  LUAD and suggested LUAD was classified into 3 transcriptional subtypes (proxi-
mal-inflammatory [PI], proximal-proliferative [PP], and terminal respiratory unit [TRU]) or 3 methyl-
ation subtypes (significantly altered CpG island methylator phenotype-high [CIMP-high], CIMP-low, 
CIMP-intermediate) (16). In this study, TME-C2 tumors were predominantly clustered into prognosti-
cally favorable subtypes of  TRU and CIMP-intermediate, whereas TME-C3 tumors were mainly con-
centrated within the worse outcome subtypes of  PP and CIMP-low (Supplemental Figure 3, A and B). 
Cigarette smoking–caused genomic instability is a common factor that contributes to TME remodeling. 
We observed that the proportion of  current smokers in the TME-C2 subtype was significantly higher 
than other subtypes (Supplemental Figure 3C), which suggested that tobacco smoking may promote the 
formation of  a proinflammatory TME. Emerging evidence has shown that oncogenic driver mutations 
(e.g., TP53, KRAS, KEAP1, STK11, and EGFR) are associated with discrete immune phenotypes in 
LUADs (17, 18). We also investigated the association between gene mutation and TME clusters and 
noticed that KEAP1- and STK11-mutated tumors exhibited a significantly lower proportion of  TME-C2 
cluster than wild-type tumors (Figure 3B). However, marginal differences were observed in terms of  
TP53, EGFR, and KRAS mutations (Supplemental Figure 3D). Recent immunogenomic analysis also 
identified 6 immune subtypes across cancer types (19). Subsequent studies showed that the identified 
immune subtypes of  macrophage regulation, lymphocyte infiltration signature, and IFN-γ response 
were markedly elevated in the TME-C2 subgroup, yet wound healing and proliferation were enhanced 
in TME-C1 and TME-C3 subgroups (Supplemental Figure 3E). We further compared the somatic copy 
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number alterations (SCNAs) and aneuploidy score with TME clusters and observed a lower SCNA and 
aneuploidy level in TME-C2 (Figure 3, C and D), consistent with the previous conclusions that SCNA 
and aneuploidy score correlated positively with immune evasion and tumor cell proliferation (20).

To explore the biological molecular changes underlying 3 distinct TME phenotypes, we performed gene 
set variation analysis (GSVA) against the Hallmark gene set in NSCLC tumors (Figure 3E and Supplemental 
Figure 3F). GSVA results indicated that TME-C2 was significantly enriched in immune infiltration–related 
circuits, including IFN-γ/α response, allograft rejection, IL-6/JAK/STAT3 signaling, inflammatory response, 
and so on; TME-C1 was highly enriched in stroma-related signaling pathways, including TGF-β pathway, 
epithelial-mesenchymal transition (EMT), P53 pathway, and so on; TME-C3 presented enrichment path-
ways prominently associated with carcinogenic activation and highly proliferative features, such as fatty 
acid metabolism, PI3K/AKT/mTOR, G2M checkpoint, E2F targets, MYC target V1/V2, mitotic spindle, 
and so on. Interestingly, moderate immune activation and immune cell infiltration were also observed in 
the TME-C1 cluster and consistent with the previously reported immunophenotype of  immune excluded, 
in which immune cells are retained in the stroma surrounding tumor cell nests rather than penetrating their 
parenchyma (14, 15). Subsequent analyses by using the Mariathasan et al. curated signaling signature set (21) 
demonstrated that stroma and angiogenesis activity were significantly enhanced in TME-C1 while immune 
activation was markedly elevated in TME-C2, which confirmed our speculation (Supplemental Figure 3G).

We further investigated the enriched pathways between TME-C2 and TME-C3 against a REAC-
TOME gene set with gene set enrichment analysis (GSEA). Strikingly, STING-mediated innate 
immune response to cytosolic DNA was significantly enriched in TME-C2 clusters (Figure 3F).  

Figure 1. The overview of study design to evaluate the construction scheme of TME cell–infiltrating patterns and TMEsig-score in nonsquamous NSCLC.
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Considering the activation of  cGAS-STING pathway resulted in TBK1 and IRF3 protein phosphoryla-
tion and further induced the production of  IFNs and inflammatory cytokines (CXCL10 and CCL5), we 
downloaded and curated the Clinical Proteomic Tumor Analysis Consortium LUAD (CPTAC-LUAD) 
multiomics data to validate the potential regulation mechanism. Inferred TME cell infiltration pat-
terns based on the NMF algorithm were compared with CPTAC-LUAD–defined immune clusters (hot 
tumor enriched [HTE], cold tumor enriched [CTE], and normal adjacent tissue–enriched [NAT-en-
riched]) and noticed that TME-C2 was significantly dominated by HTE, whereas TME-C1 and -C3 
were mainly clustered in CTE (P < 0.001, Figure 3G). Similarly, TME-C2 exhibited the highest Esti-
mate-ImmuneScore, followed by TME-C1 and TME-C3 in the CPTAC-LUAD cohort (Kruskal-Wallis H 
test, P < 0.001, Supplemental Figure 3H). In order to comprehensively characterize the cGAS-STING 
milieu across 3 clusters, we analyzed the expression of  crucial STING-related mRNAs and proteins 
(including TMEM173, cGAS, TBK1, IRF3, NFKB1, NFKB2, RELB, CCL5, CCL10, and STAT1) in the 
CPTAC samples. A significant elevation of  STING-related mRNA and protein levels was observed 
in the TME-C2 cluster (Figure 3H and Supplemental Figure 3I). We further compared the IRF3 and 
NFKBIE protein phosphorylation level between the 3 TME clusters and noticed a pronounced upregu-
lation in the TME-C2 cluster (Figure 3, I and J).

Based on these findings, we speculated that the identified 3 TME cell infiltration patterns were charac-
terized by distinct immune phenotypes. TME-C2 was recognized as an immune-inflamed phenotype and 
characterized by immune pathway activation and abundant immune cell infiltration, as well as downregu-
lation of  SCNAs and aneuploidy. TME-C3 was recognized as an immune-desert phenotype and represent-
ed by tumor cell proliferation, glycolysis, and suppression of  immunity, coupled with a higher mutation 
rate of  KEAP1 and STK11. TME-C1 was recognized as an immune-excluded phenotype and distinguished 
by stromal activation and exclusion of  immune cell infiltration.

TME phenotype-related DEGs in NSCLC. To identify the underlying genetic alterations and expression 
perturbations of  each TME phenotype, we applied the empirical Bayes algorithm to determine the over-
lapping DEGs between the 3 TME phenotypes. A total of  657 DEGs that represented the critical distin-
guishing index of  the 3 TME patterns were considered TME signature genes and illustrated in a Venn 
diagram (Figure 4A). Based on the representative TME phenotype-related signature genes, we performed 
unsupervised consensus clustering analysis and obtained 3 stable TME transcriptomic subtypes. These 
stratifications divided NSCLC patients into 3 distinct TME gene signature subgroups characterized by 
distinct clinicopathologic features, which were defined as TMEsig-S1, TMEsig-S2, and TMEsig-S3, respec-
tively (meta-GEO cohort, Figure 4B; TCGA cohort, Supplemental Figure 4A). We found that patients in 
the TMEsig-S2 subgroup were dominated by a higher proportion of  male sex and advanced tumor stage, 
and patients with TME-C3 infiltration pattern were mainly concentrated in the TMEsig-S2 subgroup. Gene 
ontology (GO) enrichment and Metascape analyses of  these signature genes revealed that immune-relat-
ed biological processes were significantly overrepresented (Figure 4, C and D). Further prognosis anal-
ysis indicated that the survival outcomes of  the 3 TME signature subtypes were significantly different 
in NSCLC samples. The TMEsig-S1 signature was proved to be associated with better prognosis, while 
TMEsig-S2 was associated with a worse survival outcome (meta-GEO cohort: P < 0.001; TCGA-LUAD 
cohort: P = 0.001, log-rank test, Figure 4, E and F). Similarly, the TME signature subtype could stratify 
patients into subgroups with significantly different prognoses in the independent validation cohorts (GEO 
GSE72094, GSE68465, GSE41271, all P < 0.05; Supplemental Figure 4, B–D). The association between 
the TME gene signatures and survival remained statistically significant after taking into account age, sex, 

Figure 2. Association of TME cell–infiltrating patterns with immune signature and prognosis in NSCLC. (A) Unsupervised clustering of TME cell landscape 
for 681 lung cancer patients in meta-GEO cohort. Stage, sex, age, GEO database cohort, and TME cluster are shown as patient annotations. The numbers 
of patients with TME-C1, TME-C2, and TME-C3 phenotypes are 292, 253, and 136, respectively. (B) 3D UMAP projection of NSCLC tumors per TME subtype 
(subnetworks) based on unsupervised clustering. (C–F) Indicator of immune infiltration level was compared by Kruskal-Wallis test among 3 TME clusters, 
including immune score (C), tumor purity (D), T cell immune GEP score (E), and PD-L1 expression (F). When P < 0.05, pairwise comparisons were made using 
Dunn’s test with Benjamini-Hochberg adjustment for multiple comparisons. (G) Kaplan-Meier curves for overall survival of 3 TME phenotypes in NSCLC 
meta-GEO cohort. (Log-rank test, P < 0.001.) (H) Forest plot representation of multivariate Cox model depicted association between TME clusters and over-
all survival (OS) after being adjusted for age, sex, and stage. Square data markers indicate estimated hazard ratios (HRs) and the length of the horizontal 
line represented the 95% confidence interval for each variable. (I) Kaplan-Meier curves for OS of 3 TME clusters in TCGA-LUAD cohort; log-rank test, P = 
0.016. The numbers of patients in TME-C1, TME-C2, and TME-C3 clusters are 199, 195, and 106, respectively. (J) Forest plot representation of multivariate Cox 
model–calculated association between OS and TME cluster with other clinical factors taken into account.
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Figure 3. Clinical characteristics and biological processes among 3 TME cell infiltration patterns. (A) An overview of the association between TME 
clusters and nonsquamous NSCLC clinical and molecular characteristics in TCGA cohort. (B) The mutational proportion of STK11 and KEAP1 among 3 
TME clusters (Fisher’s exact test). (C and D) SCNA (C) and aneuploidy score (D) was compared between 3 TME clusters (Kruskal-Wallis H test followed 
by Dunn’s test for pairwise comparisons). (E) Heatmap shows the top enriched biological pathways calculated by GSVA algorithm in distinct TME 
phenotypes. Hallmark gene set (h.all.v7.0) curated from Molecular Signatures Database (MSigDB) was regarded as the reference gene signatures. 
(F) GSEA plots showing the cGAS-STING-IRF3–mediated gene sets were enriched in TME-C2. (G) Comparison of TME clusters with CPTAC annotated 
immune groups in CPTAC-LUAD proteomics cohort (Fisher’s exact test). (H) Comparison of the protein expression levels of STING pathway-related 
molecules among 3 TME clusters in CPTAC cohort. (I and J) Violin plot shows the phospho-IRF3 (S157) and phospho-NFKBIE (S157) protein levels 
among different TME clusters. The bottom and top of the boxes were the 25th and 75th percentiles (interquartile range). The whiskers encompassed 
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and tumor stage in the meta-GEO cohort (Cox proportional hazards model, TMEsig-S2 vs. TMEsig-S3, 
HR 0.78 [95% CI, 0.60 to 1.00], P = 0.054; TMEsig-S2 vs. TMEsig-S1, HR 0.48 [95% CI, 0.36 to 0.65], P 
< 0.001; Supplemental Figure 4E). Consistent results were obtained in TCGA-LUAD cohort (Cox model, 
TMEsig-S2 vs. TMEsig-S3, HR 0.64 [95% CI, 0.44 to 0.93], P = 0.019; TMEsig-S2 vs. TMEsig-S1, HR 
0.49 [95% CI, 0.33 to 0.73], P < 0.001; Supplemental Figure 4F).

The immune cell subsets and gene sets were also compared among the 3 TME gene signature subtypes. 
Here, we utilized Charoentong et al.’s (22) curated 28 representative immune cells to explore the immune 
infiltration level. We observed a significant elevation in cytotoxic T lymphocytes, B cells, and dendritic cells 
yet a reduction of  neutrophils, regulatory T cells, and Th cells in the TMEsig-S2 subgroup (Supplemental Fig-
ure 4G). Then we analyzed the expression of  inflammatory, stroma-related mRNAs in the NSCLC samples 
to explore the relationship between the 3 gene clusters and the molecular perturbation milieu (Supplemental 
Figure 4H). CXCL9, GZMA, PRF1, CD8A, TNF, PDCD1, LAG3, and CTLA4 were considered immune-activat-
ed-related transcripts; TGFB1, ACTA2, COL4A1, TWIST1, ADAM12, FSTL3, SMAD9, and TPM1 were con-
sidered to be TGF-β/EMT pathway-relevant transcripts; CCNE1, RFC3, MKI67, POLD2, LIG1, BRCA1, FAN-
CA, FANCD2, CDK2, and POLE were considered to be cell cycle/proliferation–related transcripts. We found 
the mRNAs relevant to the immune-activated pathway were substantially upregulated in TME-S1, which 
suggested this subtype was deemed as an immune-activated group, while TME-S2 and TME-S3 showed high 
expression of  mRNAs related to stroma-activated and cell proliferation–related transcripts.

Construction of  the TMEsig-score and exploration of  its clinical and molecular relevance. The aforementioned 
results validated the role of  TME phenotype in regulation of  prognosis and immune infiltration, but these 
analyses were only based on patient populations and cannot accurately predict the pattern of  TME phe-
notype in individual tumors. Therefore, we developed a scoring scheme termed TMEsig-score (Methods), 
which based on specified TME signature genes related to prognosis, quantifies the TME immune infiltration 
of  individuals with NSCLC. Multivariate Cox regression model analysis considering patient age, sex, and 
tumor stage showed the TMEsig-score served as an independent prognostic biomarker for evaluating patient 
outcomes in NSCLC (meta-GEO cohort, HR 0.98 [95% CI, 0.97 to 0.99], P < 0.001; TCGA-LUAD cohort, 
HR 0.98 [95% CI, 0.96 to 0.99], P < 0.001, Supplemental Figure 5, A and B). Considering the stability of  the 
developed scoring system, we compared the prognostic value of  our TMEsig-score with previous identified 
risk score models (23–26) in lung cancer: the Harrell concordance index (C-index) for the overall survival 
of  TMEsig-score was 0.696 [95% CI 0.657–0.734] and marginally larger than the other 4 score models (risk 
model by Li et al. 0.650 [0.611–0.690], risk score by Zhao et al. 0.630 [0.590–0.678], immune risk score 
by Zhang et al. 0.609 [0.569–0.649], immune signature by Song et al. 0.627 [0.586−0.668]; Supplemental 
Figure 5C). We further stratified the nonsquamous NSCLC tumors into high versus low TMEsig-score sub-
group based on the optimal cutoff  point of  the meta-GEO cohort (Methods, Figure 5A). Kaplan-Meier plot 
showed that the high TMEsig-score subgroup was significantly associated with a better prognosis (HR, 0.44 
[95% CI, 0.35 to 0.57], P < 0.001, Figure 5B). This cutoff  value was also employed in TCGA-LUAD cohort 
and revealed a similar result (HR, 0.54 [95% CI, 0.40 to 0.73], P < 0.001, log-rank test, Figure 5C).

Furthermore, we also compared the TMEsig-score with TME cell infiltration patterns and TMEsig 
subtype and noticed that TME-C3 and TMEsig-S2 exhibited a lower TMEsig-score, whereas TME-C2 
and TMEsig-S1 were linked to a higher TMEsig-score (Figure 5D and Supplemental Figure 5D). We also 
explored the relationship between the TMEsig-score and TCGA molecular subtype to find that the TRU 
subtype was linked to the highest TMEsig-score, and the PP subtype was linked to a lower TMEsig-score 
than the PI subtype (Figure 5E). An alluvial graph was used to further show the dynamic change of  spec-
imens’ flow in different TME phenotypes (Supplemental Figure 5E). Next, we examined the relationship 
between ESTIMATE algorithm–inferred overall immune infiltration (ImmuneScore) and the TMEsig-score 
through Spearman analysis to find a significantly positive correlation between the TMEsig-score and the 
ImmuneScore (r = 0.67, P < 0.001, Figure 5F). Meanwhile, it was found that the high TMEsig-score sub-
group had a higher level of  immune subtype of  lymphocyte infiltration signature, macrophage regulation, 
and IFN-γ response but lower level of  proliferation and wound healing compared with patients with a low 
TMEsig-score (Supplemental Figure 5F).

1.5 times the interquartile range. The statistical difference of 3 gene clusters was compared through the Kruskal-Wallis H test. ***P < 0.001. PI, 
proximal-inflamed; PP, proximal-proliferation; TRU, terminal respiratory unit.
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We further constructed the TMEsig-score model in the CPTAC cohort and found that the majority 
of  HTE tumors were concentrated in the high TMEsig-score subgroup (χ2 test, P < 0.001, Figure 5G). 
ImmuneScore was significantly upregulated in the high TMEsig-Score group likewise (Supplemental Fig-
ure 5G). Aforementioned results revealed the enrichment of  STING-mediated innate immune response 
in TME-C2. We also investigated the association between TMEsig-score and cGAS-STING–related pro-
teins in the CPTAC-LUAD cohort. A protein expression heatmap illustrated the STING-related molecules 
(IRF3, TBK1, cGAS), inflammatory cytokines (CCL5, CXCL10, CD8A, GZMA), and immune checkpoint 
molecules (CD274, TAP1), and others were significantly positively correlated with TMEsig-score (all Spear-
man r > 0.25, P < 0.001, Figure 5H). We further collected the expression profile of  nonsquamous NSCLC 
cell lines (n = 100) from the Cancer Cell Line Encyclopedia (CCLE) project (27) and divided them into 
2 TMEsig-score subgroups (Supplemental Table 1). The 10 highest and lowest TMEsig-score cell lines 
were separately illustrated in Figure 5I. We selected the top-ranked and ATCC-sourced cell lines (high 
TMEsig-score: NCI-H23, NCI-H1299, NCI-H358, NCI-H838; low TMEsig-score: Calu-3, NCI-H1395, 
NCI-H2126) and performed Western blot analysis on cGAS-STING pathway–related molecules. Cell lines 
of  high TMEsig-score subtype showed an obviously upregulated expression of  STING signaling molecules 
(cGAS, STING, phosphorylated [p-] STING, TBK1, NF-κB, p–NF-κB, IRF3, CCL5, and CXCL10) than low 
TMEsig-score subgroup (Figure 5, J and K; see complete unedited blots in the supplemental material).

Figure 4. TME phenotype-related DEGs in nonsquamous NSCLC. (A) A total of 657 overlapped differential expressed genes of the 3 TME clusters were recognized 
as the TME phenotype-related gene signature and shown in a Venn diagram. (B) Unsupervised clustering of TME phenotype-related gene signatures to classify 
patients into different transcriptomic subtypes, termed as TME gene S1–S3, respectively. The stage, sex, age, TME clusters, and TME signature subtype were used 
as patient annotations. (C) Functional annotation for TME phenotype-related genes using GO enrichment analysis. The color depth of the bar plots represented 
the statistical significance of enriched pathways. (D) Metascape enrichment network visualization showed the intracluster and intercluster similarities of enriched 
terms, up to 20 terms per cluster. Cluster annotations are shown in the color key. (E and F) The survival curves of the TME gene signature subtypes were estimated 
by the Kaplan-Meier plotter in Meta-GEO and TCGA-LUAD cohort (meta-GEO cohort, P < 0.001; TCGA-LUAD cohort, P = 0.001; log-rank test).
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Figure 5. Construction of the TME score and exploration of its biological relevance. (A) Identification of the cutoff point of the TMEsig-score subgroup in 
nonsquamous NSCLC. TMEsig-score with the highest standardized log-rank statistics was regarded as the optimal cutoff point. (B) Kaplan-Meier curves 
for high versus low TMEsig-score subgroups in meta-GEO cohort (log-rank test, P < 0.001). (C) Kaplan-Meier curves for high versus low TMEsig-score 
patient subgroups in TCGA-LUAD cohort (log-rank test, P < 0.001). (D and E) Violin plot showing the distribution of TMEsig-score in different TME clusters 
(D) and TCGA expression subtypes (E). The differences between the 3 groups were compared through the Kruskal-Wallis test (both P < 0.001). (F) Spear-
man’s correlation between TMEsig-score and ImmuneScore in TCGA-LUAD cohort (r = 0.67). (G) Comparison of TMEsig-score group with CPTAC-annotated 
immune group in CPTAC-LUAD proteomics cohort (Fisher’s exact test). (H) Heatmap shows correlation of TMEsig-score with STING-related molecules 
(IRF3, TBK1, cGAS), inflammatory cytokines (CCL5, CXCL10, CD8A, GZMA), and immune checkpoint molecules (CD274, TAP1) in the CPTAC-LUAD cohort. (I) 
The nonsquamous NSCLC cell subsets of 10 highest and lowest TMEsig-score in CCLE data set. (J) Western blot analyses of cGAS-STING pathway–relat-
ed molecules in selected ATCC-sourced cell lines of different TMEsig-score subgroups. (K) Comparison of relative level of cGAS-STING pathway–related 
molecules in different TMEsig-score cell subsets by Western blot. Data represented with mean ± SD. The differences between the 2 groups were compared 
through the Student’s t test (*P < 0.05, **P < 0.01, ***P < 0.001).
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Genomic alterations between high and low TMEsig-score subgroups. Mounting evidence has demonstrated 
that there is a correlation between tumor genomic mutations and responsiveness to immunotherapy (28, 
29). Therefore, to gain further insights into the mutational processes operative in nonsquamous NSCLC 
tumors, we extracted 3 mutational signatures with varying numbers of  somatic mutations from the muta-
tional profiles (Figure 6A). The extracted mutational signatures included APOBEC somatic mutations 
(signature 2, 30888 of  208063), smoking-related mutations (signature 4, 158725 of  208063), and DNA 
mismatch repair deficiency-related (dMMR) mutations (signature 6, 18450 of  208063). Samples with 
high TMEsig-score had a higher frequency of  signature 6 and a lower frequency of  signature 2 (P = 
0.003, χ2 test, Figure 6B). We next investigated the distributions of  somatic alterations and performed 
significantly mutated gene (SMG) analysis for nonsquamous NSCLC samples between the TMEsig high-
score and low-score subgroups. The mutational landscapes showed that TP53 (60% vs. 34%), KEAP1 
(25% vs. 10%), STK11 (19% vs. 11%), and SMARCA4 (13% vs. 4%) had higher somatic mutation rates 
in the TMEsig low-score subgroup, compared with high-score subgroup (Fisher’s exact test, P < 0.05, 
Figure 6C and Supplemental Figure 5H). Consequently, we also noticed a higher level of  SCNAs in the 
TME low-score subgroup (Figure 6D). We further analyzed the Genomic Identification of  Significant 
Targets in Cancer–derived (GISTIC-derived) scores and copy number gain/loss frequencies in the high 
and low TMEsig-score subtypes. The results showed that the low TMEsig-score subgroup had higher 
GISTIC scores and specific copy number variation (CNV) regions than the high-score subgroup (1q21.3, 
1q22, and 8q24.21 in low subgroup; 9p23, 12q14.1, and 14q13.1 in high subgroup; Figure 6E). Then, we 
compared the differences in fraction genome altered (FGA) and segments among different subtypes and 
observed a significant augmentation in low TMEsig-score group (Wilcoxon rank-sum test, P < 0.001, 
Figure 6, F and G). Above results enabled us to more comprehensively assess the association between 
the TMEsig-score and genomic variation and facilitated revealing the underlying complex relationship 
between individual somatic mutations and immune regulation.

Identification of  potential immunotherapy response of  TMEsig-score. ICI treatment represented by PD-1/
PD-L1 inhibitors has undoubtedly made a major breakthrough in NSCLC antitumor therapy. Recent 
evidence demonstrated that newly identified molecular markers (such as Tumor Immune Dysfunction 
and Exclusion [TIDE] and T cell–inflamed GEP) are widely and strongly recommended to evaluate the 
response to anti–PD-1/PD-L1 immunotherapy. We found that the TIDE was significantly decreased in 
the TMEsig high-score group, and T cell–inflamed GEP was significantly elevated in the high TME-
sig-score subgroup (TIDE and T cell–inflamed GEP distribution in meta-GEO and TCGA-LUAD, all 
P < 0.001, Figure 7, A–D). Due to the strong connection of  the TME signatures with the immune 
response, we further investigated whether the TMEsig-score can predict patients’ response to ICI therapy 
in 2 independent immunotherapy cohorts. In the anti–PD-1 cohort, the significant therapeutic bene-
fits and immune response were confirmed in patients with high TMEsig-score compared with those 
with low TMEsig-score (HR 0.44 [95% CI, 0.24 to 0.80], P = 0.008, Figure 7E; response rate: 51.3% 
vs. 32.9%, Figure 7F). Consistent results were also validated in the anti–PD-L1 cohort (HR 0.71 [95% 
CI, 0.53 to 0.95], P = 0.021, Figure 7G; response rate: 31.5% vs. 16.1%, Figure 7H). The distribution 
of  TMEsig-score in groups with different immunotherapy clinical response is shown in Figure 7I, and 
it was found that patients with higher TMEsig-score were more likely to benefit from immunothera-
py (Kruskal-Wallis H test, P < 0.001). Tumor tissue is genomically heterogeneous, with varying tumor 
mutation burden (TMB), and presents a correlation with durable clinical response to anti–PD-1/PD-L1 
immunotherapy (30, 31). A significant positive correlation between TMEsig-score and TMB was iden-
tified among the anti–PD-L1 data set (Spearman r = 0.24, P < 0.001, Figure 7J). Therefore, we divided 
the overall population into 4 subgroups according to the TMEsig-score and TMB distribution, TMEsig-
score-H+TMB-H, TMEsig-score-H+TMB-L, TMEsig-score-L+TMB-H, and TMEsig-score-L+TMB-L. 
Finally, the TMEsig-score-H+TMB-H subgroup exhibited the best survival compared with the other 3 
subgroups (log-rank test, P = 0.008, Figure 7K).

TMEsig-score model in clinical practice. We further validated the relationship between TMEsig-score and prog-
nosis in 3 independent cohorts of lung cancer (GEO GSE72094, GSE68465, and GSE41271). TMEsig-score 
was significantly elevated in TMEsig-S1 and -S3 subtypes (Supplemental Figure 6, A–C). Patients with a higher 
TMEsig-score exhibited significant clinical benefits and survival advantage (GSE72094, HR 0.40 [95% CI, 0.27 
to 0.60], P < 0.001, Supplemental Figure 6D; GSE68465, HR 0.63 [95% CI, 0.48 to 0.83], P = 0.001, Supple-
mental Figure 6E; GSE41271, HR 0.41 [95% CI, 0.26 to 0.64], P < 0.001, Supplemental Figure 6F).
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Figure 6. Genetic alternations between high and low TMEsig-score subgroups based on TCGA-LUAD cohort. (A) Cosine similarity analysis of extracted 3 
mutational signatures against the 30 identified signatures in Catalogue of Somatic Mutations in Cancer (COSMIC, v2) with heatmap illustration. (B) The 
proportion of extracted TCGA-LUAD mutational signatures (smoking-, APOBEC-, and MMR-related signature) across different TMEsig-score subgroups (P 
= 0.003, χ2 test). (C) Mutational landscape of SMGs in TCGA-LUAD stratified by low (left panel) versus high TMEsig-score (right panel) subgroups. Individ-
ual patients are represented in each column. The upper bar plot showed TMB. Mutational frequencies of SMGs in different TMEsig subtypes were depicted 
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We also integrated all the collected nonsquamous NSCLC data sets into a combined cohort and explored 
the prognostic value of  the TMEsig-score. Concurrently, OS and relapse-free survival were significantly asso-
ciated with TMEsig-score (Supplemental Figure 6, G and H), and the results of  the receiver operating char-
acteristic (ROC) curves analysis validated the predictive advantage of  the established risk model (AUC = 
0.739, Supplemental Figure 6I). To better predict the lung cancer prognosis, a nomogram was developed 
based on the multivariate Cox proportional hazards analysis to calculate the 3- and 5- year survival probabil-
ity for an individual patient by the points associated with 4 risk factors (age, sex, TNM stage, TMEsig-score; 
Supplemental Figure 6J). The TMEsig-score showed the largest range of  risk points in the nomogram, fol-
lowed by the age and tumor stage. Based on these results, we concluded that TMEsig-score was supported as 
a favorable prognostic biomarker and a higher score indicated a better survival outcome.

Discussion
A comprehensive understanding of  the molecular and biological features of  the TME will extend our 
knowledge of  immune contexture in tumorigenesis and provide potential markers for prognosis assessment 
and therapeutic vulnerabilities for nonsquamous NSCLC. Our findings highlight the value of  integrat-
ing abundant clinical information with molecular tumor characterization and the need to generate such 
multimodal data. In this study, we elucidated the interactions between the clinical characteristics of  non-
squamous NSCLC and TME cell–infiltrating patterns and identified 3 TME clusters with distinct immune 
phenotypes and survival outcomes. Stroma activation, angiogenesis, and moderate immunity, similar to 
immune-excluded phenotypes, were predominately in TME-C1. Activation of  STING innate immunity 
and IFN signaling, similar to immune-inflamed phenotypes, was predominately in TME-C2. Highly pro-
liferative features and paucity of  T cell infiltration, similar to the immune-desert phenotype, were predom-
inately in TME-C3. With the integration of  TME phenotype-related gene signature, a scoring framework 
that adopted multiple algorithms (termed TMEsig-score) was established to quantify the TME infiltration 
pattern of  individual tumors. Integrated analysis revealed that the TMEsig-score was an effective biomark-
er for NSCLC prognosis estimation and was markedly associated with immune signaling enrichment and 
inflammation infiltration, implying its molecular insights into characterization of  the TME landscape. Fur-
thermore, TMEsig-score was proved to be a crucial factor that predicted the genomic alterations and clini-
cal response to anti–PD-1/PD-L1 immunotherapy.

Human lung cancer often exhibits desmoplasia, which is characterized by the presence of  CAFs, ECM, 
and immune cells (32, 33). Previous studies reported that preexisting immunity in the immune-excluded 
phenotype was rendered ineffective by a block in tumor penetration through the stroma or by the retention 
of  immune cells in the stroma (14, 34). Therefore, the surrounding stroma impeded the antitumor response 
of  immune-excluded tumors and restricted clinical benefits from ICI agents. Specific molecular inhibitors 
targeting TGF-β or VEGF have been shown to reprogram the TME and restore antitumor immunity (21, 
35). Based on these findings, we speculated that NSCLC patients with the TME-C1 pattern may benefit 
from combination treatment with ICI agents and TGF-β/VEGF blockade. TME-C3 tumors were devoid of  
T cell infiltration and primarily presented with highly proliferative features with increased Wnt/β-catenin, 
cell mitosis, and fatty acid metabolism activation. Therefore, a synergic therapy of  chemotherapy, radio-
therapy, or target therapy was more suitable for such a TME pattern. Platinum-based alkylating agents and 
pemetrexed-based antimetabolite agents are frequently used in nonsquamous NSCLC treatment (36) and 
are proposed to combine with immune-activated drugs to treat the TME-C3 subtype. Therefore, combi-
nation of  the specific anticancer agents based on the identified TME subtype will strengthen the potential 
efficacy of  identified patient subgroups and provide new insights into tumor precision therapy. Of  course, 
further prospective clinical studies are needed to verify the treatment options of  patients with different 
TME clusters or TMEsig-scores.

In addition, we observed that the TMEsig-score was strongly associated with biomarkers of  response to 
ICI treatment, including TMB, T cell–inflamed GEP, and TIDE, implying this score could predict immu-
notherapy efficacy. Actually, we identified the robust prediction ability of  the TMEsig-score in response 

in 2 sides of the plot and highlighted in red for those statistically significant. TME cluster, age, stage, sex, smoking status, and mutational signatures 
were shown as patient annotations. (D) Relative distribution of SCNA in TMEsig-score high versus low subgroups (P < 0.001, Wilcoxon rank-sum test). (E) 
Significant amplifications and deletions of CNVs were detected and compared between the TMEsig-score low and high subgroups. (F and G) Differences of 
fraction genome altered (FGA) and segment numbers values in different TMEsig-score groups (P < 0.001, Wilcoxon’s rank-sum test).
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Figure 7. High TMEsig-score predicts immunotherapeutic benefits. (A and B) The relative distribution of TIDE was compared between TMEsig-score 
high versus low subgroups in meta-GEO (A) and TCGA-LUAD (B) cohort, respectively (Wilcoxon’s rank-sum test). (C and D) Relative distribution of T 
cell–inflamed GEP score was also compared between TMEsig-score high versus low groups in meta-GEO (C) and TCGA-LUAD (D) cohort (Wilcoxon’s rank-
sum test). (E) Kaplan-Meier curves for high versus low TMEsig-score subgroups in the anti–PD-1/PD-L1 immunotherapy cohort. Log-rank test, P = 0.008. 
(F) The fraction of patients with clinical response to anti–PD-1 therapy in high or low TMEsig-score subgroups. CR/PR vs. SD/PD: 51.3% vs. 48.7% in the 
high TMEsig-score groups, 32.9% vs. 67.1% in the low TMEsig-score groups. (G) Kaplan-Meier curves for high versus low TMEsig-score patient in the anti–
PD-L1 immunotherapy cohort. Log-rank test, P = 0.021. (H) The fraction of patients with clinical response to anti–PD-L1 immunotherapy in low or high 
TMEsig-score groups. CR/PR vs. SD/PD: 31.5% vs. 68.5% in the high TMEsig-score groups, 16.1% vs. 83.9% in the low TMEsig-score groups. CR, complete 
response; PR, partial response; SD, stable disease; PD, progressive disease. (I) The distribution of TMEsig-score in groups with different clinical response to 
immunotherapy were shown (Kruskal-Wallis H test, P < 0.001). (J) A significant positive correlation between TMEsig-score and TMB was identified within 
the anti–PD-L1 cohort (Spearman r = 0.24, P < 0.001). (K) The overall population were divided into 4 subgroups according to the TMEsig-score and TMB 
level, and the TMEsig-score-H+TMB-H subgroup exhibited the best survival compared with the other 3 subgroups (log-rank test, P = 0.008). 
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to ICI treatment via 2 independent ICI cohorts. These findings verified our hypothesis that the expression 
profile–based TME cell infiltration pattern could be applied in clinical practice to determine immune phe-
notypes and guide therapeutic regimens.

Recent proteogenomic characterization delineated tumor heterogeneity and therapeutic vulnerabilities 
in LUAD (37, 38). We also integrated multiomics data and revealed the cGAS-STING–related mRNA 
and proteins were significantly altered in different TME modification subgroups. Activation of  the STING 
innate immune pathway has been demonstrated to promote IFN secretion and lymphocyte infiltration 
and enhance immunotherapy response in tumors (39, 40). Here, we found that STING-related molecules 
(including cGAS, TBK1, STING, p-STING, and IRF3) and IFN-I–targeted genes (CCL5, CXCL10, and 
IFI35) were obviously enhanced in TME-C2 and high TMEsig-score subgroups, which indicated its sus-
tainable benefit from cancer immunotherapy. Considering the low or defective STING pathway activity in 
TME-C2/C3 and low TMEsig-score subgroups, STING agonist coadministrated with ICI agents would 
hold a promise of  treating such patients. However, the specific application of  STING agonist combined 
with immunotherapy needs further prospective clinical trials.

Moreover, our data revealed that TMEsig-score had a crucial role in genomic alteration and was asso-
ciated with SCNAs, mutational burden, and dMMR mutational signatures. Recent studies demonstrated 
that SCNAs and aneuploidy were widespread in cancer and correlated with immune evasion and cancer 
cell proliferation (20, 41). In our study, the low TMEsig-score subgroup was characterized by heightened 
SCNAs, FGA, and segments, which indicated the immune-repressive role on the low TMEsig-score sub-
type. Evaluation of  the mutated driver genes/signatures underlying human tumors is also a critical foun-
dation for cancer diagnostics, prognosis, and targeted therapy selection (29, 42). Recent studies reported 
that variants in STK11 (LKB1) suppress the STING pathway and T cell inactivation and are associated 
with a lack of  benefit from anti–PD-1/PD-L1 treatment (43, 44). In this study, we found that patients 
who harbored mutations of  STK11 had a higher proportion in TME-C1/-C3 and low TMEsig-score sub-
groups, which implied the STK11 mutation played a role in induction of  immune suppression. Moreover, 
on the basis of  KEAP1 mutational co-occurrences, Marinelli et al. identified mutations in 4 genes (KEAP1, 
STK11, SMARCA4, PBRM1) that were potentially associated with reduced efficacy of  immunotherapy in 
LUAD (45). We also observed a higher mutation frequency of  KEAP1, STK11, and SMARCA4 in the low 
TMEsig-score subgroup, manifesting the molecular significance of  tumor driver mutation in reprograming 
of  immune phenotype. In addition, dMMR mutational signature was significantly associated (P = 0.003) 
with the high TMEsig-score subtype, which indicated again that genomic instability plays a crucial role in 
mediating tumor immunogenicity.

Tissue digital parsing methods (xCell, CIBERSORT, and so on) are an emerging tool for large-scale 
characterization and dissection of  tumor cellular heterogeneity. Although we utilized the canonical gene sig-
nature algorithm to portray the cellular landscape, the actual TME was not completely recognized because 
of  the technical and method limitations. Furthermore, heterogeneity in sequencing approaches and data 
normalization between cohorts hindered our ability to develop more standardized and precise immune fea-
tures to improve the accuracy and stability of  the prediction model. The clinical relevance of  the identified 
TME molecular signatures for subtyping was validated mostly on the bulk RNA database, but not single-cell, 
level, because of  limited single-cell transcriptome-sequencing resources in nonsquamous NSCLC clinical 
practice. In order to evaluate the distribution of  cell subpopulations in TME subtyping more accurately, sin-
gle-cell sequencing and spatial transcriptome sequencing are worthy of  consideration. We also realized that 
the self-owned, large-scale, independent sequencing database was absent from this study and limited conclu-
sion reliability and strength. Hence, we are collecting relevant cases from a hospital alliance to complete the 
verification of  the findings in nonsquamous NSCLC, and it has been listed as one of  our subsequent priority 
tasks. Besides, the TME infiltration patterns and TMEsig-score were identified by using retrospective data 
sets; thus, a prospective cohort of  NSCLC patients receiving immunotherapy is needed to validate clinical 
utility. In addition, patient-derived xenograft model validation that can simulate the authentic in vivo tumor 
microenvironment is also necessary for accurately evaluating the effectiveness of  this finding.

In summary, comprehending the TME cell infiltration landscape mediated by multiple cell subsets 
will contribute to enhancing our understanding of  TME immune regulation. Our findings provided ideas 
for predicting clinical outcome and guiding treatment strategies based on TME infiltration pattern in non-
squamous NSCLC. Meanwhile, the constructed TMEsig-score quantified the TME immune infiltration of  
individual tumors and promoted personalized cancer immunotherapy in the future.
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Methods
Collection and preprocessing of  publicly attainable data sets. Multiomics sequencing data and clinical annota-
tion of  nonsquamous NSCLC samples were retrospectively collected from publicly available data sets of  
the NCBI GEO (https://www.ncbi.nlm.nih.gov/geo/), TCGA (https://cancergenome.nih.gov/), and the 
CPTAC databases (https://cptac-data-portal.georgetown.edu/cptac). The selection criteria of  nonsqua-
mous NSCLC data sets were adopted from the workflow of  Li et al. (46) in which a sample size less than 100 
was excluded. Finally, a total of  2324 nonsquamous NSCLC patients were enrolled for this analysis, includ-
ing those from the GSE30219 (n = 187), GSE31210 (n = 226), GSE37745 (n = 130), GSE50081 (n = 138), 
GSE41271 (n = 194), GSE68465 (n = 442), GSE72094 (n = 398), TCGA-LUAD (n = 499), and CPTAC-LU-
AD (n = 110) (37) (Supplemental Table 2). GSE42127 (47) was excluded from this analysis because its probe 
cell intensity (CEL) files extensively overlapped with the GSE41271 series. Since the GSE30219, GSE31210, 
GSE37745, and GSE5008 data sets adopted the same microarray sequencing platform (Affymetrix HG-U133 
plus 2.0), we downloaded the raw CEL files and performed identical background adjustment and quantile 
normalization by affy and simpleaffy packages. We then further integrated them into a meta-cohort by using 
ComBat function from R package sva for batch removal. GSE41271, GSE68465, GSE72094, TCGA-LU-
AD, and CPTAC-LUAD were recognized as the independent validation cohorts. TCGA RNA-sequenc-
ing data (FPKM format) were downloaded from the UCSC Xena (https://gdc.xenahubs.net/download/
TCGA-LUAD.htseq_fpkm.tsv.gz) and transformed into transcripts per kilobase million (TPM) format. The 
clinical information and cluster subtyping of  the meta-GEO and TCGA data sets are listed in Supplemental 
Tables 3 and 4 In addition, gene-level proteomics and phosphoproteomic data were downloaded from the 
CPTAC website, and protein abundances were log2-transformed and median-centered.

Comparison of  genomic alterations. The somatic mutation (MuTect2) and CNV data of  TCGA-LUAD were 
downloaded from TCGA database (https://portal.gdc.cancer.gov/). Nonsynonymous mutation (including 
frameshift mutation, inflame mutation, missense mutation, nonsense mutation and splice site mutation) 
counts were recognized as TMB. The GISTIC score and gene copy number amplification and deletion data 
for each sample were analyzed by GISTIC 2.0 software and plotted by maftools package. The FGA, SCNA, 
and aneuploidy score of  each lung cancer sample was determined and curated from previous studies (20).

Inference of  infiltrating cells in the TME. To fully portray the cellular heterogeneity of  the TME land-
scape in the NSCLC, we utilized the gene signature–based xCell algorithm (48) to infer 64 immune 
and stromal cell types, spanning multiple adaptive and innate immunity cells, hematopoietic progen-
itors, epithelial cells, and ECM cells. The xCell employed a curve fitting approach for linear compar-
ison of  cell types and introduced a novel spillover compensation technique to reduce dependencies 
between closely related cell types. Gene expression profiles were prepared using standard annotation 
files, and data were uploaded to the xCell web portal (https://xcell.ucsf.edu/), with the algorithm run 
using the xCell signature. Moreover, we also employed the CIBERSORT and MCP-counter algorithms 
to quantify the immune cell subsets and validate the reliability of  xCell-identified 3 TME clusters of  
NSCLC. CIBERSORT (49) is a deconvolution algorithm that uses a set of  reference gene expression 
values (a signature with 547 genes) considered a minimal representation for each cell type and, based 
on those values, infers cell type proportions in data from bulk tumor samples with mixed cell types 
using support vector regression. MCP-counter (50) is a transcriptomic marker-based approach, which 
allows the robust quantification of  the absolute abundance of  8 immune and 2 stromal cell populations 
in heterogeneous tissues.

Consensus molecular clustering for TME-infiltrating cells. We performed hierarchical consensus clustering 
with non-NMF algorithm to identify distinct TME immune patterns based on the infiltration level of  64 
cell subpopulations. The xCell-derived cell profiles were factorized into 2 non-negative matrices, W and 
H (i.e., A≈WH). Repeated factorization of  matrix A was performed, and its outputs were aggregated to 
obtain consensus clustering of  NSCLC samples. The optimal number of  clusters was selected according to 
cophenetic, dispersion, and silhouette coefficients. The R package NMF (version 0.22.0) with the Frobe-
nius algorithm and 200 nruns was used to perform the consensus clustering in both the meta-GEO data set 
and TCGA cohort. Besides, 3D projection on NSCLC tumor clustering was performed by UMAP-based 
dimension reduction and visualized by plotly package.

GSVA and GO annotation. We utilized the GSVA algorithm within the R package GSVA to investi-
gate the variation in biological processes among different TME cluster patterns. The well-defined bio-
logical signatures were derived from the Hallmark gene set (downloaded from MSigDB database v7.1),  
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Mariathasan et al. constructed gene set (21) (curated from IMvigor210CoreBiologies packages), and 
Thorsson et al. constructed gene sets (19). GO annotation for TME phenotype-related genes was per-
formed in the R package clusterProfiler with the cutoff  value of  FDR < 0.01.

Quantifying the predictors of  immune response: T cell GEP score, TIDE, and ESTIMATE. T cell–inflamed GEP 
is a superior predictor of  response to anti–PD-1 regimens, which contains IFN-γ–responsive genes related to 
antigen presentation, cytotoxic activity, and adaptive immune resistance (51). The T cell–inflamed scores were 
calculated and weighted by averaging of  the included genes for the IFN-γ (6-gene) and expanded immune (18-
gene) signatures. The TIDE algorithm proposed by Jiang et al. was utilized to model distinct tumor immune 
evasion mechanisms (52), including dysfunction of  tumor-infiltrating cytotoxic T lymphocytes (CTLs) and 
exclusion of  CTLs by immunosuppressive factors. A higher TIDE score indicated cells more likely to induce 
immune escape, thus indicating a lower response rate to ICI treatment. The ESTIMATE algorithm (53), 
which takes advantage of  the unique properties of  the transcriptional profiles, was used to infer the infiltration 
level of  immune and stromal cell score in tumor tissues and to estimate tumor purity. Tumor tissues with 
abundant immune cell infiltration represented a higher immune score and lower level of  tumor purity.

SMGs and tumor mutational signatures. We utilized the MutSigCV algorithm described in a prior 
study and filtration criteria to identify SMGs (54, 55). The mutational landscape of  identified SMGs in 
TCGA cohort was depicted by the waterfall function of  the R GenVisR package. Mutational signatures 
extracted from TCGA genomic data adopted the maftools package. ExtractSignatures function, based 
on Bayesian variant non-NMF, factorized the mutation portrait matrix into 2 non-negative matrix 
signatures and contributions, where signatures represent mutational processes and contributions rep-
resent the corresponding mutational activities. The SignatureEnrichment function can automatically 
determine the optimal number of  extracted mutational signatures and assign them to each sample 
based on the mutational activities. The extracted mutational portrait of  lung cancer was compared and 
annotated by cosine similarity analysis against the COSMIC.

Identification of  DEGs between distinct TME modification phenotypes. Our consensus clustering algorithm 
divided patients into 3 distinct TME infiltration patterns, and we next determined TME infiltration pat-
tern–related DEGs between distinct TME phenotypes. The R package limma was used to evaluate DEGs 
in lung cancer samples between different TME clusters. Specifically, gene expression data were normalized 
by voom and then fed to lmFit and eBayes functions to calculate the differentially expressed statistics. The 
significance filtering criteria of  DEGs was set as an adjusted P value less than 0.001.

Construction of  the TME signature score. We constructed a TMEsig scoring scheme to quantify the relative 
TME infiltration level of  individual patients by using principal component analysis (PCA). Specifically, 
the overlapping DEGs identified from different TME clusters were curated and employed to perform prog-
nostic analysis for each gene using a univariate Cox regression model (Supplemental Table 5). The genes 
with a significant prognostic impact were extracted for further feature selection by using recursive feature 
elimination with random forest and the 10-fold cross-validation method in the caret R package. We then 
curated the expression profile of  the final determined genes to perform PCA, and principal components 
1 and 2 were extracted and served as the signature score. This method mainly focuses on the score on the 
set with the largest block of  well-correlated (or inverse-correlated) genes in the set, while downweighting 
contributions from genes that do not track with other set members. We then adopted a formula similar to 
previous study to define the TMEsig-score (56): TMEsig-score = ∑(PC1i+PC2i), where i is the expression of  
final determined TME phenotype-related genes.

Cell lines and culture conditions and reagents. Calu-3 cells, NCI-H23 cells, NCI-H1299 cells, NCI-H358 
cells, NCI-H838 cells, NCI-H1395, and NCI-H2126 cells were purchased from ATCC. Authentication of  
the cells was performed by short tandem repeat analysis at Beijing Microread Genetics Co., Ltd. NCI-H23 
cells, NCI-H1299 cells, NCI-H358 cells, NCI-H838 cells, NCI-H1395 cells, and NCI-H2126 cells were cul-
tured in 1640 medium (Gibco) supplemented with 10% fetal bovine serum (Gibco) in a 5% CO2 incubator 
at 37°C, while Calu-3 cells were in DMEM (Gibco).

Western blot analysis and antibodies. In brief, total cell lysates were prepared with cell lysis buffer. 
After denaturing via boiling, total protein was quantified using a BCA protein assay kit (Solarbio). 
Equivalent amounts of  protein were separated by SDS-PAGE at 80 V for 2.5 hours and transfected to 
PVDF membranes for 1.5 hours. The membranes were washed using 1% TBST by 3 cycles of  5 min-
utes after incubation with primary antibodies targeting cGAS (Santa Cruz Biotechnology, SC-515777), 
STING (Cell Signaling Technology, CST13647S), p-STING (Cell Signaling Technology, CST19781S), 
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TBK1 (Cell Signaling Technology, CST3504S), NF-κB (Cell Signaling Technology, CST4764S), p-NF-κB 
(Cell Signaling Technology, CST3033S), IRF3 (Santa Cruz Biotechnology, SC-33641), p-IRF3 (Cell Sig-
naling Technology, CST29047S), CCL5 (Santa Cruz Biotechnology, SC-514019), CXCL10 (Santa Cruz 
Biotechnology, SC-374092), and β-actin (Proteintech, 20536-1-AP) at 4°C overnight. Then membranes 
were treated with secondary antibodies (Proteintech, SA00001-1 and SA00001-2).

Collection of  transcriptomic and clinical information of  the ICI-based cohort. We systematically searched the 
gene expression profiles in ICIs, which could be publicly obtained and coupled with detailed clinical infor-
mation. Two immunotherapeutic cohorts were finally included in our study: metastatic melanoma treated 
with nivolumab/pembrolizumab (anti–PD-1 monoclonal Ab) (57) and metastatic urothelial cancer treated 
with atezolizumab (anti–PD-L1 mcAb) (21). The gene expression profiles of  pretherapy biopsy samples 
were curated and transformed into the TPM format for further analysis.

Statistics. The statistical analyses in this study were generated by R 3.6.1. For quantitative data, statistical 
significance for normally distributed variables was estimated by Student’s 2-tailed t tests, and non-normally 
distributed variables were analyzed by the Wilcoxon’s rank-sum test. For comparisons of more than 2 groups, 
Kruskal-Wallis tests and 1-way ANOVA were used as nonparametric and parametric methods, respectively. 
The χ2 test and Fisher’s exact test were used to analyze contingency tables depending on specific grouping con-
dition. Cox proportional hazards model was used to analyze the association between the TME modification 
pattern and prognosis with the R package forestmodel. The surv-cutpoint function from the survminer package 
utilized the maximally selected rank statistics to determine the optimal cutpoint, and was applied to stratify 
samples into high and low TMEsig-score subgroups. The C-index proposed by Harrell et al. (58) and the ROC 
curve were used to assess the prognosis classification performance of the TMEsig-score model, and the C-in-
dex and AUC were calculated by using survcomp and timeROC packages, respectively. Nomogram model 
combined with TMEsig and detailed clinical information was utilized for calculating the survival probability by 
using rms package. All comparisons were 2 sided with an α level of 0.05, and the Benjamini-Hochberg method 
was applied to control the FDR for multiple-hypothesis testing.

Study approval. This study was approved by the Shandong Provincial Hospital Institutional Review 
Board (Jinan, China), which waived additional informed consent because all data used in this study were 
obtained from public databases. Participants in the original studies have provided informed consent.
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