

Supplementary Materials for

Phospholipase A2 enzymes represent a shared pathogenic pathway in psoriasis and pityriasis rubra pilaris

Shuai Shao^{1,2,*}, Jiaoling Chen¹, William R. Swindell^{2,3}, Lam C. Tsoi², Xianying Xing², Feiyang Ma⁴, Ranjitha Uppala², Mrinal K. Sarkar², Olesya Plazyo², Allison C. Billi², Rachael Wasikowski², Kathleen M. Smith⁵, Prisca Honore⁶, Victoria E. Scott⁶, Emanuel Maverakis⁷, J. Michelle Kahlenberg⁸, Gang Wang¹, Nicole L. Ward⁹, Paul W. Harms^{2,10}, Johann E. Gudjonsson^{2,*}

Affiliations:

¹Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shannxi, 710032, China.

²Department of Dermatology, University of Michigan, Ann Arbor, Michigan, MI, 48109, USA.

³Department of Internal Medicine, the Jewish Hospital, Cincinnati, OH, 45236, USA.

⁴Department of Dermatology, Department of Medicine, University of California, Los Angeles, CA, 90095, USA.

⁵AbbVie Cambridge Research Center, Cambridge, Massachusetts, MA, 02138, USA.

⁶AbbVie Dermatology Discovery, North Chicago, IL 60064, USA.

⁷Department of Dermatology, University of California Davis School of Medicine, Sacramento, California, 95616, USA.

⁸Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, 48109, USA.

⁹Departments of Nutrition and Dermatology, Case Western Reserve University, Cleveland, Ohio, 44106, USA.

¹⁰Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, 48109, USA.

[†]Address for correspondence: Dr. Johann E. Gudjonsson, Department of Dermatology, University of Michigan, Ann Arbor, Michigan, 48109, USA; johanng@med.umich.edu; or Dr. Shuai Shao, Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shannxi, 710032, China; and Department of Dermatology, University of Michigan, Ann Arbor, Michigan, 48109, USA; 857746654@qq.com.

Conflict of interest statement: The authors have declared that no conflict of interest exists.

32 **This PDF file includes:**
33 Supplementary materials and methods
34 Supplementary figures and figure legends:
35 Figure S1. The expression level of PLA2G2F and PLA2G4D in several skin diseases.
36 Figure S2. ScRNA-seq analysis of psoriatic lesional skin and controls for three PLA2 genes.
37 Figure S3. The expression level of PLA2G2F, PLA2G4D, and PLA2G4E in 3D human skin
38 equivalents.
39 Figure S4. The expression level of PLA2G2F, PLA2G4D, and PLA2G4E in cytokine-treated
40 keratinocytes.
41 Figure S5. Overexpressing PLA2G2F or PLA2G4D modulates the immune response and skin
42 barrier genes in keratinocytes.
43 Figure S6. The knockdown efficiency of PLA2G2F, PLA2G4D, and PLA2G4E in
44 keratinocytes.
45 Figure S7. Pharmacological inhibiting sPLA2 or cPLA2 alleviates inflammatory responses
46 and helps normalize differentiation *in vitro*.
47 Figure S8. Lipids with most strongly altered abundance in comparisons among PP and NC
48 skin samples, and in IL-17A+TNF stimulated keratinocytes.
49 Figure S9. The proinflammatory role of some PLA2s-regulated lipids.
50 Figure S10. Inhibitors of PLA2s reduce the mRNA expression level of Pla2s in IMQ-induced
51 mice.
52

53 **Supplementary materials and methods**

54 **siRNA experiments**

55 Small interfering RNA (siRNA) targeting PLA2s including PLA2G2F (Accell Human PLA2
56 siRNA, E-008591-00-0005), PLA2G4D (E-008599-00-0005), and PLA2G4E
57 (E-010297-00-0005), and control siRNA (D-001910-01-20) were purchased from Dharmacon
58 company and introduced into cells by Delivery medium (B-005000-100, Dharmacon)
59 according to the manufacturer's instructions.

60

61 **Overexpression of PLA2G2F and PLA2G4D**

62 N/TERT keratinocytes stably overexpressing PLA2s were generated using 4D-Nucleofector
63 X Unit (Lonza Cologne). Cells were prepared using a standard protocol for the Normal
64 Human Epidermal Keratinocyte X Unit kit (4D Nucleofector Solution, supplement and
65 100 μ L single nucleocuvette) obtained from Lonza. For each electroporation, 5 μ g
66 pCMV6-AC-GFP PLA2G2F (RG220309, Origene) or PLA2G4D (RG222969, Origene)
67 plasmid was used. Unit X program DS-138 was selected for stable keratinocytes. Following
68 transfection, keratinocytes were grown in a 12-well plate using fully supplemented
69 Keratinocyte-SFM medium, penicillin streptomycin, and 500 μ g/mL G418 (Thermo Fisher
70 Scientific) for selection followed by expansion for approximately 30 days. PLA2
71 overexpression was validated using western blotting and qRT-PCR (Figure S5A).

72

73 **QRT-PCR**

74 Total RNA was isolated using RNeasy plus kit (74136, Qiagen) and RNA yield was assessed
75 using a spectrophotometer (EpochTM Microplate Spectrophotometer, BioTek, Winooski, VT).
76 1 μ g of total RNA was reverse transcribed using the High Capacity cDNA Reverse
77 Transcription Kit (Life Technology) following the manufacturer's instructions. TaqMan gene
78 expression assays (Thermo Fisher Scientific) were used to assess relative expression of
79 selected genes and normalized to RPLP0. Then qRT-PCR was performed on an ABI PRISM
80 7900 Sequence Detection HT system (Applied Biosystems). The method of $2^{\Delta Ct}$ was used to
81 obtain the relative mRNA expression of genes of interest by normalizing their Ct values with

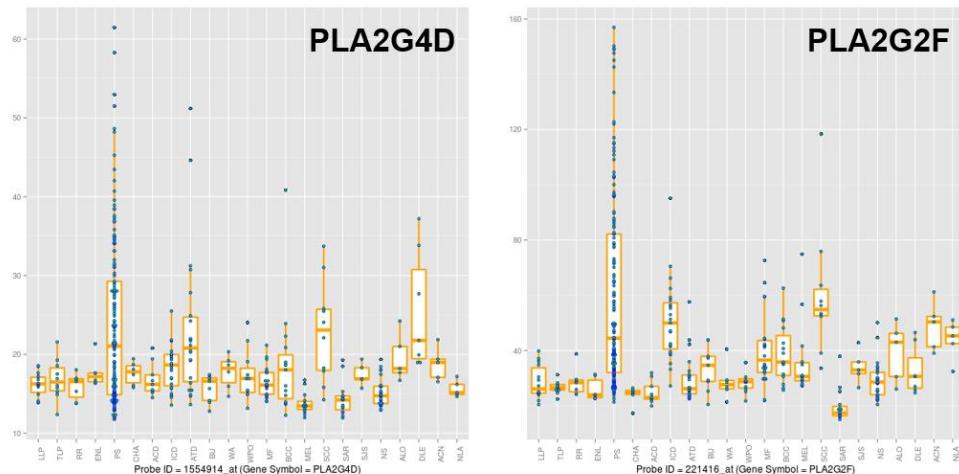
82 Ct values of the reference gene RPLP0. Primers (Thermo Fisher Scientific) used in this study
83 were: PLA2G2F, Hs00224482_m1; PLA2G4D, Hs00603557_m1; PLA2G4E,
84 Hs00416278_m1; IL1B, Hs01555410_m1; IL36G, Hs00219742_m1; S100A7,
85 Hs01923188_u1; DEFB4, Hs00175474_m1; CCL20, Hs00355476_m1; IVL,
86 Hs00846307_s1; FLG, Hs00856927_g1; LOR, Hs01894962_s1; CXCL1, Hs00236937_m1;
87 RPLP0, Hs00420895_gH.

88

89 **Western blots**

90 Cells were washed with PBS and isolated using Pierce RIPA buffer (89900, Thermo Fisher
91 Scientific) containing PSMA (Sigma) and 1×protease inhibitor cocktail (Roche). Afterwards,
92 samples were run on a precast gel (456-1094S, Bio-Rad) and transferred to a PVDF
93 membrane. The following antibodies were used for Western blot analysis: anti-PLA2G2F
94 (sc-58363, Santa Cruz Biotechnology), anti-PLA2G4D (PA5-72287, Invitrogen), and
95 anti-β-actin (A5441, Sigma); followed by secondary antibodies (anti-mouse or rabbit IgG,
96 AP-linked Antibody, Cell Signaling). Blots were then washed 3 times and substrate was
97 added (45-000-947, Fisher Scientific). The membrane was scanned using the Molecular
98 Dynamics STORM 860 PhosphorImager (GE Health Care, STORM 860)

99

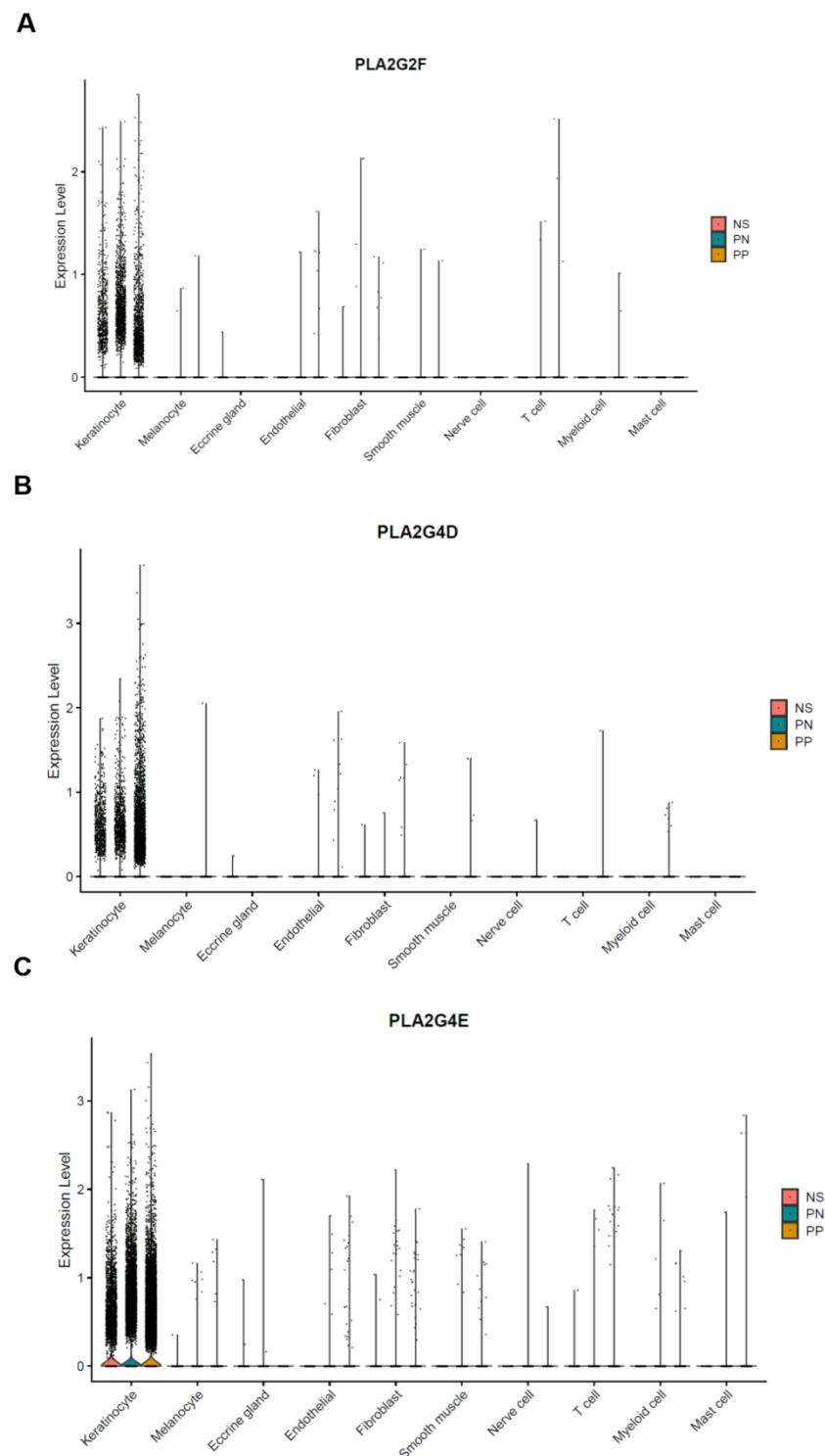

100 **Immunofluorescence microscopy**

101 Paraffin-embedded skin sections were dewaxed using Citroclear, rehydrated in a series of
102 descending gradient of ethanol- water solutions, and then boiled in 1× Target Retrieval buffer
103 (Dako) for 15 minutes for antigen retrieval. Sections were then cooled down in PBS and
104 blocking was done with 1% BSA in PBS for 1 hour at room temperature. Skin sections were
105 then ready for incubation with primary and secondary antibodies, accordingly. Coverslips
106 were mounted in Fluoroshield mounting medium (Sigma-Aldrich). For LAD2 mast cell
107 imaging, cells were plated on culture slides (BD) pretreated with poly-d-lysine, fixed and
108 permeabilized with acetone for 10 minutes, and then blocked with blocking solution for 1
109 hour at room temperature, followed by staining with primary and secondary antibodies.
110 Primary antibodies were: rabbit anti-PLA2G2F (5ug/ml, sc-164549, Santa Cruz

111 Biotechnology), rabbit anti-PLA2G4D (10/ml, LS-C119894/68125, Lifespan biosciences.
112 Secondary antibodies were: goat anti-rabbit IgG-Alexa Fluor 488 (1:500; Thermo Fisher
113 Scientific). Images were acquired on an Axiovert S100 microscope (ZEISS) coupled with a
114 digital camera (ORCA-ER C4742-80; Hamamatsu Photonics). Images were processed by
115 ZEN imaging software (Blue edition; ZEISS).

116
117

118 **Supplementary figures and figure legends**
119 **Figure S1**



ACD: Allergic contact dermatitis
ACN: Acne
ALO: Alopecia areata
ATD: Atopic dermatitis
BCC: Basal cell carcinoma
BU: Burn
CHA: Chancroid
DLE: Discoid Lupus Erythematosus
ENL: Erythema nodosum leprosum
ICD: Irritant contact dermatitis
LLP: Lepromatous leprosy

MEL: Melanoma
MF: Mycosis fungoides
NLA: Non-lesional Acne
NS: Normal skin
PS: Psoriasis
RR: Reversal reaction (leprosy)
SAR: Cutaneous sarcoidosis
SCC: Squamous cell carcinoma
SJS: Stevens Johnson syndrome (blister cells)
TLP: Tuberculoid leprosy
WA: Acute wound (0h after injury)
WPO: Post-operative wound (3, 7 days after injury)

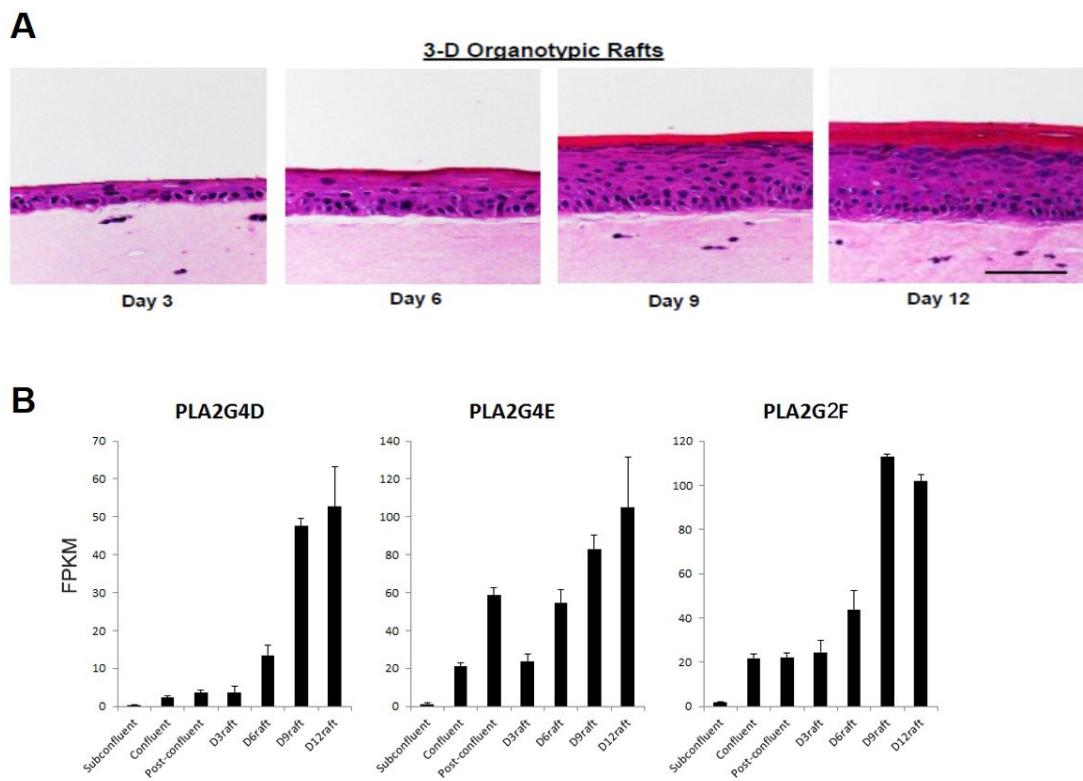
120
121 **Figure S1. The expression level of PLA2G2F and PLA2G4D in several skin diseases.**
122

123 **Figure S2**

124

125

Figure S2. ScRNA-seq analysis of psoriatic lesional skin and controls for three PLA2 genes.


127

128

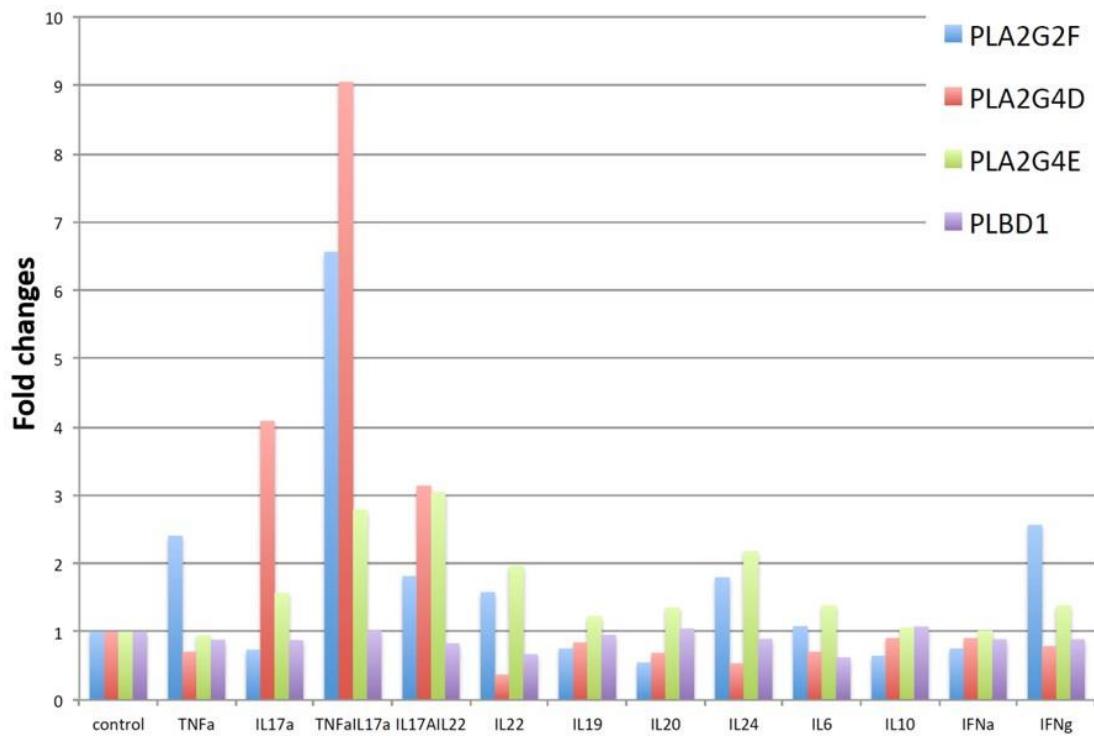
129

130

131 **Figure S3**

132

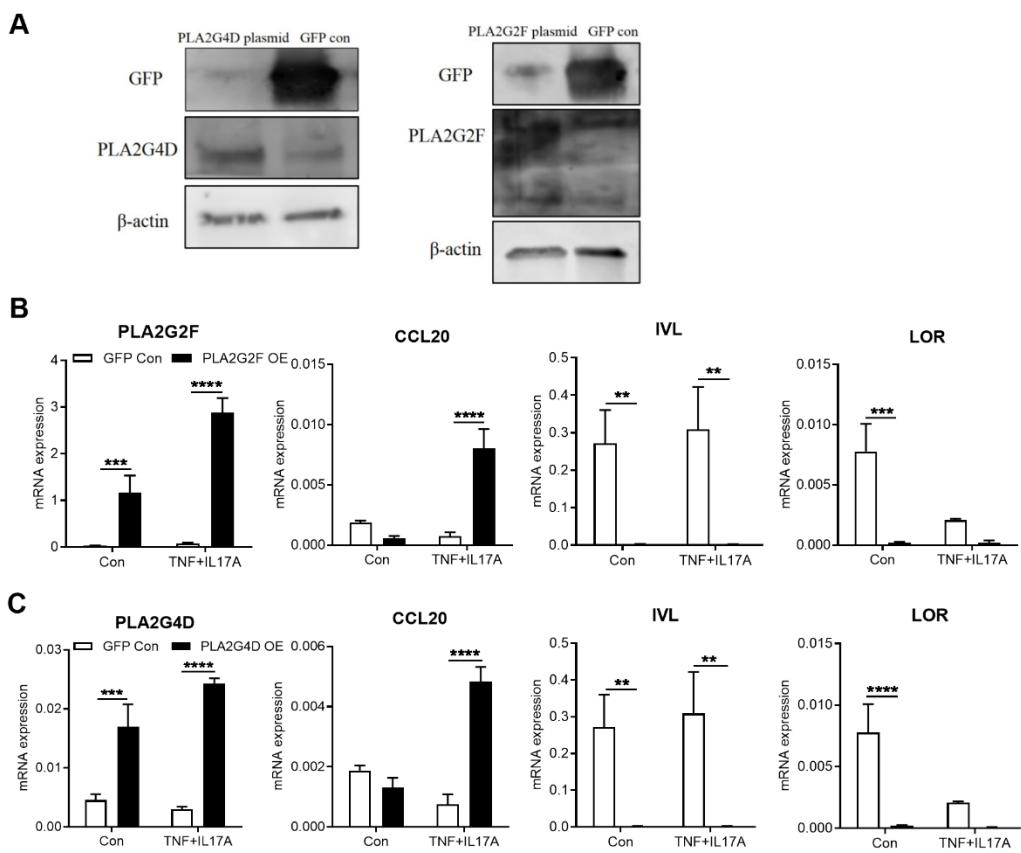
133 **Figure S3. The expression level of PLA2G2F, PLA2G4D, and PLA2G4E in 3D human**
134 **skin equivalents.**


135 (A) The Hematoxylin and eosin staining of 3D human skin equivalents at indicated time. (B)

136 The mRNA expression level of *PLA2G2F*, *PLA2G4D*, or *PLA2G4E* in the epidermis of 3D

137 human skin equivalents.

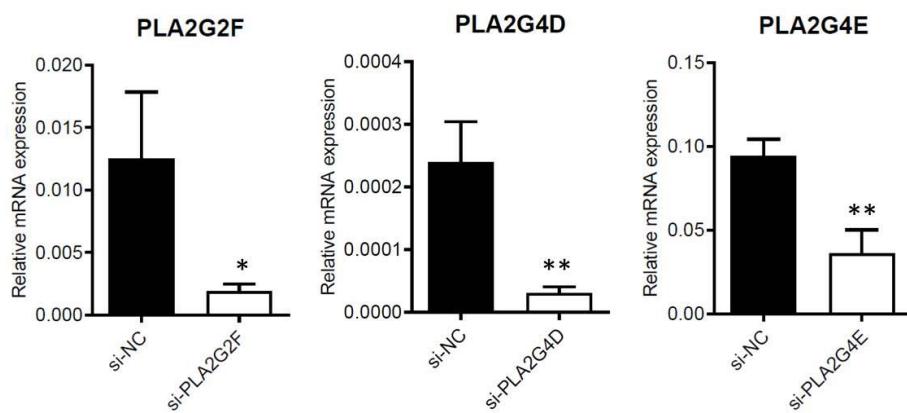
138


139 **Figure S4**

140
141 **Figure S4. The expression level of PLA2G2F, PLA2G4D, and PLA2G4E in**
142 **cytokine-treated keratinocytes.**

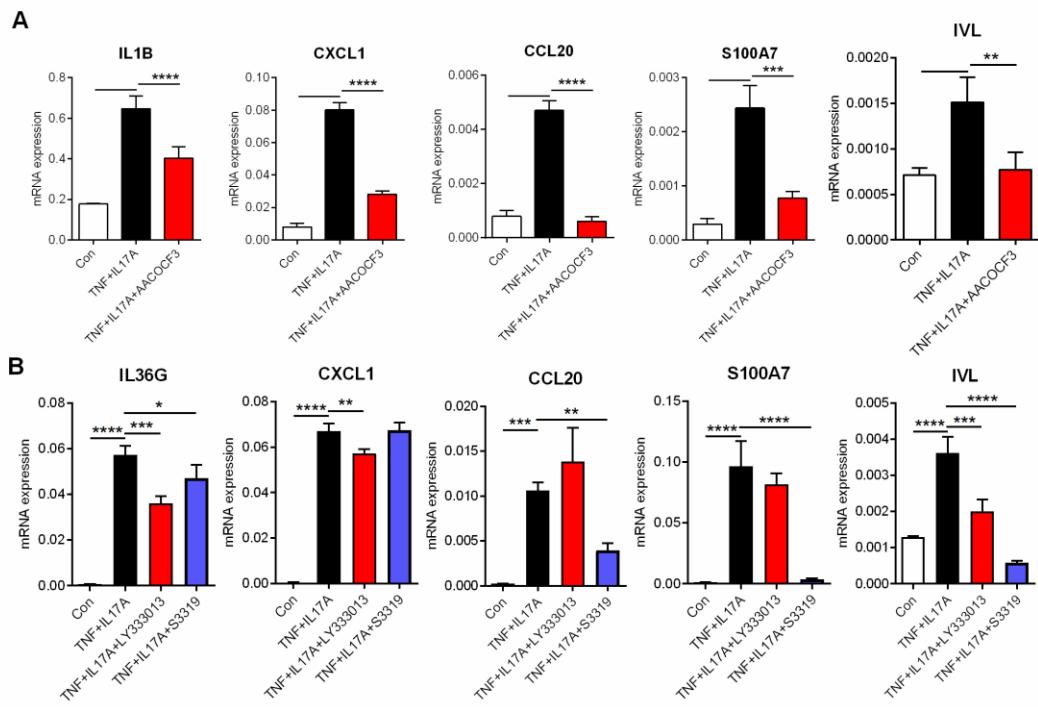
143 QRT-PCR detected the mRNA expression level of *PLA2G2F*, *PLA2G4D*, or *PLA2G4E* in
144 keratinocytes stimulated by a set of cytokines.

145 **Figure S5**


146

147 **Figure S5. Overexpressing *PLA2G2F* or *PLA2G4D* modulates the immune response and**
148 **skin barrier genes in keratinocytes.**

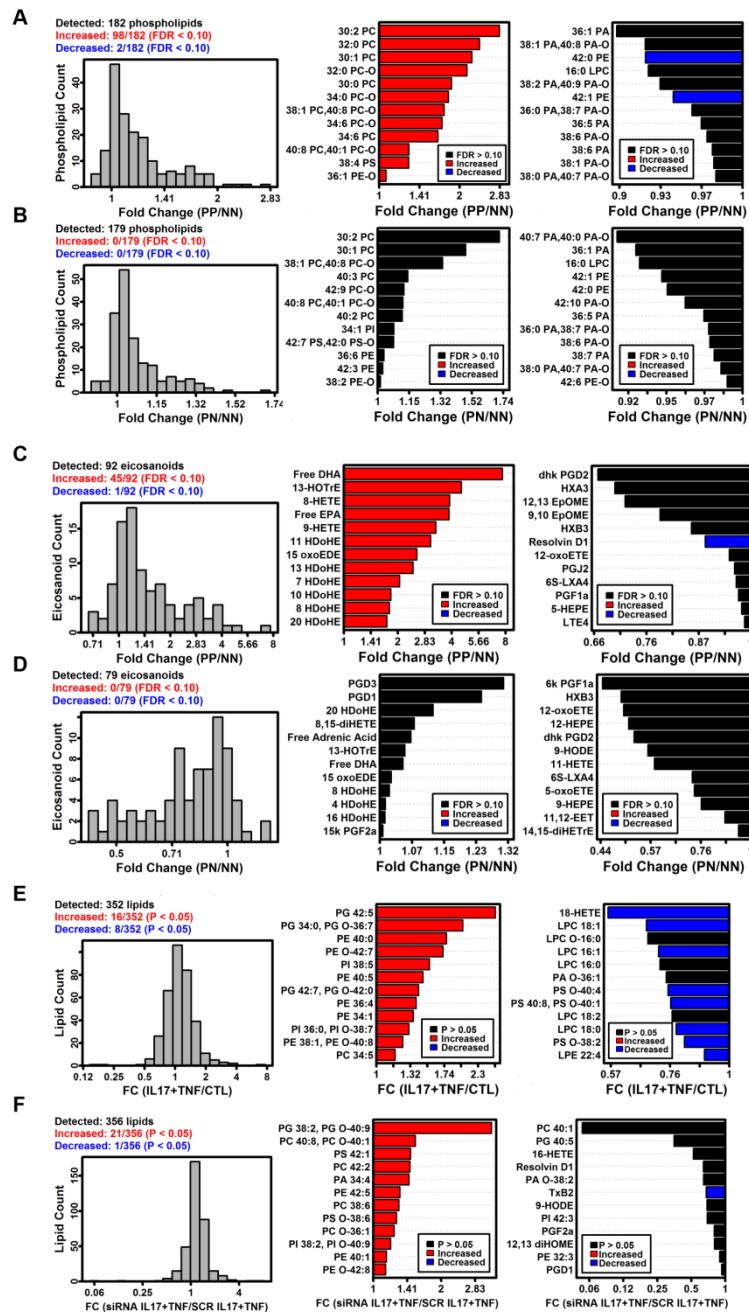
149 (A) Western blot validates the efficiency of *PLA2G2F* or *PLA2G4D* overexpression in
150 keratinocytes. (B, C) QRT-PCR showing the mRNA expression of immune response and skin
151 barrier genes in *PLA2G2F* (B) or *PLA2G4D* (C) overexpressed keratinocytes. Two-way
152 ANOVA. Data are presented as means \pm SEM (n=3). *P < 0.05, **P < 0.01, ***P < 0.001,
153 ****P < 0.0001.


154

155 **Figure S6**

156
157 **Figure S6. The knockdown efficiency of PLA2G2F, PLA2G4D, and PLA2G4E in**
158 **keratinocytes.** The siRNAs targeting *PLA2G2F*, *PLA2G4D*, and *PLA2G4E* were transfected
159 in keratinocytes, and qRT-PCR validated the knockdown efficiency.

160 **Figure S7**

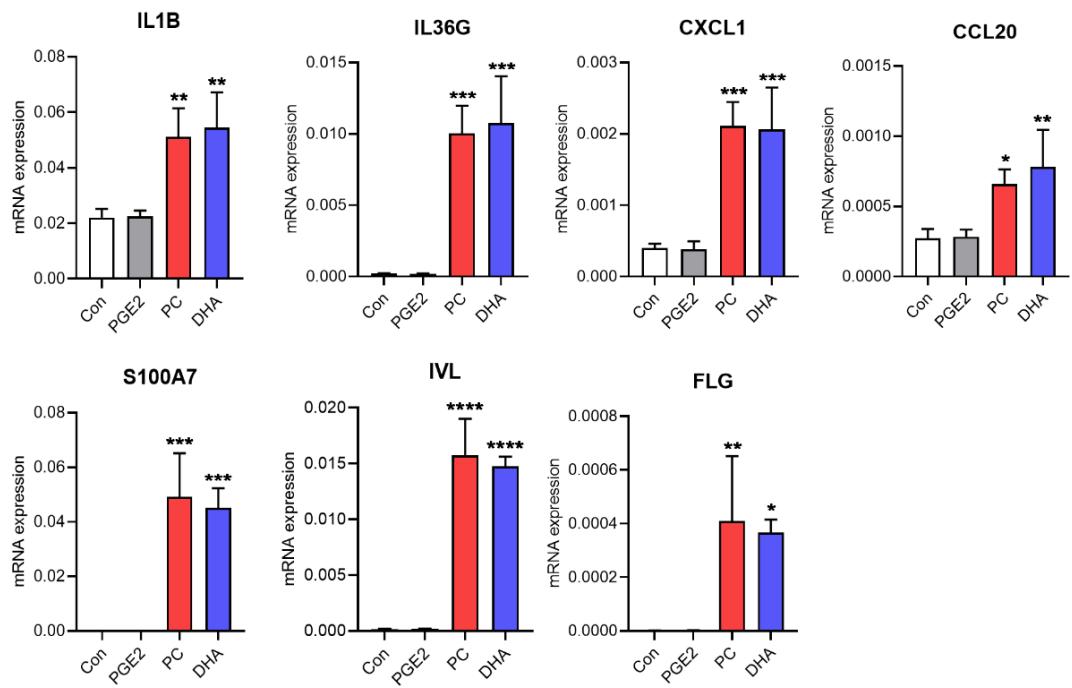


161

162 **Figure S7. Pharmacological inhibiting sPLA2 or cPLA2 alleviates inflammatory
163 responses and helps normalize differentiation *in vitro*.**

164 (A, B) QRT-PCR showing the mRNA expression of immune response and skin barrier genes
165 in keratinocytes that pre-treated with sPLA2 inhibitor (AACOCF3) (A) or cPLA2 inhibitors
166 (LY333013 and S3319). One-way ANOVA. Data are presented as means \pm SEM (n=3). *P <
167 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.

168

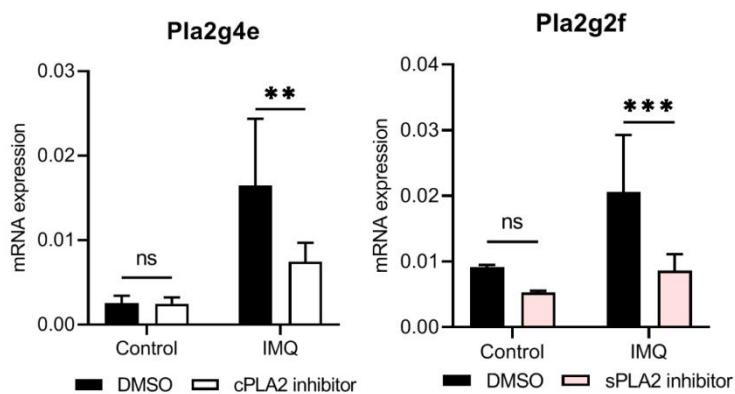


171 **Figure S8. Lipids with most strongly altered abundance in comparisons among PP and**
172 **NC skin samples, and in TNF+IL-17A stimulated keratinocytes.**

173 (A) Distribution of fold-change estimates (PP/NN) (left panel). Phospholipids most strongly
174 increased and decreased in PP vs. NN skin (right two panels). (B) Distribution of fold-change
175 estimates (PN/NN) (left panel). Phospholipids most strongly increased and decreased in PN
176 vs. NN skin (right two panels). (C) Distribution of fold-change estimates (PP/NN) (left panel).
177 Eicosanoids most strongly increased and decreased in PP vs. NN skin (right two panels). (D)
178 Distribution of fold-change estimates (PN/NN) (left panel). Eicosanoids most strongly
179 increased and decreased in PN vs. NN skin (right two panels). Red and blue bars denote
180 significantly increased and decreased lipids, respectively ($P < 0.05$). (E) Distribution of

181 fold-change estimates (TNF+IL17A/CTL) (left panel). Lipids most strongly increased and
182 decreased in TNF+IL17A-treated KCs (right two panels). (F) Distribution of fold-change
183 estimates (siRNA TNF+IL17A/SCR TNF+IL17A) (left panel). Lipids most strongly
184 increased and decreased by siRNA knockdown (TNF+IL17A-treated cells) (right two panels).
185 PP: psoriatic lesional skin; PN: psoriatic non-lesional skin; NN: normal controls.
186

187 **Figure S9**


188

189 **Figure S9. The proinflammatory role of some PLA2s-regulated lipids.**

190 QRT-PCR showing that the immune response and skin barrier genes in keratinocytes that
191 stimulate by Phosphorylcholine (PC) and Docosahexaenoic Acid (DHA). One-way ANOVA.
192 Data are presented as means \pm SEM (n=3). *P < 0.05, **P < 0.01, ***P < 0.001, ****P <
193 0.0001.

194

195 **Figure S10**

196

197 **Figure S10. Inhibitors of PLA2s reduce the mRNA expression level of Pla2s in**
198 **IMQ-induced mice.**

199 QRT-PCR showing that the efficiency of topical PLA2 inhibitors in mouse epidermis.
200 One-way ANOVA. Data are presented as means \pm SEM (n=3). ** $P < 0.01$, *** $P < 0.001$, ns,
201 no significance.

202

203

204