

Supplementary Figure 1. The distribution of CD4+Foxp3+ and CD4+Foxp3⁻ T cells in spleen, lymph node and thymus from $ApoE^{-/-}$ mice and $Ldlr^{-/-}$ mice. (A) The $ApoE^{-/-}$ mice of 20 weeks old fed with high fat diet (HFD) for 12 weeks were investigated. The flow cytometry detections were performed for analyzing the populations of CD4+ T cells and Foxp3+ Tregs, respectively (n=10). (B) The flow cytometry detections were performed for analyzing the populations of CD4+ T cells and Foxp3+ Tregs in The $Ldlr^{-/-}$ mice of 20 weeks old fed with HFD for 12 weeks were investigated, respectively (n=3) (T-test, *p<0.05, ** p<0.01).

А

Supplementary Figure 2. Anti-inflammatory immune checkpoint receptors, such as programmed death-1 (PD-1) and Helios (Ikzf2) are found in a decrease trend in splenic Tregs in the deficiency of IL-35p35. (A) Western blots were performed in detecting Foxp3 protein levels in spleens from four groups of mice; (B) Blood Treg in ApoE^{-/-} mice were not significantly changed by IL-35 p35 deficiency. The IL-35p35^{-/-}/ApoE^{-/-} mice of 20 weeks old (n = 8) and APOE^{-/-} mice (n=6) fed with high fat diet for 12 weeks were investigated. (C) Real-time PCRs were performed for detecting Il6st (encodes CD130), Il12rb2, and Il10 gene expression levels in pooled aorta samples (n = 5/group) from $ApoE^{-/-}$ and $IL-35p35^{-/-}/ApoE^{-/-}$ mice, respectively. (D) The expressions of Helios and PD-1 were examined in Treg subpopulations in freshly isolated spleens from IL-35p35^{-/-}/ ApoE^{-/-} mice (n=5) and $ApoE^{-/-}$ mice, respectively, (n=8) by flow cytometry (T-test, * p<0.05).