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Introduction
Cystic fibrosis (CF) is a hereditary disorder caused by mutations in the CF transmembrane conductance 
regulator (CFTR) gene. However, both intrinsic and extrinsic variables directly and/or indirectly asso-
ciated with CFTR likely influence the course of  CF, particularly the immune/inflammatory phenotype 
of  CF lung disease (1). Many pathological hallmarks of  CF such as chronic airway infection, persistent 
inflammation (2), and defective mucociliary clearance are consequences of  deficient or defective CFTR 
protein in airway epithelial cells. Over time, these cells fail to eradicate pulmonary pathogens, which 
in turn contribute to a mucosal immunodeficiency syndrome (3–5). In previous studies, plasma from 
individuals with CF compromised biological signaling and dysregulated mRNA and miRNA interac-
tions in peripheral blood mononuclear cells (PBMCs), suggesting an impaired response in the circulating 
immune cells of  patients with CF (6–10).

Cystic fibrosis (CF) is an inherited disorder caused by biallelic mutations of the CF transmembrane 
conductance regulator (CFTR) gene. Converging evidence suggests that CF carriers with only 1 
defective CFTR copy are at increased risk for CF-related conditions and pulmonary infections, 
but the molecular mechanisms underpinning this effect remain unknown. We performed 
transcriptomic profiling of peripheral blood mononuclear cells (PBMCs) of CF child-parent trios 
(proband, father, and mother) and healthy control (HC) PBMCs or THP-1 cells incubated with the 
plasma of these participants. Transcriptomic analyses revealed suppression of cytokine-enriched 
immune-related genes (IL-1β, CXCL8, CREM), implicating lipopolysaccharide tolerance in innate 
immune cells (monocytes) of CF probands and their parents. These data suggest that a homozygous 
as well as a heterozygous CFTR mutation can modulate the immune/inflammatory system. This 
conclusion is further supported by the finding of lower numbers of circulating monocytes in CF 
probands and their parents, compared with HCs, and the abundance of mononuclear phagocyte 
subsets, which correlated with Pseudomonas aeruginosa infection, lung disease severity, and CF 
progression in the probands. This study provides insight into demonstrated CFTR-related innate 
immune dysfunction in individuals with CF and carriers of a CFTR mutation that may serve as a 
target for personalized therapy.

https://doi.org/10.1172/jci.insight.152186
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In support of  this notion, innate immune cells — represented primarily by monocytes, macro-
phages, and dendritic cells (DCs), which are initially recruited to combat bacterial pathogens — are 
dysregulated in CF airways (10). Although the significance and molecular basis of  this dysregulation 
remain unclear, mutations in CFTR can not only affect the innate immune function of  airway epithelial 
cells but also alter the innate immunity that contributes to recurrent and progressive infection in CF 
(11–13). Previous work showed that CF F508del/F508del (homozygous) murine macrophages have a 
defective response and reduced cytotoxic activity against the bacterial pathogen Pseudomonas aeruginosa 
(P. aeruginosa), which is prevalent in patients with CF (14, 15). While infecting bacteria exploit these 
defects in macrophage function (16, 17), treatment with the CFTR modulator ivacaftor improves mac-
rophage-mediated cytotoxicity (18). Further, long noncoding (lncRNAs) have key roles in regulating the 
innate immune response to P. aeruginosa in CF, combining with other regulatory mechanisms to alter 
the expression of  immune/inflammatory genes within monocytes and macrophages (19–22). However, 
the genes and regulatory pathways involved in this immune dysregulation in individuals with CF have 
not been well characterized.

Because CF is an autosomal recessive disorder with 2 defective CFTR copies, heterozygous carri-
ers are typically considered healthy. However, CF carriers have an increased risk for a broad range of  
conditions affecting multiple organ systems, including asthma and airway infections (23, 24). Several 
studies reported familial clusters of  pulmonary infections with nontuberculous mycobacteria, suggest-
ing genetic risk factors, including CFTR mutations (25, 26). The observations that both CF carriers 
(CF parents) and patients with CF are at higher risk of  CF-related conditions than people without 
CFTR mutations suggest that distinct CFTR-related mechanisms are at play in both heterozygous and 
homozygous individuals (27, 28).

To understand the distinct molecular features and pathways contributing to known immune pheno-
types in individuals with CF and carriers, we assembled a cohort of  parent-child trios (CF proband, father, 
and mother) and 20 unrelated healthy controls (HCs) without CFTR mutations (Figure 1 and Table 1). We 
identified CFTR-related immune suppression in each trio subgroup through transcriptomic profiling using 
3 cellular models: (i) a PBMC model; (ii) a plasma model, where the donors’ PBMCs act as reporters of  
the immune microenvironment and compromised immune/inflammatory conditions in individuals with 
CF; and (iii) a THP-1 cell model, where THP-1 cells are incubated with plasma, replicating the effects 
of  the immune microenvironment on monocyte and macrophage function. Utilizing a previously estab-
lished cell composition deconvolution method (8), we observed gene suppression in innate immune cells 
from CFTR-mutated PBMCs and from healthy PBMCs incubated with CF plasma. We determined that the 
abundance of  mononuclear phagocytes correlated with CF clinical characteristics. Plasma samples from 
individuals within the trios were used in ex vivo cultures of  THP-1 monocytes and macrophages to further 
characterize the transcriptomic profiles unique to patients with CF and the profiles CF trios shared. Consis-
tent with these findings, our gene set enrichment analyses suggested likely impaired responsiveness of  CF 
PBMCs and monocytes to lipopolysaccharide (LPS), an integral component not only of  the P. aeruginosa cell 
envelope, which is the predominant organism in oropharyngeal cultures within the CF airway, but also of  
other Gram-negative opportunistic pathogens. This approach of  blood-based profiling and association with 
CF disease state provides important clues in understanding the vulnerability of  carriers of  CFTR mutations.

Results
Profiling of  PBMCs reveals significant downregulation of  immune/inflammatory markers. To identify blood-
based gene predictors that are clinically useful, we collected PBMCs from CF probands (n = 14), either 
1 of  the parents, mothers (n = 14), and HCs (n = 8). We then measured transcriptional expression in 
these cells with whole-transcriptome arrays (Figure 1 and Table 1, PBMC model; Methods). Differential 
expression analyses revealed that a notable number of  transcripts (2267 out of  135,750) were differen-
tially expressed between CF probands and HCs (Figure 2A, left). More than half  of  these genes/tran-
scripts (DEGs) encode proteins (n = 1422, including 213 from the “coding” category and 1209 from the 
“multiple complex” category, where “multiple complex” is defined as a transcript reported in multiple 
locus types; see Figure 2A, left; Supplemental Table 1; supplemental material available online with this 
article; https://doi.org/10.1172/jci.insight.152186DS1). Among these DEGs, more than 70% of  coding 
RNAs (including multiple complex) and more than 80% of  lncRNAs were downregulated in CF proband 
PBMCs (Figure 2A, right).

https://doi.org/10.1172/jci.insight.152186
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We identified DEGs that showed large fold changes (log2 fold changes, –15 to 5) in expression in pro-
band PBMCs relative to HC PBMCs (Figure 2B). Among these were genes that encoded key cytokines 
(e.g., IL-1β), chemokines (e.g., CXCL8), nuclear receptors (e.g., nuclear receptor subfamily 4 group A 
member 3, NR4A3), and modulators of  immune signaling pathways (e.g., cAMP responsive element mod-
ulator, CREM) (Figure 2C). We identified fewer upregulated protein-coding genes than downregulated 
genes in the proband PBMCs, including genes that code for proteins that interact with TNF receptor-as-
sociated factor (TRAF3IP3) and posttranscriptional regulators (zinc finger domain-containing protein, 
ZC3H4; see Figure 2C). Most of  the top-ranking pathways enriched in the DEG list were cytokine-related 
signaling pathways (29); each was downregulated in CF proband PBMCs compared with HC PBMCs 
(ratio of  upregulated and downregulated gene numbers < 1; see Figure 2D). Thus, the observed imbalance 
between up- and downregulated transcript profiles in PBMCs of  CF probands versus PBMCs of  HCs pro-
vides further evidence that the immune/inflammatory pathways are aberrant in CF.

CF probands and parents share similar transcriptomic features in PBMCs. To determine the transcriptomic 
signatures that were unique to and shared among the subgroups within our CF proband-parent trios, we 
performed transcriptomic profiling using both the PBMC and plasma models consisting of  healthy donor 
PBMCs cultured with plasma from the CF probands or either parent (Figure 1 and Table 1). The CF 
proband-associated transcriptomic profiles from the PBMC and plasma models shared common DEGs 
(Figure 2E, Supplemental Figure 1, and Supplemental Table 2) and functional pathways (Figure 2E and 
Supplemental Table 3), again suggesting that compared with HCs, the CF probands consistently exhibit 
extensive alterations leading to abnormal cytokine and chemokine profiles.

Principal component analysis (PCA) of  transcriptomic profiles from the plasma model (n = 92 in 4 
subgroups; Table 1) revealed overlap among the CF proband and parent subgroups within the CF trios, 
which clustered separately from the HCs (Figure 3A and Supplemental Figure 2A, left). In contrast, PCA 
of  transcriptomic profiles from the PBMC model (n = 36 in 3 groups) indicated no separation between the 

Table 1. Demographics of study participants in molecular profiling

Models  PBMC  Plasma  THP-1

Profiling types Transcriptomic  
profiling

mRNA  
profiling

Transcriptomic  
profiling

miRNA  
profiling

Total sample, n 36 92 21 24
Trios family, n 14 24 3 3
Probands n = 14 n = 24 n = 3A n = 3A

   Age (y) 10.95 ± 1.83 13.61 ± 1.69 7.94 ± 1.19 7.94 ± 1.19
   Male sex (%) 71.43% 58.33% 66.67% 66.67%
   Female sex (%) 28.57% 41.67% 33.33% 33.33%
   Genotype (dF508  
   homo, hetero, %)

21.43%, 
64.29%

29.17%, 
70.83%

100%, 
0%

100%, 
0%

   Classes  
   (I, II, III, IV, %)

64.29%, 
21.43% 
0.07% 
0.07%

41.67%, 
33.33%, 
16.67%, 
8.33%

100% (II) 100% (II)

   Sweat Cl (mEq/L) 106.4 2± 4.40  
(n = 12)

98.47 ± 5.40  
(n = 23) 107.37 ± 7.34 107.37 ± 7.34

   PI/PS (PI, %) 85.71% 91.67% 100% 100%
   P. aeruginosa+ at 6 months 28.57% 42.8% 0% 0%

   FEV1 (% of predicted) 100.50 ± 3.62  
(n = 12)

96.46 ± 4.76  
(n = 13) 97.67 ± 4.84 97.67 ± 4.84

Parents/carriers n = 14 n = 48 n = 6B n = 6
   Age (y) 41.20 ± 2.27 43.01 ± 1.98 38.87 ± 1.30 38.87 ± 1.30
   Male sex 0% 50% 33% 50%
HCs n = 8 n = 20 n = 3 n = 3
   Age (y) 25.00 26.66 ± 1.74 25.00 25.00
Mean ± SEM are provided for numerical variables. AUnless otherwise indicated, 2 samples were collected per participant for monocyte and macrophage 
cultures. BFather samples were only collected for incubation with monocytes. Sweat Cl, result of chloride sweat test; PI/PS, pancreatic insufficiency/
pancreatic sufficiency.

https://doi.org/10.1172/jci.insight.152186
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CF trios and HC subgroup clusters, although the HC cluster was not as broadly distributed as the proband 
and mother clusters (Figure 3A and Supplemental Figure 2A, right). There was substantial overlap in the 
DEGs from CF probands versus HCs and from CF parents versus HCs in both the PBMC model (n = 1737) 
and the plasma model (n = 826; see Figure 3B). Interestingly, we did not detect any significant DEGs when 
comparing CF probands with parents in either model. In the PBMC model, we identified DEGs shared 
among CF probands and CF mothers (trio-shared genes; n = 1737) as well as DEGs that were unique to 
CF probands (proband-unique genes; n = 530); however, we did not identify DEGs unique to CF mothers 
(Figure 3B and Supplemental Tables 4 and 5).

We next performed hierarchical clustering predicting homogeneous groups among trio participants. 
Notably, only the dendrogram generated using mother/proband-shared genes from the PBMC model 
(n = 1737) organized participants into groups in accordance with their family structures (Figure 3C, 
upper). We did not consistently observe this familial grouping in the clustering developed using pro-
band-unique genes in the PBMC model (Figure 3D, upper) or trio-shared genes in the plasma model 
(Supplemental Figure 2B). Overall, these results suggest that the mother/proband-shared genes in the 
PBMC model capture the relative homogeneity of  gene expression across CF trio participants.

The resulting heatmaps revealed near-identical expression patterns of trio-shared genes across the CF trios 
(mothers and probands versus HCs; Figure 3C, lower panel). In contrast, we observed less similarity between 
mothers and probands in the proband-unique genes (Figure 3D, lower). We determined whether the trio-shared 
genes displayed a consistent direction and magnitude of expression in the trios relative to HCs. The correlation 
between the expression levels of shared genes in CF probands and their mothers was significant (P < 0.0001) 
and showed a strong linear relationship (upregulated: R2 = 0.927, downregulated: R2 = 0.852) (Figure 3E, left). 
The correlation of the expression of proband-unique genes remained significant (P < 0.0001) but showed a 
weaker linear relationship (upregulated: R2 = 0.81, downregulated: R2 = 0.56; see Figure 3E, right). Together, 
these transcriptomic profiling results indicate that parents and CF probands share similar expression patterns 
in the PBMC and plasma models.

CF probands and parents share unique immune cell compositions. We previously developed a cell composition 
deconvolution method to estimate immune cell type composition from gene expression data (8). Using this 
method, we found that myeloid cell subsets were less abundant while lymphoid cell subpopulations were 
more abundant in PBMCs incubated with CF proband plasma versus HC plasma (8). Here, we employed 
a similar deconvolution method (Methods and Supplemental Figures 3 and 4) to infer the immune cell 
compositions of  CF probands and their parents in our plasma model with donor PBMCs. We estimated 
a significantly higher abundance of  2 out of  5 lymphoid cell subsets (total T cells and CD4+ T cells) and a 

Figure 1. Schematic of main study procedures. DEGs, differentially expressed genes; FEV1, forced expiratory volume in 
1 second.

https://doi.org/10.1172/jci.insight.152186
https://insight.jci.org/articles/view/152186#sd
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significantly lower abundance of  all 5 myeloid cell subsets (monocytes, macrophages, activated monocytes, 
activated macrophages, and DCs) in cells incubated with CF proband plasma than in cells incubated with 
HC plasma (Figure 4A and Supplemental Figure 5A). These differences were also observed when compar-
ing results obtained with the plasma of  CF parents and with HC plasma.

The immune cells in the plasma model were harvested from a single donor (identical genomic background), 
whereas the immune cells in the PBMC model were harvested from the patients with CF and HCs (yielding 
greater genomic heterogeneity; Table 1). We hypothesized that mutations in CFTR might lead to a phenotype 
that disrupts immune cell composition in CF PBMCs. Indeed, higher and lower cell numbers, respectively, 

Figure 2. Immune-associated genes and pathways are significantly downregulated in CF PBMCs compared with HCs. (A) Transcripts differentially 
expressed between CF probands (n = 14) and HCs (n = 8) in the PBMC model, divided into categories according to locus type. We identified differentially 
expressed transcripts that displayed a more than 2-fold change in expression level and an FDR-adjusted P < 0.05. (B and C) Volcano plots of differentially 
expressed transcripts. (D) Bubble plot of the top 10 significant pathways in WikiPathways, ranked by the number of genes in the pathway. For the plasma 
model: CF probands (n = 24), HCs (n = 20). (E) Venn diagrams showing the numbers and overlap of unique genes (upper) and top 20 pathways (lower) for CF 
probands versus HCs in the PBMC and plasma models.

https://doi.org/10.1172/jci.insight.152186
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were estimated in the lymphoid and myeloid cell subsets of PBMCs from CF probands versus HCs, but these 
differences were not statistically significant (Figure 4B and Supplemental Figure 5B). Macrophages were sig-
nificantly less abundant in CF parents (P < 0.05) than in HCs (Figure 4B and Supplemental Figure 5C), but 
we did not observe a significant difference between CF probands and HCs. We confirmed these findings via 
flow cytometry: both total circulating monocytes (CD14+) and classical monocytes (CD14+CD16−) were less 
abundant in CF probands than in HCs (Supplemental Figure 5D). These results suggest that immune cell com-
position differs between CF trios and HCs, potentially identifying involvement of the monocyte/macrophage 
lineage in CF-related immunodeficiency.

Phagocytic cell abundance is associated with CF disease severity and progression. Mutations in CFTR are divided 
into 6 classes (I–VI) according to aspects of CFTR biogenesis, metabolism, and function (30). The clinical 
severity and progression of CF can be predicted by categorical attributes such as CFTR class, pancreatic suf-
ficiency status, P. aeruginosa infection status, and numerical measures such as sweat chloride level and FEV1 
(30–33). To associate our findings on immune cell composition in CF with clinical parameters, we assigned CF 
probands into subgroups based on the categorical attributes listed above and related the cell abundance scores 
to each subgroup. For both the PBMC and plasma models, fewer monocytes and macrophages were seen in 

Figure 3. CF carriers and probands share highly similar transcriptomic profiles in PBMCs. (A) Principal component analysis (PCA) of data from the PBMC (left; 
n = 36) and plasma models (right; probands, n = 92). (B) Venn diagrams of the numbers and overlap of DEGs from the PBMC and plasma models; comparisons 
are as indicated. Trio-shared and proband-unique genes are highlighted in blue and red, respectively. (C and D) Top, hierarchical clustering of study participants; 
bottom, heatmap of the expression of trio-shared and proband-unique genes in the PBMC model. (E) Correlation scatterplots of the fold change (log2) of the 2 
indicated comparisons of the expression of trio-shared (left) and proband-unique genes (right) from the PBMC model. The P value and R2 (square of the correla-
tion coefficient) were produced by a Pearson’s correlation analysis. The linear regression line and its equation were generated from a simple linear regression 
analysis. P, proband; F, father; M, mother; FC, fold change.

https://doi.org/10.1172/jci.insight.152186
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Figure 4. Immune cell composition differs between CF parent-child trios and HCs. Dot and box plots of the cell composition scores of 8 cell subsets 
in the (A) plasma model (probands, n = 24; parents/carriers, n = 48; HCs, n = 20) and (B) PBMC model (probands, n = 14; parents/carriers, n = 14; HCs, 
n = 8). Estimates of cell numbers in each cell subset were calculated for CF trios and HCs. The means were compared by paired and unpaired indepen-
dent t test, as appropriate; and P values were adjusted using Holm-Šidák method to control the family-wise error rate; *P < 0.05, **P < 0.01.

https://doi.org/10.1172/jci.insight.152186
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the severe CF subgroups (classes I/II/III and pancreatic insufficient) than in the mild/moderate subgroups 
(class IV and pancreatic sufficient) or HCs (Figure 5, A–D). P. aeruginosa infection was negatively associated 
with monocyte abundance in the plasma model (Figure 5E) but not in the PBMC model (data not shown). 
Moreover, in the PBMC model, the abundance of mononuclear phagocyte subsets (monocytes and activated 
DCs) was negatively correlated with FEV1 values while macrophage scores were positively correlated with 

Figure 5. Compositions of monocytes and macrophages in the plasma and PBMC models are correlated with CF disease severity and progression. 
(A–E) Dot and box plots of cell composition scores (see Methods) of monocytes and macrophages in patients with CF grouped based on their (A and C) 
CFTR class, (B and D) pancreatic function, and (E) P. aeruginosa infection status. Estimations of cell numbers in each cell subset were compared between 
subgroups of patients with CF (F and G). Correlation analysis of cell abundance with sweat chloride and percent predicted FEV1. Plasma model (A, B, and 
E); PBMC model (C, D, F, and G). The means were compared by paired and unpaired independent t test, as appropriate; and P values were adjusted using 
Holm-Šidák method to control the family-wise error rate. The P value and R (correlation coefficient) were produced by a Pearson’s correlation analysis 
(normal distribution assumed). *P < 0.05, **P < 0.01. Mono, monocytes; Macro, macrophages; Macro_ac, activated macrophages; DC_ac, activated den-
dritic cells; PI, pancreatic insufficient; PS, pancreatic sufficient.

https://doi.org/10.1172/jci.insight.152186
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sweat chloride levels (Figure 5, F and G). Collectively, these analyses indicate that the immune dysregulation 
associated with CFTR mutations likely results from the loss of innate immune cells and that the deficiency of  
mononuclear phagocytic cells, in particular, is closely linked to P. aeruginosa infection, clinical severity, and the 
progression of lung function impairment in CF.

CF trio plasma triggers a robust response in THP-1 monocytes but not macrophages. The monocyte cell line 
THP-1 has been used extensively to study monocyte and macrophage functions, mechanisms, and sig-
naling pathways (34). Given the identification of  monocytes and macrophages in the analyses reported 
above, we focused on a model in which we cultured CF proband plasma with THP-1 cells in the presence 

Figure 6. Plasma-cultured monocytes, but not macrophages, show dramatic changes in gene expression. (A) Breakdown of differentially expressed transcripts 
(fold change <–2 or >2, FDR P < 0.05, CF probands versus HCs in the THP-1 monocyte and macrophage models) in main categories according to locus type. (B and C) 
Volcano plots of (B) all differentially expressed transcripts and the (C) differentially expressed transcripts in “coding” and “multiple complex” (MC) categories. (D) 
Bubble plot of top 10 significant pathways in WikiPathways ranked by number of regulated genes. (E) Venn diagrams showing the numbers and overlap of unique 
genes (upper) and top 20 pathways (lower) for CF probands versus HCs in the indicated models. (F) Bar plot of THP-1 cell numbers after 4 days of culture with CF 
plasma. Dunn’s multiple comparison for nonparametric post hoc testing was performed following the Kruskal-Wallis test to compare the differences between HC 
and other groups. ***P < 0.001. Pa, P. aeruginosa; Sa, Staphylococcus aureus; Ng, negative; FBS, fetal bovine serum; DEGs, differentially expressed genes.

https://doi.org/10.1172/jci.insight.152186
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or absence of  PMA to differentiate these cells into macrophages (Figure 1 and Table 1). Transcriptomic 
profiling identified more than 4800 DEGs (out of  135,750 transcripts analyzed) in THP-1 monocytic cells 
cultured with plasma from CF probands or HCs, but only 199 DEGs from THP-1 macrophage-differenti-
ated cells cultured in the same manner (Figure 6A). DEGs from the THP-1 monocytes showed a signifi-
cantly higher fold change than DEGs from the THP-1 macrophages (Figure 6, B and C). In contrast to the 
results described above, in which most DEGs in CF proband cells were downregulated in PBMCs (Figure 
2, B and C), similar numbers of  DEGs were both up- and downregulated in the THP-1 monocytes and 
macrophages (Figure 6, B and C, and Supplemental Tables 1 and 2). Pathway analysis of  DEGs from the 
THP-1 model (both monocytes and macrophages) revealed enriched immunoregulatory pathways such as 
transcription factors, cytokines, and receptors (Figure 6D and Supplemental Table 3). Very few genes or 
pathway signatures were shared between the THP-1, plasma (Figure 6E), and/or the PBMC models (data 
not shown); however, the THP-1 model specifically represented monocytes (34). In cell growth assays of  
undifferentiated THP-1 cultures, plasma from CF probands with P. aeruginosa infection significantly inhib-
ited the proliferation of  these monocytes (Figure 6F). Thus, plasma from CF probands appears to act as a 
modulator in an immunoregulatory capacity, inducing a broad and strong activation of  THP-1 monocytes 
that is much more robust than that detected in THP-1 macrophages.

Next, we determined whether the plasma of  CF probands and of  their parents evoked similar transcrip-
tomic results in the THP-1 model. PCA of  transcriptomic profiling data from both THP-1 monocyte and 
macrophage samples (n = 21 in 7 groups) revealed that monocytes, but not macrophages, from CF trio sub-
group clusters always overlapped, whereas the HC clusters remained distinct (Figure 7A). In THP-1 mono-
cytes and macrophages, we identified trio-shared genes (n = 1227 and 108, respectively) and proband-unique 
genes (n = 2066 and 91, respectively; see Figure 7B and Supplemental Tables 4 and 5), like the PBMC model 
(Figure 3B). As in the PBMC model, approximately one-fourth (1227 out of  4863) of  the DEGs identified 
by comparing THP-1 monocytes incubated with CF proband plasma with those incubated with HC plas-
ma were also differentially expressed in THP-1 monocytes incubated with CF parent plasma compared 
with those incubated with HC plasma (Figure 7B). Trio-shared and proband-unique genes in the THP-1 
monocyte model were similarly identified from the total DEGs and used to identify homogeneous groups 
of  participants through hierarchical clustering (Figure 7, C and D). Our analyses confirmed that trio-shared 
genes reflected familial structures and the expression patterns shared between THP-1 monocytes incubated 
with CF proband or parent plasma. Moreover, the expression of  trio-shared genes showed a significant (P < 
0.0001) and moderately linear relationship (upregulated: R2 = 0.513, downregulated: R2 = 0.559) in THP-1 
monocytes incubated with CF proband or parent plasma, whereas proband-unique genes showed weaker 
correlations in expression between THP-1 monocytes incubated with CF proband or parent plasma (upreg-
ulated: R2 = 0.168, downregulated: R2 = 0.145) (Figure 7D and Supplemental Figure 6). When we profiled 
miRNAs using an independent microarray (see Methods), we observed similar miRNA expression patterns 
across CF trio groups (Supplemental Figure 7A), and miRNA profiling revealed no significant differences in 
the expression of  genes or miRNAs between THP-1 monocytes incubated with CF proband or parent plas-
ma (Supplemental Figure 7B). Therefore, we concluded that plasma from CF parents induces an immune 
response very similar to that induced by plasma from CF probands.

Endotoxin tolerance is involved in the immune response CF trio subgroups share. Given the similarities between 
results obtained with PBMCs and plasma from CF probands and parents, we characterized the top-ranked 
upstream regulators and causal molecular networks in CF probands versus HCs (PBMC model) using Inge-
nuity Pathway Analysis (IPA; see Methods). Interestingly, we identified LPS, an integral component of the P. 
aeruginosa cell envelope, as the top-ranked upstream regulatory molecule and LPS-associated signaling as the 
top-ranked causal network inhibited in PBMCs with a CFTR mutation (Figure 8A and Supplemental Table 6). 
To validate this finding using large collections of published studies, we identified 2 core sets of protein-coding 
genes in the DEGs from the PBMC and plasma models (n = 140) and the THP-1 monocyte model (n = 365; 
Figure 8B and Supplemental Figure 8A). Three input gene sets (Supplemental Table 7) that included genes reg-
ulated in the same direction (up- or downregulated) were submitted for gene set enrichment analysis (GSEA) in 
the Molecular Signatures Database (MSigDB) (35–38). Searches on input gene sets 1 and 2 returned significant 
matches that included gene sets previously defined from PBMCs, monocytes, or macrophages (Figure 8C and 
Supplemental Figure 8B). Out of the top 10 gene sets that matched input gene set 1, 5 were associated with 
LPS or TLR4-interacting protein-triggering receptors expressed on myeloid cells-1 (TREM1; Figure 8C). Simi-
larly, input gene set 2 matched with LPS-stimulated gene sets (Supplemental Figure 8B).
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We next compared the fold changes in the expression of  the LPS- and TREM1-induced genes, which 
we shared in our profiling result alongside a published data set from the search result (National Center 
for Biotechnology Information Gene Expression Omnibus [GEO] GSE9988, CF proband versus HCs, 
THP-1 cells) (39). We observed a significant but modest correlation between genes identified in our 
experiment and the annotated LPS-induced genes (R = 0.41, P < 0.01). We did not see such a correla-
tion with the TREM1-induced genes (R = 0.001, P = 0.88; see Figure 8D and Supplemental Figure 8C). 
Together, these results suggest that monocytes from CF probands and carriers are less responsive to LPS, 
implying development of  an LPS-tolerant state.

Figure 7. Transcriptomic profiles of CF carriers and probands are less correlated in the THP-1 monocyte model than 
the PBMC model. (A) PCA of THP-1 monocytes and macrophages incubated with study participant plasma based 
on similarities in transcriptomic profiling. (B) Venn diagrams showing the numbers and overlap of DEGs from THP-1 
models. (C and D) Trio-shared and proband-unique genes are highlighted in blue and red, respectively. Hierarchical 
clustering by trio subgroups and heatmap of gene expression of (C) trio-shared genes and (D) proband-unique genes 
from the THP-1 monocyte model. (E) Correlation scatterplots of fold changes (log2) of the indicated comparison of 
the fold change (log2) of expression of trio-shared (left) and proband-unique genes (right) in the THP-1 model. The 
P value and R2 (square of the correlation coefficient) were produced by a Pearson’s correlation analysis. The linear 
regression line and its equation were generated from a simple linear regression analysis. Mono, monocyte; Macro, 
macrophage; P, proband; F, father; M, mother; FC, fold change.
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Discussion
Recent work in our laboratory and others’ work suggest a state of immune dysfunction in CF (4, 8). However, 
it remains unclear whether this dysfunction arises from a primary intrinsic abnormality in the immune cells 
or if  the dysfunction is a byproduct of the infection microenvironment created by the CFTR defect. Abnormal 
CFTR function impairs host defense, mucociliary clearance, and microbicidal activity in the airways; moreover, 

Figure 8. Integrated pathway enrichment analysis suggests an LPS-tolerant state in CF trios. (A) Bubble plot of the top 
5 significant upstream regulators and causal networks, ranked by P value, from Ingenuity Pathway Analysis (IPA) using 
genetic profiles from the PBMC model (see Methods). (B) Flow of identification and selection to identify input gene set 1 
for gene set enrichment analysis (GSEA). First, the overlapping coding genes (n = 157) from the PBMC and plasma models 
(CF proband versus HC) were identified. Then, the overlapping genes (n = 140) from these genes with DEGs from compari-
son of CF participants versus HCs were identified; the final input gene set (n = 138) were identified as the genes regulated 
in same directions in both PBMC and plasma models. P, proband; F, father; M, mother. (C) Bubble plot of gene sets from 
GSEA matched with input gene set 1. The top 10 matched gene sets were ranked by q value (FDR). (D) Left, Venn diagram 
of the 22 overlapping genes from input gene set 1 and the annotated LPS-inducible gene set (GSE9988). Right, bar plot of 
fold change (log2) of the expression levels of genes in both input gene set 1 and the annotated LPS-inducible gene set (CF 
or LPS versus HC). Fold change values from input gene set 1 were reversed from negative to positive for ease of visualiza-
tion. The P value and R2 (square of the correlation coefficient) were produced by a Pearson’s correlation analysis.
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dysfunctional immune cells contribute to an impaired response to infection (4). Consequently, most patients 
with CF have intermittent infections with P. aeruginosa that can progress to chronic infection (40). We previous-
ly demonstrated that patients with CF exhibit changes in inflammation-related transcripts that correlate with 
disease status (6, 41). Our group (8, 9) and others (18) have identified monocyte and macrophage functions that 
are impaired in CF, and these functions are not corrected by CFTR modulators.

In the present study, we used 3 cellular models (Figure 1 and Table 1) to capture the impact of  the 
intrinsic deficiency (CFTR mutation) on circulating immune cells as well as the impact of  the unhealthy 
immune microenvironment and compromised inflammatory milieu on circulating immune cells—particu-
larly monocytes and macrophages—in CF probands and carrier parents. Our genomic and transcriptomic 
analyses identified DEGs that were associated with decreased activity in CF PBMCs. Our analyses also 
revealed changes in the abundance of  mononuclear phagocytes (monocytes, macrophages, and DCs) asso-
ciated with CF severity, P. aeruginosa infection status, and disease progression. In addition, our THP-1 mod-
el demonstrated that monocytes — rather than monocyte-derived macrophages — responded dramatically 
to CF proband or carrier parent plasma. GSEA identified downregulation of  LPS signaling in all cellular 
models, suggesting a loss of  reactivity to LPS in CF PBMCs and monocytes.

Most existing CF profiling studies (42–46) have concentrated on CF airways and lungs, but CF immune 
dysfunction is likely extrapulmonic, involving systemic alteration of  immune function allowing for persistence 
of  chronic infection (4, 11, 47). Consistent with this hypothesis, the immune-related transcriptomic profiles 
identified here (Figure 2, A–D) suggest that the innate immunodeficiency in CF is apparent outside of  the 
chronically infected environment of  the lung, a deficiency also seen in CF carrier parents.

In all 3 cellular models, we uncovered no significant differences between transcriptomic profiles or those 
the plasma of  CF probands and carrier parents induced (Figure 3B and Figure 7B). We did, however, iden-
tify groups of  DEGs that were shared and coexpressed in patients with CF and carrier parents (trio-shared 
genes) versus HCs (Figure 3, C and E, and Figure 7C). These results are not surprising given prior evidence 
suggesting that a genetic load of  50% wild-type CFTR is not sufficient for maintaining health (24, 27). CF 
carriers may constitute a haploinsufficient population that is at a higher risk than the noncarrier population 
for developing respiratory infections and other diseases commonly associated with CF (23, 25–27).

PBMCs are a diverse mixture of highly specialized immune cell subsets that include myeloid and lymphoid 
cells (48). Under physiological conditions in healthy people, CFTR protein is abundantly expressed in airway 
epithelial cells but expressed at lower levels in PBMCs (49). Nonetheless, CFTR is believed to carry out an 
irreplaceable function in myeloid cells (11, 18, 50). Notably, Sun and colleagues identified a set of genes in 
PBMCs that predict clinical responsiveness to ivacaftor therapy. Using IPA, they mapped these genes to cellular 
processes that regulate innate immunity and inflammation (51). It remains unclear, however, whether these 
transcriptomic alterations were a direct effect of CFTR modulation in PBMCs or instead reflected systemic 
effects due to correction of the pathological environment generated from the CFTR defect. Employing process-
es used to identify genes associated with ivacaftor responsiveness (51), we found that unlike HC PBMCs and 
plasma-cultured counterparts, the innate immune pathway was downregulated in CFTR-mutated PBMCs and 
in CF plasma-cultured healthy PBMCs and THP-1 monocytes (Figure 2D and Figure 6D).

Monocytes typically account for 10%–20% of  total PBMCs found in blood (48), and these circulat-
ing monocytes are highly phagocytic (52, 53). Several powerful in silico approaches have been estab-
lished to monitor changes in immune cell composition, using transcriptomic profiles to reveal distinct 
functionalities in cell subsets (54, 55). Our observations that macrophages are significantly less abun-
dant in CF trio subgroups than in HCs (Figure 4B) are consistent with the findings of  our previous study 
(8) as well as a recent report that the intrinsic molecular mechanisms controlling leukocyte recruitment 
and migration are severely impaired in CF monocytes (56). Our observation that monocytes showed 
greater differences in DEGs than macrophages upon treatment with CF plasma may result from activat-
ed cells being less responsive to CF plasma. Taken together, these results support the notion that CFTR 
mutations lead to immune dysfunction and deficiency. Notably, ivacaftor treatment does not change 
the abundance of  PBMCs or the composition of  immune subsets (monocytes, T cells, or B cells) (57). 
Recently, it was shown that CRISPR/Cas9-mediated knockout of  CFTR in human macrophages results 
in decreased phagocytosis and increased bacterial load (58), supporting our finding that innate immune 
cell dysfunction is CFTR dependent. Further, these findings suggest that the cumulative abnormality in 
CF innate immunity is primarily caused by the fluid microenvironment resulting from the consequences 
of  defective CFTR function. Since the intrinsic CFTR mutation disrupts monocyte recruitment and 
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migration and cytokine levels and cell-to-cell interactions play major roles in this regulation (59), it 
follows that CFTR modulator therapy would not effectively reverse these consequences (60).

Given that individuals with CF commonly experience lung disease progression caused by chronic P. 
aeruginosa colonization (14, 15), it is not surprising that P. aeruginosa infection was associated with mono-
cyte/macrophage abundance (Figure 5E), as observed in our previous study (8). We also found evidence of  
negative associations between monocyte/macrophage abundance and CF disease severity (Figure 5, A–D, 
F, and G). Interestingly, these associations were not equally represented in the plasma and PBMC models: 
changes in monocyte/macrophage abundance were more strongly associated with CFTR mutation class 
(Figure 5A) and pancreatic status (Figure 5B) in the plasma model but more strongly associated with sweat 
chloride and FEV1 levels in the PBMC model (Figure 5, F and G). These findings add to a growing body of  
evidence that the abundance of  circulating monocytes can predict disease severity and progression as seen in 
chronic obstructive pulmonary disease (61, 62) and idiopathic pulmonary fibrosis (63).

In our quest to identify the genes and pathways that underlie impaired innate immunity in CF, we uncov-
ered a set of  gene signatures (input gene set 1) that was shared by CF trio subgroups relative to HCs and 
downregulated in both plasma and PBMC models (Figure 8B). The gene signatures identified in the PBMC 
model (Figure 3C) better represented the features shared by CF trios than signatures identified from THP-1 
cells (Figure 7C) because the correlation of  the transcriptomic profiles between CF probands and carrier 
parents was much stronger in PBMCs (Figure 3E) than in THP-1 cells (Figure 7E). Further, GSEA revealed 
that these signature genes highly overlapped with LPS- and TREM1-induced genes, although these genes 
were regulated in opposite directions (Figure 8, C and D). The significance of  LPS or TREM1 as upstream 
regulators was supported by an independent IPA performed on data from the PBMC model (Figure 8A) and 
previous analyses of  the plasma model (6, 8). As an activating receptor expressed on monocytes, TREM1 
interacts and synergizes with the LPS/TLR4 receptor complex to trigger a respiratory burst, phagocytosis, 
and cytokine release in the innate immune system (39, 64, 65). However, CF monocytes are locked in an 
endotoxin-tolerant state (66) that is at least partly due to robust downregulation of  TREM1 (67). Research 
suggests that a soluble endotoxin present in the bloodstream of individuals with CF may cause endotoxin tol-
erance in circulating monocytes (68). Consistent with these reports, we detected lower expression of  LPS- and 
TREM1-induced genes (Figure 8C), suggesting that CF PBMCs are less responsive to LPS and have acquired 
a tolerant state. However, the presence of  soluble endotoxin has not yet been independently verified, and the 
downregulation of  TREM1 in patients with CF has recently been challenged (69). Given that patients with 
CF can develop chronic P. aeruginosa infection (70), we wonder how long the tolerance to LPS can last and 
whether the tolerance is reversible. Better understanding of  longitudinal exposure to LPS in patients with CF 
may yield important mechanistic insights into the causes and consequences of  LPS tolerance.

Although supportive of  the concept of  immune dysfunction and immunodeficiency, the present study 
includes some limitations. First, we identified several differentially expressed lncRNAs (Figure 2A and Figure 
6A) in both the PBMC and THP-1 models. However, the clinical significance of  these lncRNAs remains 
unclear, partly due to a lack of  detailed information about their biological functions. Although a significant 
number of  lncRNAs have been implicated in LPS tolerance (71, 72), it remains unknown how lncRNAs 
suppress the LPS- and TREM1-induced pathways. A longitudinal study is needed to highlight lncRNAs with 
therapeutic potential for CF. Second, due to the small sample size in the PBMC model (Table 1) and the 
heterogeneity of  human participants, transcriptomic profiling failed to reveal transcripts that were signifi-
cantly differentially expressed (Figure 3B and Figure 7B) or differentially spliced (data not shown) between a 
proband with CF and either of  the parents. Third, we initially did not adjust for multiple-hypothesis testing 
when we ran a correlation analysis between cell abundance and indicators of  disease severity and progression 
(sweat chloride and FEV1 levels; Figure 5G). While a Bonferroni’s correction can reduce the chance of  false 
positive findings, this correction is overly conservative when statistical tests are correlated, as is the case for 
immune cell composition scores. However, when comparing all cell type scores between groups, we adjusted 
for the number of  pairwise comparisons within each score, such as proband versus mother and proband 
versus HC, but we did not adjust for the number of  immune cell scores. Within each immune profile score, P 
values were adjusted for multiple comparisons using Holm-Šidák method to control the family-wise error rate. 
The Holm-Šidák method is uniformly more powerful than a Bonferroni’s correction while maintaining strong 
control of  family-wise type 1 error rates. The study did not address the potential influence of  differences in 
lung microbiota on the responses. Last, although THP-1 cells were introduced as an alternative option rather 
than primary PBMCs to validate the PBMC model, they are not equal to the status of  primary cells.
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While homozygous mutations in CFTR cause CF, several studies suggest that heterozygous CFTR 
mutations have functional consequences (23). Our study has revealed similarity in the effects of  CFTR 
mutation on innate immune cell populations in CF probands and carrier parents. CF carriers have an 
increased risk of  developing airway obstruction (23, 73), neutrophil abnormalities, and ineffectual mac-
rophage apoptosis (74). This study adds to the growing literature suggesting that the effects of  heterozy-
gous CFTR mutations on circulating monocytes could increase the prevalence of  infection, ultimately 
leading to chronic bronchitis and severe lung disease (8, 75). The LPS-tolerant phenotype detected 
in this study may help explain the susceptibility present in carriers of  homozygous and heterozygous 
CFTR mutations. Increasing our understanding of  the role of  novel lncRNAs in mediating signaling 
will pave a path for improved, targeted therapies as new research begins uncovering the role of  lncRNAs 
as master regulators of  gene expression.

Methods
Study participants and data collection. A total of  164 CF trio participants (CF probands, fathers, and mothers) 
from 100 CF families and 20 unrelated HC participants were recruited from the Children’s Hospital of  
Wisconsin (CHW 07/72, GC 390, CTSI 847, CHW 01-15), Ann & Robert H. Lurie Children’s Hospital of  
Chicago (2015-400), and National Jewish Health (NJH HS-3648). This study (Figure 1) was approved by 
the Institutional Review Board (IRB) at each institution after scientific and ethical review. The Biomedical 
Research Alliance of  New York (BRANY) is the IRB providing current oversight at National Jewish Health. 
HC participants were free of  known infection at the time of  sample collection. Additional disease-free 
HC samples (n = 11) were obtained commercially (Cellular Technology Limited). Informed consent was 
obtained from participants or their parents or legal guardians. As described in our prior studies (6, 8), CF 
proband participants were diagnosed based on pilocarpine iontophoresis (CF Foundation guidelines) (76), 
symptoms, pancreatic status, CFTR mutation class, family history of  CF, and information about the pheno-
types of  CFTR mutations (74, 77–79) (details in Supplemental Methods).

General demographic information, such as age, sex, and genotype, was collected through standard-
ized questionnaires. Pancreatic sufficiency status was defined based on levels of  fecal pancreatic elastase, 
with a threshold of  200 mcg/g for sufficiency (74). P. aeruginosa infection data were collected during stan-
dard screening for microbiological flora, in which the infection was reported as 1 positive microbiologi-
cal growth from nasopharyngeal, sputum, or bronchoalveolar lavage specimens within 6 months of  study 
enrollment. FEV1 data were collected during clinical lung function measurements performed at baseline 
according to ATS/ERS Task Force guidelines (80). Sweat chloride values were collected based on the sweat 
tests performed closest to the date of  serum sample collection.

Sample collection and cellular models. Human PBMCs or plasma samples from CF probands, siblings, par-
ents, and unrelated HCs were aseptically collected in acid citrate dextrose solution A or K+ EDTA anti-
coagulant for the 3 cellular models for molecular profiling (Figure 1 and Table 1). For the PBMC model, 
PBMCs (buffy coat) were collected from whole blood by Ficoll Paque (GE Healthcare, now Cytiva) density 
centrifugation at 1800g for 15 minutes at room temperature. The PBMCs were then stored frozen in a cryo-
protective medium containing 10% dimethyl sulfoxide and 90% FBS. Cryopreserved PBMCs were thawed 
quickly before RNA isolation or live-cell recovery. The procedure used to develop the plasma model has 
been described in our prior studies (6, 8, 9). Briefly, healthy human PBMCs (UPN727; Cellular Technology 
Limited) were cocultured with the plasma collected from the enrolled participants for 9 hours prior to sample 
collection for transcriptomic analyses. The THP-1 cell line was a gift from Peter H. Sporn (Northwestern Uni-
versity, Evanston, Illinois, USA; originally obtained from ATCC) and was maintained in RPMI 1640 medium 
(Thermo Fisher Scientific) supplemented with 10% FBS and 2 mmol/L l-glutamine. THP-1 monocytes were 
differentiated into macrophages by adding 200 nM PMA (MilliporeSigma) to the media for 48 hours. The 
media were then removed, and THP-1 monocytes or macrophages were cocultured for 9 hours with plasma 
(without PMA) collected from the enrolled participants.

Table 1 shows the numbers of CF trios and HC participants used to develop the 3 cellular models. In 
addition to molecular profiling, cell samples from both the PBMC and THP-1 models were examined by cell 
growth assays or fluorescence-activated cell sorting (Figure 1 and Supplemental Methods). For cell growth 
assays, THP-1 monocytes with no PMA treatment were cultured in media supplemented with FBS (n = 3) and 
plasma from HC participants (n = 5) or CF probands who tested positive for P. aeruginosa (n = 13), positive for 
Staphylococcus aureus (n = 22), positive for both (n = 9), or negative for both (n = 20).
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Molecular profiling and data processing. Total RNA was isolated using TRIzol (Invitrogen), and the 
purity and concentration were verified using a NanoDrop ND-1000 instrument (Thermo Fisher Scien-
tific). The integrity of  the RNA was assessed by a 2100 Bioanalyzer gel image analysis system (Agilent). 
At least 300 ng mRNA per sample was submitted for library construction, in which each purified RNA 
sample was transcribed to double-stranded cDNA followed by cRNA synthesis and biotin labeling. The 
labeled samples were then hybridized onto 3 arrays (Table 1): GeneChip Human Genome U133 Plus 2.0 
array (Thermo Fisher Scientific, >54,000 probes and >38,500 genes), Human Clariom D array (Thermo 
Fisher Scientific, >6,765,500 probes, >542,500 transcripts, and >134,700 genes), and GeneChip miRNA 
3.0 array (Thermo Fisher Scientific, 1105 human miRNAs), as reported previously (6, 7). The profiling 
data from these arrays were normalized in the robust multiarray average procedure, then processed using 
Transcriptome Analysis Console (Thermo Fisher Scientific, version 4.0) following the manufacturer’s 
instructions. Data sets for this investigation have been deposited in the National Center for Biotechnol-
ogy Information, GEO, and are accessible through accession GSE192523. Any additional data will be 
submitted to this publicly available resource.

Immune cell profiling. Immune cell profiling or cell composition analysis was performed using a 
signature matrix optimized for human PBMC deconvolution, as reported (8). Briefly, more than 20 
candidate marker genes for 10 cell subsets in PBMCs were selected from a previously described matrix 
based on their expression patterns across immune cell subsets (81). The pairwise similarity statistic 
of  all cell subsets (Supplemental Figures 3 and 4) was computed between all pairs of  the candidate 
marker genes within the normalized gene expression data from the PBMC model. Using the criteria 
(average Pearson’s correlation factor > 0.50, P < 0.01), a number of  selected marker genes were iden-
tified as our final marker genes (8). The raw cell composition score was calculated as the sum of  the 
simple averages of  the marker genes’ log2 expression, which allows comparison of  cell composition 
across participant groups and subgroups.

Statistics. Bioinformatics and statistical analyses were performed and visualized using R version 3.6.1, 
Python version 3.7.9, Transcriptome Analysis Console (Thermo Fisher Scientific, version 4.0), Prism 7 (Graph-
Pad), IPA (Qiagen), and GSEA databases (MSigDB version 7.2). Relative microarray gene expression levels 
were compared between groups using an empirical Bayes method (1-way ANOVA followed by eBayes analysis) 
to share information across genes and generated an improved estimate for the variance. Coding genes and tran-
scripts that displayed at least a 2-fold difference in gene expression between comparison groups (FDR < 0.05) 
were considered significantly differentially expressed and carried forward in the analysis. FDR adjustment was 
performed following Benjamini-Hochberg FDR-controlling procedure (82). Differentially expressed RNAs were 
illustrated as a volcano plot. Hierarchical clustering was performed to show the gene expression patterns and 
similarities among samples. PCA was performed to cluster participants based on the differentially expressed 
transcripts. GSEA was carried out by searching the established MSigDB gene set collections (C1, C2, C7, C8) 
and utilized the top 10 gene sets that matched with our input gene sets.

Associations between cell composition scores and clinical features were evaluated using Pearson’s cor-
relation, R (correlation coefficient), and R2 (square of  the correlation coefficient; Figure 5). Immune profile 
scores were compared between groups and subgroups; independent 2-tailed t tests were used when compar-
ing CF trio samples with HCs, and paired 2-tailed t tests were used when comparing CF trio samples, assum-
ing a normal distribution and equal variances. Within each immune profile score, P values were adjusted 
for multiple comparisons using Holm-Šidák method to control the family-wise error rate. We compared the 
cell growth rates between groups using Dunn’s multiple-comparison correction for nonparametric variables; 
post hoc testing was performed following the Kruskal-Wallis test. A P value of  less than 0.05 was considered 
statistically significant. The box plots in figures depict the minimum level (lower whisker) indicating the 
minimum value in the data set (excluding outliers, Q1 − 1.5×IQR), the maximum level (upper whisker) indi-
cating the maximum value in the data set (excluding outliers, Q3 + 1.5×IQR), the upper and lower quartiles, 
and the median. The length of  the box represents the interquartile range.

Study approval. This study was approved by the IRBs (CHW 07/72, GC 390, CTSI 847, CHW 01-15 
Children’s Hospital of  Wisconsin; 2015-400 Ann & Robert H. Lurie Children’s Hospital of  Chicago; NJH 
HS-3648 National Jewish Health; Figure 1). BRANY is the IRB providing current oversight at National 
Jewish Health. Written informed consent was received for each study participant. For all enrollees aged less 
than 18 years, a parent completed and signed the informed consent document.
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