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Introduction
Severe acute kidney injury (AKI) has been linked to progression to chronic kidney disease (CKD) (1). 
Renal proximal tubule epithelial cells (RPTECs) are a target of  acute tubular injury, which is the most com-
mon cause of  AKI. RPTECs also contribute to the progression to CKD by producing proinflammatory 
cytokines, which promote inflammatory cell infiltration, and by stimulating myofibroblast differentiation 
of  surrounding fibroblasts, thus leading to interstitial fibrosis (2). Multiple factors influence the secretion of  
proinflammatory and profibrotic cytokines by the injured RPTECs, including extracellular matrix recep-
tors. Among these receptors, discoidin domain receptor 1 (DDR1) is a receptor tyrosine kinase that binds 
to and is activated by collagen. DDR1 is expressed at low levels in healthy organs; however, its expression 
and activation are increased in disease and after injury (3, 4). In CKD, DDR1 promotes inflammatory cell 
infiltration, secretion of  profibrotic cytokines, and tissue fibrosis (5–9). Gene expression analysis of  injured 
kidneys showed that DDR1 inhibitors revert the fibrotic and inflammatory gene networks activated by 
injury (3), pointing to DDR1 as a promising therapeutic target (4).

Collagen-mediated DDR1 activation initiates intracellular signaling pathways that affect fibrotic 
responses (10). DDR1 promotes fibrosis by increasing production of  TGF-β (7) and by directly stimulating 
collagen transcription (11). We have previously showed that collagen-mediated DDR1 activation is a key 
step in promoting DDR1 interaction with nonmuscle myosin II (NM II) and β-actin and translocation to 
the nucleus. In the nucleus, DDR1 interacts with chromatin, thus favoring the transcription of  collagen IV, a 

Discoidin domain receptor 1 (DDR1), a receptor tyrosine kinase activated by collagen, contributes 
to chronic kidney disease. However, its role in acute kidney injury and subsequent development of 
kidney fibrosis is not clear. Thus, we performed a model of severe ischemia/reperfusion-induced 
acute kidney injury that progressed to kidney fibrosis in WT and Ddr1-null mice. We showed that 
Ddr1-null mice had reduced acute tubular injury, inflammation, and tubulointerstitial fibrosis with 
overall decreased renal monocyte chemoattractant protein (MCP-1) levels and STAT3 activation. We 
identified breakpoint cluster region (BCR) protein as a phosphorylated target of DDR1 that controls 
MCP-1 production in renal proximal tubule epithelial cells. DDR1-induced BCR phosphorylation 
or BCR downregulation increased MCP-1 secretion, suggesting that BCR negatively regulates the 
levels of MCP-1. Mechanistically, phosphorylation or downregulation of BCR increased β-catenin 
activity and in turn MCP-1 production. Finally, we showed that DDR1-mediated STAT3 activation 
was required to stimulate the secretion of TGF-β. Thus, DDR1 contributes to acute and chronic 
kidney injury by regulating BCR and STAT3 phosphorylation and in turn the production of MCP-1 
and TGF-β. These findings identify DDR1 an attractive therapeutic target for ameliorating both 
proinflammatory and profibrotic signaling in kidney disease.
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major collagen upregulated in fibrosis (11). DDR1 interaction with NM II is also required for the DDR1-me-
diated collagen fiber alignment and compaction, a process that contributes to tissue fibrosis (12). Although 
the profibrotic action of  DDR1 has been investigated, how DDR1 promotes inflammatory cell infiltration 
and/or exerts a proinflammatory effect is less understood. In a unilateral ureter obstruction (UUO) model 
of  kidney injury, it was proposed that DDR1 expressed on activated macrophages contributes to their migra-
tion to the site of  injury (7). However, in angiotensin II–induced kidney injury, genetic deletion of  DDR1 
results in overall reduction of  inflammatory cell infiltration, although DDR1 does not seem to be expressed 
on macrophages (9). Consistent with this study, DDR1 expression on macrophages was not detected in 
subjects with interstitial nephritis (4). These findings, together with the observation that DDR1 expression is 
detected in proximal tubules of  patients with AKI who received a kidney transplant (11), suggest that DDR1 
expressed on injured resident tubular epithelial cells, rather than on infiltrating macrophages, is responsible 
for regulating DDR1-dependent proinflammatory effects.

To better understand how DDR1 regulates proinflammatory and profibrotic signaling in kidney dis-
ease, we used a model of  severe unilateral ischemia/reperfusion (IR) injury followed by delayed contralat-
eral nephrectomy (13, 14). This approach improves postinjury survival and allows functional assessment of  
renal recovery after injury. In addition, it represents an excellent model to study inflammatory and fibrotic 
responses. We showed that Ddr1-null mice had significantly reduced AKI and inflammation and overall 
development of  fibrosis. Mechanistically, activation of  DDR1 on RPTECs led to phosphorylation of  the 
breakpoint cluster region protein (BCR) and STAT3, 2 key steps in promoting the production of  monocyte 
chemoattractant protein-1 (MCP-1) and TGF-β, respectively. Overall, we identified BCR and STAT3 as key 
players in DDR1-mediated proinflammatory and profibrotic effects after kidney injury.

Results
Loss of  DDR1 reduces AKI and tubulointerstitial fibrosis in an AKI-to-CKD injury model. To determine the 
contribution of  DDR1 to AKI and development of  fibrosis after AKI, we used an IR-induced AKI with 
delayed contralateral nephrectomy model. WT mice underwent left renal pedicle clamping for 31 min-
utes followed by nephrectomy of  the right kidney 8 days later (Figure 1A). This method results in severe 
AKI in the first 7 days, which progresses to the development of  tubulointerstitial fibrosis at d28 (13, 14). 
Analysis of  renal DDR1 protein expression revealed that DDR1 levels and activation were evident at d3, 
peaked at d7–9, and were still upregulated at d28 (Figure 1, B and C). To visualize DDR1 localization 
and expression in uninjured and injured kidneys, we used Ddr1tma1(EUCOMM)Hmgu mice that carry the LacZ 
gene between exons 5 and 6 of  the Ddr1 gene (Supplemental Figure 1A; supplemental material available 
online with this article; https://doi.org/10.1172/jci.insight.150887DS1). Because the LacZ gene is reg-
ulated by the endogenous Ddr1 promoter, β-gal staining can be used to localize DDR1 expression. For 
the injury, we generated Ddr1tma1/tma1 mice (Supplemental Figure 1B) that lacked endogenous expression 
of  DDR1 (Supplemental Figure 1C). As shown in Figure 1D, low levels of  β-gal activity were evident 
in the kidneys of  uninjured mice (1 day prior to injury, d–1); however, positive staining was detected in 
proximal tubules starting at d3 that persisted for the entire duration of  the injury (d28). Thus, DDR1 was 
upregulated in injured proximal tubule cells, the main cell type targeted by AKI. Moreover, the increased 
expression and activation of  DDR1 during the acute and chronic phases of  kidney injury suggest that 
DDR1 plays a role in both early and late stages of  kidney injury.

To determine how DDR1 participates in AKI, we examined kidney injury molecule-1 (KIM-1) at d3 
after IR in injured WT and Ddr1-null (Ddr1-KO) mice. Renal Havcr1 (KIM-1) mRNA levels increased at d3 
in WT and Ddr1-KO mice, although they were significantly lower in the Ddr1-KO mice (Figure 2A). Con-
sistent with this result, attenuated tubular injury, tubular necrosis, dilatation, and casts were evident in d3 
injured Ddr1-KO mice compared with WT mice (Figure 2, B and C).

To assess how DDR1 influences the development of  fibrosis after AKI, we measured serum blood 
urea nitrogen (BUN) in WT and Ddr1-KO mice at d–1, at d9 (immediately after removal of  the con-
tralateral kidney), and at d28 (Figure 2D). Both WT and Ddr1-KO mice showed increased BUN at d9 
compared with d–1, although it was significantly lower in the injured Ddr1-KO mice. At d28, BUN in 
the Ddr1-KO mice returned to baseline levels, whereas it remained significantly higher in the injured WT 
mice (Figure 2D). Consistent with this result, kidneys of  WT mice showed increased tubulointerstitial 
fibrosis, tubular atrophy, and interstitial cell infiltration compared with those of  Ddr1-KO mice at d28 
(Figure 2, E and F). Further, WT kidneys at d28 showed significantly higher levels of  cells positive for 
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α–smooth muscle actin (α-SMA; indicative of  myofibroblast differentiation) (Figure 3, A and B) and 
collagen deposition as determined by Picrosirius red staining (Figure 3, C and D) and by Western blot 
analysis (Figure 3, E and F) compared with injured Ddr1-KO mice. These results suggest that DDR1 con-
tributes to AKI and development of  fibrosis.

Figure 1. Increased DDR1 expression and activation after severe AKI that progresses to CKD. (A) Schematic repre-
sentation of the injury model used in this study. Mice underwent left (L) renal pedicle clamping (IR) for 31 minutes, 
and nephrectomy of the right kidney (R UNX) was performed 8 days later. Mice were euthanized at the time points 
indicated. d–1 indicates preinjured mice. (B) Levels of phosphorylated and total DDR1 were analyzed by Western blot in 
kidney cortices isolated from uninjured (d–1) or injured WT mice at the time points indicated. (C) DDR1 and β-tubulin 
bands were quantified by densitometry, and values are expressed as DDR1/β-tubulin ratio and represent the mean 
± SD of n ≥ 3 mice/group. Statistical analysis: 1-way ANOVA followed by Dunnett’s multiple-comparison test versus 
uninjured mice. *P < 0.05, ***P < 0.001, ****P < 0.0001. (D) Kidney sections from uninjured (d–1) or injured Ddr1tm1a/tm1a 
mice (d–1 n = 3, d3 n = 4, d7 n = 3, d10 n = 1, d13 n = 1, d28 n = 3) euthanized at the time points indicated were stained 
for β-gal (blue staining) and lotus tetragonolobus lectin (LTL, a marker of proximal tubules, red staining) as described in 
the Methods. Note the increased expression of β-gal staining in injured proximal tubules. Scale bar: 25 μm.
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Loss of  DDR1 reduced macrophage infiltration and MCP-1 production after IR. Proximal tubules, the main 
target of  acute tubular injury in this model, are critical contributors to the development of  CKD (15), 
which is due in part to synthesis of  proinflammatory cytokines. DDR1 is expressed in proximal tubules 
of  patients with AKI who received a transplant (11) as well as mouse RPTECs (Supplemental Figure 2, 
A and B). In RPTECs, endogenous DDR1 is phosphorylated in response to collagen stimulation, and 
this effect is inhibited by the small-molecule DDR1 inhibitor Cmp-1 (16, 17) (Supplemental Figure 2, A 
and B). To determine whether activated DDR1 in RPTECs regulates the secretion of  proinflammatory 
cytokines, we analyzed the conditioned medium of  vehicle-treated versus collagen-treated RPTECs 
using a proinflammatory cytokine array. Several cytokines were upregulated in response to collagen 
treatment. MCP-1 showed the strongest signal and most upregulation in response to collagen (Supple-
mental Figure 2C). These results were confirmed by ELISA showing significant upregulation of  MCP-1 
levels in collagen-treated versus vehicle-treated cells (Figure 4A), and this induction was significantly 
decreased in cells treated with Cmp-1 (Figure 4A). These findings suggest that activation of  DDR1 
promotes MCP-1 production in RPTECs. To confirm the in vitro results, we measured Ccl2 (MCP-1) 
mRNA in the kidneys of  WT and Ddr1-KO mice 3 days after severe IR. MCP-1 levels were upregulated 
in injured WT mice; there was significantly less increase in the injured Ddr1-KO mice (Figure 4B). Infil-
trating F4/80-positive cells were significantly decreased in d3 injured Ddr1-KO mice compared with WT 
mice, consistent with decreased renal MCP-1 levels (Figure 4, C and D).

Identification of  BCR as a DDR1 target using a proximity-dependent biotinylation assay. To determine how 
DDR1 contributes to MCP-1 production, we performed a proximity-dependent biotinylation assay, BioID, 

Figure 2. Attenuated AKI and chronic tubulointerstitial injury in Ddr1-KO mice. (A) Havcr1 (KIM-1) mRNA levels in WT and Ddr1-KO mice uninjured (d–1) 
or 3 days after IR were analyzed by quantitative PCR and normalized to Gapdh mRNA. Circles represent individual kidneys, and the bars show mean ± SD. 
Uninjured WT and Ddr1-KO n = 4, injured WT n = 8, injured Ddr1-KO n = 6. (B) Periodic acid–Schiff (PAS) staining of kidneys from WT and Ddr1-KO mice 
uninjured (d–1) and d3 after IR. Scale bar: 50 μm. (C) Acute injury was evaluated in uninjured (d–1) (WT and Ddr1-KO n = 3) and d3 injured mice (WT n = 15, 
Ddr1-KO n = 9). Circles represent individual kidneys, and bars show mean ± SD. (D). Blood urea nitrogen (BUN) was measured prior to injury (d–1) and at d9 
and d28 after injury. Circles represent individual mice, and bars show mean ± SD. (E) PAS staining of kidneys from WT and Ddr1-KO mice uninjured (d–1) 
and 28 days after injury. Scale bar: 50 μm. (F) Tubular injury scores were evaluated in uninjured (d–1) (WT and Ddr1-KO n = 5) and d28 injured (WT n = 10, 
Ddr1-KO n = 6) mice. Circles represent single mice, and bars are mean ± SD. Statistical analysis: 1-way ANOVA followed by Tukey’s multiple-comparison 
test for A, C, and F and 2-way repeated measures ANOVA followed by Sidak’s multiple-comparison test for D.
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to identify possible DDR1 interacting partners that regulate inflammatory responses. BioID relies on the 
biotinylation of  potential interactors in live cells by a promiscuous bacterial protein ligase fused to the 
bait protein. The proteins thus identified represent direct and indirect interactors as well as proteins in 
close proximity to the bait. To do this, we generated HEK cells expressing DDR1 linked to 2 forms of  the 
biotin ligase, namely BirA* (DDR1-BioID) or turbo-Flag (DDR1-turbo-Flag) (Supplemental Figure 3A). 
We verified that the DDR1-BioID was phosphorylated in response to collagen (Supplemental Figure 3B) 
and that the biotin ligase was active (Supplemental Figure 3C). Biotinylated proteins from cells expressing 
empty vector (BioID) treated with collagen I for 24 hours or from cells expressing the biotin ligase fused to 
DDR1 (DDR1-BioID), treated with vehicle or collagen for 24 hours, were isolated on neutravidin beads 

Figure 3. Decreased fibrosis in injured Ddr1-KO mice. (A) Images of kidney sections from WT and Ddr1-KO mice uninjured 
(d–1) or 28 days after IR stained with anti–α-SMA antibody. Scale bar: 50 μm. (B) The percentage of α-SMA–positive area 
per microscopic field was evaluated at d28 using ImageJ. Circles represent individual kidneys (WT and Ddr1-KO n = 4), and 
bars are mean ± SD. (C) Picrosirius red staining of kidney sections from WT and Ddr1-KO mice uninjured (d–1) or 28 days 
after IRI. Scale bar: 50 μm. (D) The percentage of Picrosirius red–positive area was evaluated using ImageJ. Circles repre-
sent individual kidneys (d–1 WT and Ddr1-KO n = 4, d28 WT and Ddr1-KO n = 5), and bars are mean ± SD. (E) Kidney lysates 
from uninjured WT (d–1) and WT and Ddr1-KO 28 days after IR were analyzed for the level of collagen I by Western blot 
analysis. (F) Collagen I and β-tubulin bands were quantified by densitometry analysis, and collagen I is expressed as colla-
gen I/β-tubulin ratio. Circles represent individual kidneys (d–1 WT n = 4, d28 WT and Ddr1-KO n = 5), and bars are mean ± 
SD. Statistical analysis: 2-tailed t test for B and 1-way ANOVA followed by Tukey’s multiple-comparison test for D and F.
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and subjected to mass spectrometry analysis (see Methods for details). Several proteins were detected in 
cells expressing DDR1-BioID but not in BioID alone (Supplemental Table 1). As expected, DDR1 was the 
most abundant protein detected in vehicle-treated and collagen-treated DDR1-BioID cells (Supplemental 
Table 1). Several proteins were biotinylated in the collagen-treated versus vehicle-treated DDR1-BioID 
cells, with BCR significantly different between the 2 treatment groups.

To confirm the mass spectrometry results, we isolated biotinylated proteins from BioID cells treated 
with collagen I or from DDR1-BioID cells treated with vehicle or collagen I and performed Western blot 
analysis with an anti-BCR antibody. BCR was not detected in BioID-cells (BioID) and present at low 
levels in vehicle-treated DDR1-BioID cells. In contrast, biotinylated BCR was robustly detected in col-
lagen-treated DDR1-BioID cells (Supplemental Figure 3D). This result confirms that BCR was in close 
proximity to DDR1 after collagen activation. In addition, IP assays in vehicle- and collagen-treated HEK 
cells expressing DDR1-Turbo-Flag with anti-FLAG antibody showed that BCR was coimmunoprecipitat-
ed with DDR1 in vehicle-treated and collagen-treated cells, although the amount of  immunoprecipitated 
BCR was more predominant in collagen-treated cells (Figure 5A).

Reduced levels of  phosphorylated BCR in Ddr1-KO mice after IR. Quantitative phosphoproteomics identi-
fied BCR as a protein phosphorylated on Tyr177 in response to DDR1 activation (18). Tyr177 phosphory-
lation is a key step for regulation of  BCR function (19–21). To determine whether collagen-induced DDR1 
activation regulates BCR phosphorylation, we examined the levels of  pTyr177BCR in HEK cells express-
ing DDR1 (HEK-DDR1). BCR phosphorylation was detected 30 minutes after collagen treatment, and 

Figure 4. DDR1 promotes the production of proinflammatory MCP-1. (A) MCP-1 levels were measured by ELISA in con-
ditioned medium of RPTECs treated with vehicle or collagen I (CI, 50 μg/mL) with or without the DDR1 inhibitor Cmp-1 
(3 μM). Each circle represents 1 experiment performed in triplicates. Data represent mean ± SD of 5 experiments and 
are expressed as fold-change relative to vehicle-treated cells assigned a value of 1. (B) Ccl2 (MCP-1) mRNA levels were 
measured in kidneys of uninjured (d–1) or 3 days injured WT and Ddr1-KO mice by real-time quantitative PCR and nor-
malized to Gapdh mRNA. Circles represent individual kidneys (d–1 WT and Ddr1-KO n = 3, d3 WT n = 9, d3 Ddr1-KO n = 6), 
and bars are mean ± SD. I Images of kidney sections from uninjured (d–1) or 3 days injured WT and Ddr1-KO mice stained 
with anti-F4/80 antibody. Scale bar: 50 μm. (D) The number of F4/80 positive cells per microscopic field was evaluated 
and expressed as F4/80-positive cells/microscopic field. Circles represent individual kidneys (d–1 WT and Ddr1-KO n = 
3, d3 WT and Ddr1-KO n = 7), and bars are mean ± SD. Statistical analysis: 1-way ANOVA followed by Dunnett’s multiple 
comparison versus CI-treated cells for A and 1-way ANOVA followed by Tukey’s multiple-comparison test for B and D.
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it remained elevated up to 8 hours and paralleled collagen-mediated DDR1 autophosphorylation (Figure 
5B). Furthermore, DDR1-induced BCR phosphorylation was greatly reduced in HEK cells expressing the 
kinase-deficient DDR1 (HEK-DDR1-K655A) (Figure 5B). We next confirmed that DDR1 induces BCR 
phosphorylation in RPTECs also, as it was phosphorylated upon collagen treatment and prevented by 
treatment with Cmp-1 (Figure 5, C and D). To confirm the inhibitor results, we isolated primary RPTECs 
from WT (WT-mRPTEC) and Ddr1-KO (Ddr1-KO-mRPTEC) mice using a collagenase/Dispase digestion 
method (See Methods and Supplemental Figure 4A). Both WT and Ddr1-KO mRPTECs express typi-
cal markers of  proximal tubule cells, including epithelial ZO-1, aquaporin-1, N-cadherin, and Claudin-2 
(Supplemental Figure 4, B and C). Importantly, WT-mRPTECs express both DDR1 and BCR, whose 
phosphorylation can be induced by collagen treatment and inhibited by Cmp-1 (Supplemental Figure 
4, D–F). Consistent with these results, analysis of  WT-mRPTECs and Ddr1-KO-mRPTECs showed that 
BCR was phosphorylated only in WT but not Ddr1-KO cells after treatment with collagen (Figure 5, E 
and F). All together, these results indicate that BCR is a downstream target of  collagen-activated DDR1 
in proximal tubule cells.

Next, we determined whether BCR is phosphorylated in our AKI model. To do this, we examined WT 
and Ddr1-KO kidney tissue lysates at d–1, d1, and d3 after severe IR. BCR protein levels were increased in 
d3 injured WT and Ddr1-KO mice, although phosphorylated BCR was primarily detected in d3 injured WT 
mice (Figure 5, G and H). Interestingly, d3 after IR was also the time point of  significant increase in DDR1 
levels and activation (Figure 1B), suggesting that BCR might function downstream of  activated DDR1.

BCR inhibits MCP-1 production by regulating β-catenin activation. Because BCR has been involved in 
inflammation (22), we investigated whether the DDR1/BCR axis plays a role in MCP-1 production. Thus, 
we generated RPTECs either overexpressing (BCR-Flag) or downregulated for (sh-BCR) BCR (Supplemen-
tal Figure 5, A and B) and measured secreted MCP-1 levels in these cells at baseline. Surprisingly, we found 
that increasing BCR expression in RPTECs decreased the levels of  secreted MCP-1 (Figure 6A), suggesting 
that BCR is a negative regulator of  MCP-1 production. Consistent with this hypothesis, we found that 
decreasing the levels of  BCR in sh-BCR RPTECs increased MCP-1 levels (Figure 6B).

We next determined how BCR negatively regulates MCP1 production. Because BCR activation increas-
es NF-κB transcriptional activity (22, 23), we examined whether DDR1 controls nuclear translocation of  
NF-κB. To do this, we prepared nuclear fractions from vehicle-treated and collagen-treated HEK-DDR1 cells 
or RPTECs and examined the levels of  NF-κB-p65. Nuclear NF-κB was not different in vehicle-treated ver-
sus collagen-treated HEK-DDR1 cells or RPTECs (Supplemental Figure 6, A and B) despite increased col-
lagen-mediated BCR phosphorylation (Supplemental Figure 6A). In contrast, nuclear NF-κB was increased 
in cells treated with TNF-α or PMA, known to induce nuclear translocation of  this transcription factor (Sup-
plemental Figure 6, A and B). Consistent with this finding, nuclear levels of  NF-κB were not different in the 
kidneys of  d3 injured WT versus Ddr1-KO mice (Supplemental Figure 6, C and D). These results suggest that 
an alternative mechanism is responsible for BCR-mediated regulation of  MCP-1 production in RPTECs.

BCR regulates WNT signaling by forming a complex with β-catenin and inhibiting β-catenin–dependent 
transcription (19). Phosphorylation of  BCR at Tyr177 blocks the interaction with β-catenin and reverses 
BCR-dependent suppressive effects (19). To determine whether BCR levels affect nuclear β-catenin levels 
(indicative of  WNT pathway activation), we analyzed the localization of  β-catenin in RPTECs expressing 
control (sh-Cnt) or BCR shRNA (sh-BCR) cultured with or without the WNT/β-catenin inhibitor IWR-1-
endo, which promotes β-catenin degradation by stabilizing the destruction complex component, Axin (24, 
25). Nuclear β-catenin–positive cells were significantly increased in sh-BCR-RPTECs versus sh-Cnt-RPTECs 
(Figure 6, C and D). Treatment with IWR-1-endo significantly decreased the numbers of  β-catenin–positive 
cells in both groups (Figure 6, C and D); the most effect was observed in the sh-BCR-RPTECs. Next, we 
addressed whether the increase in MCP-1 production in sh-BCR-RPTECs was due to the alleviation of  the 
inhibitory effects of  BCR on β-catenin. Treatment of  sh-BCR-cells with IWR-1-endo significantly decreased 
the level of  secreted MCP-1 to that of  untreated sh-Cnt-cells (Figure 6B), suggesting that increased β-catenin 
activity is responsible for increased MCP-1 production in sh-BCR-RPTECs. Finally, to determine whether 
collagen-stimulated MCP-1 secretion is due to DDR1-mediated β-catenin activation, we measured secreted 
MCP-1 levels in collagen-treated RPTECs cultured with or without IWR1-endo. Inhibition of  β-catenin 
activity significantly inhibited MCP-1 secretion in collagen-stimulated cells, suggesting that β-catenin is a 
key mediator of  DDR1-induced MCP-1 production (Figure 6E). Thus, collagen-induced DDR1 activation 
results in BCR phosphorylation, which in turn leads to β-catenin–mediated MCP-1 production.
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Figure 5. DDR1 promotes BCR phosphorylation in vivo and in vitro. (A) Vector- or DDR1-HEK cells were treated with collagen I (50 μg/mL) or vehicle, then 
lysed and immunoprecipitated with anti-Flag antibody, and analyzed for levels of total and phosphorylated DDR1 or BCR. (B) DDR1-HEK or DDR1-K655A-
HEK cells were treated with collagen I (50 μg/mL), and the cell lysates were analyzed for levels of total and phosphorylated DDR1 or BCR. (C) RPTECs were 
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DDR1 activation increases TGF-β production by activating STAT3. In addition to inflammatory cyto-
kines, injured RPTECs secrete profibrotic cytokines like TGF-β. To determine whether DDR1 activa-
tion contributes to TGF-β secretion, we measured the levels of  secreted TGF-β in vehicle-treated versus 
collagen-treated RPTECs using ELISA (Figure 7A). Collagen treatment significantly increased TGF-β 
production compared with vehicle-treated cells, which was prevented by treating the cells with the 
DDR1 inhibitor Cmp-1 (Figure 7A).

To investigate how DDR1 signaling promotes TGF-β production, we screened for kinases that were 
phosphorylated in response to collagen-induced DDR1 activation using a kinase array. For this assay, 
we used HEK-vector or HEK-DDR1 cells treated with vehicle or collagen. Transcription factor STAT3 
phosphorylated on Tyr705 and on Ser727 was notable among the kinases phosphorylated only in colla-
gen-treated HEK-DDR1 cells (Supplemental Figure 7, A and B). We confirmed DDR1-mediated STAT3 
phosphorylation on Tyr705 in RPTECs treated with collagen in the presence or absence of  the DDR1 
inhibitor Cmp-1 (Figure 7, B and C). In addition, STAT3 was phosphorylated on Tyr705 in kidneys after 
IR-mediated injury, and it was more phosphorylated in 3d and 28d injured WT as compared with Ddr1-KO 
mice (Figure 7, D and E). IHC performed on uninjured and injured kidneys revealed increased pSTAT3 
staining, primarily in d3 injured proximal tubules of  WT but not Ddr1-KO mice (Figure 7, F and G). At 
d28, significantly more activated STAT3 was still observed in the kidneys of  WT mice compared with 
Ddr1-KO mice (Figure 7, F and G); however, positive staining was observed in both proximal tubular and 
nontubular compartments (Figure 7F).

To determine whether DDR1-mediated STAT3 activation contributes to the increased TGF-β produc-
tion in collagen-treated cells, we generated RPTEC cells expressing a constitutively active form of  STAT3 
(STAT3C-Flag) (Figure 8A) and analyzed TGF-β production at baseline or after collagen treatment. At 
baseline, RPTECs expressing STAT3C secreted significantly more TGF-β than untransfected cells (Figure 
8B). Treatment with collagen significantly increased TGF-β secretion in the control but not in RPTECs 
expressing STAT3C (Figure 8B). To further confirm the contribution of  the DDR1/STAT3 axis in TGF-β 
production, we treated HK2 cells with collagen in the presence or absence of  the STAT3 inhibitor S31-201. 
The inhibitor significantly decreased collagen-mediated TGF-β secretion (Figure 8C). Overall, these results 
suggest that collagen-induced activation of  DDR1 results in tyrosine phosphorylation of  STAT3, which in 
turn promotes TGF-β production.

Discussion
In the present study, we showed that DDR1 contributed to AKI and development of  tubulointerstitial fibro-
sis by promoting both inflammatory and fibrotic signaling. These effects were mediated by increased DDR1 
expression and activation in the kidney cortex, particularly in injured proximal tubules. We showed that 
DDR1 promoted BCR phosphorylation, thus removing its inhibitory effect on β-catenin and driving MCP-1 
production by RPTECs. In addition, we showed that DDR1 promoted STAT3 activation, a key step in the 
regulation of  profibrotic TGF-β. Thus, DDR1 contributed to inflammation and fibrosis by regulating pro-
duction of  MCP-1 and TGF-β by RPTECs (Figure 9).

Loss of  DDR1 attenuates fibrosis in a mouse model of  kidney injury induced by hypertension or partial 
renal ablation as well as in the Alport mouse model (9, 17, 26). Moreover, in kidney injury models associat-
ed with substantial inflammation, like UUO and nephrotoxic serum nephritis, loss of  DDR1 reduces over-
all inflammation and fibrosis (6, 7). We showed that mice lacking DDR1 had reduced collagen deposition 
when fibrosis developed after severe AKI. Together, these data strongly support a profibrotic role of  DDR1 
in kidney injury. Furthermore, our observation of  renal expression of  both collagen I and activated DDR1 

treated with collagen I (50 μg/mL) ± Cmp-1 as indicated and then analyzed as described in B. The black vertical line separates 2 gels that were run and 
developed at the same time. (D) pBCR and BCR bands in C were quantified by densitometry, and the pBCR level is expressed as pBCR/BCR ratio. Dara 
shown are mean ± SD of 1 experiment performed in triplicate (n = 3 experiments). Statistical analysis: 1-way ANOVA followed by Dunnett’s multiple-com-
parison test versus untreated cells for pBCR and 2-way ANOVA followed by Sidak’s multiple-comparison test for Cmp-1–treated versus untreated cells. (E) 
Primary RPTECs isolated from WT (WT-mRPTECs) and Ddr1-KO (Ddr1-KO-mRPTECs) mice were treated with vehicle or collagen I (50 μg/mL) for 30 minutes 
and then analyzed as described above. (F) pBCR and BCR bands were quantified using the software provided by Odyssey CLx imaging system. Circles rep-
resent cells isolated from a single mouse and values represent mean ± SD n = 5 mice for each group. Statistical analysis: 1-way ANOVA followed by Tukey’s 
multiple-comparison test. (G) Kidney cortices from uninjured (d–1), d1, and d3 injured WT and Ddr1-KO mice were analyzed by Western blot for the levels 
of pBCR and BCR. (H) pBCR and BCR bands at d3 were quantified by densitometry, and pBCR is expressed as pBCR/BCR ratio. Circles represent individual 
kidneys, values represent mean ± SD, WT n = 10, Ddr1-KO n = 8. Statistical analysis: 2-tailed t test.
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at d28 after injury suggests the presence of  a vicious cycle where collagen I activates DDR1, which in turn 
promotes collagen production. Thus, our data support the hypothesis that DDR1 functions as an amplifier 
of  the initial injury and thus exacerbates fibrotic responses, as previously suggested (10). A limitation of  
global Ddr1-KO mice is that it is difficult to determine whether the reduced fibrosis is due to overall reduced 
AKI or whether DDR1 affects both the acute and chronic injury separately. To answer this question, an 
inducible mouse model where DDR1 is selectively deleted in the proximal tubule after AKI is required. The 
Ddr1tm1a mouse we obtained from European Conditional Mouse Mutagenesis (EUCOMM) represents an 

Figure 6. BCR negatively regulates MCP-1 production by inhibiting β-catenin activity. (A) MCP-1 levels were measured by ELISA in 24-hour conditioned medium 
of RPTECs overexpressing BCR (BCR-Flag). Each circle represents an independent experiment performed in triplicate, and values represent mean ± SD of 3 
experiments and represent fold-change relative to control cells assigned a value of 1. Statistical analysis: 2-tailed t test. (B) MCP-1 levels were evaluated by ELISA 
in 24-hour conditioned medium of sh-Cnt or sh-BCR RPTECs treated with vehicle or collagen I (50 μg/mL) in the presence or absence of the β-catenin inhibitor 
IWR1-endo (30 μM). Each circle represents an independent experiment performed in triplicate. Values are mean ± SD of at least 3 experiments and represent 
fold-changes relative to vehicle-treated control assigned a value of 1. Statistical analysis: 1-way ANOVA followed by Tukey’s multiple-comparison test. (C) Repre-
sentative images of sh-Cnt or sh-BCR RPTECs incubated with or without the β-catenin inhibitor IWR-1-endo (30 μM) and stained with anti–β-catenin antibody. 
Scale bar: 15 μm. (D) Percentage of nuclear β-catenin–positive cells. Circles represent values of single images, and bars show mean ± SD with a minimum of 400 
cells counted in 2 independent experiments. (E) MCP-1 levels were measured by ELISA in 24-hour conditioned medium of RPTECs treated with vehicle or collagen 
I (CI, 50 μg/mL) in the presence or absence of IWR1-endo (30 μM). Each circle represents an independent experiment performed in triplicate. Values are mean ± 
SD of at least 3 experiments and represent fold-change relative to vehicle-treated cells assigned a value of 1. Statistical analysis: 2-tailed t test for A and 1-way 
ANOVA followed by Tukey’s multiple-comparison test for B, D, and E.
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Figure 7. DDR1 activation promotes TGF-β production and STAT3 phosphorylation. (A) TGF-β was measured by ELISA in conditioned medium of RPTECs 
treated ± collagen I (CI) ± Cmp-1 (3 μM). Circles represent a single experiment performed in triplicate. Values are mean ± SD of 3 experiments and represent 
fold-changes versus vehicle-treated cells assigned as 1. Statistical analysis: 1-way ANOVA followed by Dunnett’s multiple-comparison test versus CI-treated 
group. (B) RPTECs were treated ± CI ± Cmp-1 (3 μM) and then analyzed by Western blot for phosphorylated (Tyr705) and total STAT3. The black vertical line 
separates 2 gels that were run and developed at the same time. (C) pSTAT3 and STAT3 bands were quantified by densitometry and pSTAT3 is expressed as 
pSTAT3/STAT3 ratio. Circles and values are as in A. Statistical analysis: 1-way ANOVA followed by Tukey’s multiple-comparison test. (D and E) Kidney cortices 
from uninjured (d–1), d3, and d28 injured WT and Ddr1-KO mice were analyzed by Western blot for levels of pSTAT3 and STAT3. The black vertical line sepa-
rates 2 different gels. pSTAT3/STAT3 ratio was calculated as described in C. Circles represent an individual kidney (d–1 WT n = 4, d3 WT and Ddr1-KO n = 12, d28 
WT and Ddr1-KO n = 5). Values are mean ± SD and represent fold-change versus d–1 assigned as 1. Statistical analysis was performed as in C. (F and G) Kidney 
sections from uninjured (d–1), d3, and d28 injured WT and Ddr1-KO mice were stained with anti-pSTAT3 antibody and LTL. Scale bar: 20 μm. The number of 
pSTAT3-positive and total number of proximal tubule cells was evaluated and expressed as described in the Methods. Circles represent a single kidney. Values 
represent mean ± SD (d–1 WT n = 3, d3 WT n = 5, d3 Ddr1-KO n = 3, d28 WT n = 6, d28 Ddr1-KO n = 5). Statistical analysis was performed as in C.
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excellent tool to answer this key question. To this end, this mouse can be converted into a conditional ready 
Ddr1tm1c floxed mouse upon breeding with a flippase recombinase transgenic mouse and then crossed with 
an inducible proximal tubule selective Cre mouse.

The contribution of  DDR1 to acute injury and inflammation is not well understood. We provide evi-
dence that DDR1 plays a role in our model of  AKI. DDR1 expression is upregulated in kidney cortices 
at d3 after severe AKI, and Ddr1-KO mice have attenuated acute tubular injury, inflammatory cytokine 
production, and overall inflammation. These data are consistent with the finding that early (d4 after injury) 
antisense oligonucleotide-mediated DDR1 depletion is more efficacious than late (d8 after injury) DDR1 
depletion in an NTS nephritis mouse model, where it decreases inflammatory cytokine production and 
inflammatory cell infiltration (8).

Despite the accumulating evidence that DDR1 promotes inflammation and fibrosis and, as such, is a 
promising therapeutic target, the mechanism whereby DDR1 exerts its biological function is poorly under-
stood. This is in part because DDR1 signaling is cell type and context dependent. Our findings that DDR1 
is upregulated in the renal cortices of  mice subjected to severe AKI; it is expressed by proximal tubule cells 
in vitro (present paper and ref. 11); and it is upregulated in proximal tubules in patients with AKI who 
received a kidney transplant (11) as well as in mice subjected to AKI (present paper), clearly suggest that 
DDR1 expression on proximal tubule cells contributes to disease.

It is not clear whether DDR1 is also expressed on macrophages and directly promotes their migration 
to the site of  injury. DDR1 was shown to be expressed on infiltrating macrophages in kidneys of  mice sub-
jected to UUO. By contrast, no DDR1 expression was found on the macrophages in angiotensin-induced 
kidney injury, and yet genetic deletion of  DDR1 resulted in an overall reduction of  inflammatory cell infil-
tration (7, 9). This result, together with the finding that DDR1 is not expressed on infiltrating inflammatory 
cells in patients with interstitial nephritis (4), suggests that DDR1 expressed on resident cells is responsible 
for the proinflammatory effects. We showed that DDR1 regulates MCP-1 production in RPTECs, which 
suggests that this is a major mechanism whereby macrophages are recruited to the site of  injury.

Using BioID combined with proteomics, we found BCR to be the main target of  DDR1 upon 
collagen-induced activation. BCR was identified as a DDR1 target in colon carcinoma cells using 

Figure 8. DDR1 activation promotes TGF-β production by activating STAT3. (A) Cell lysates of RPTECs expressing or 
not STAT3C-Flag were analyzed by Western blot for STAT3 using anti-STAT3 or anti-Flag antibody. (B) TGF-β was mea-
sured by ELISA in conditioned medium of RPTECs treated ± collagen I (CI). Circles represent a single experiment per-
formed in triplicate. Values are mean ± SD of at least 4 experiments and represent fold-changes versus vehicle-treated 
cells assigned as 1. Statistical analysis: 1-way ANOVA followed by Tukey’s multiple-comparison test. (C) TGF-β was 
measured by ELISA in conditioned medium of HK2 cells treated ± CI ± the STAT3 inhibitor S31-201 (10 μM). Values 
represent mean ± SD of at least 4 experiments and are expressed as fold-changes versus vehicle-treated cells assigned 
as 1. Statistical analysis: 1-way ANOVA followed by Dunnett’s multiple-comparison test versus CI-treated group.
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quantitative phosphoproteomics to identify proteins phosphorylated in response to DDR1 activation 
(18). Thus, BCR has been identified as a target for DDR1 in 2 independent studies using 2 different 
approaches. We showed that DDR1 phosphorylates BCR at Tyr177 in RPTECs, a site that is critical 
for regulating BCR interaction with binding partners like β-catenin (19). In cells stimulated with col-
lagen, BCR phosphorylation was sustained, similar to DDR1 phosphorylation, and required DDR1 
kinase activity, suggesting that BCR is downstream of  collagen-induced DDR1 activation. Important-
ly, we showed that BCR was significantly phosphorylated in 3d injured kidneys in WT mice compared 
with Ddr1-KO mice, again suggesting that the DDR1/BCR axis contributes to injury.

The role of  BCR in inflammation is controversial because BCR promotes and inhibits inflammation in 
a cell-dependent manner. To this end, BCR-deficient mice develop more severe septic shock after bacterial 
endotoxin challenge, and neutrophils isolated from these mice showed an increase in the respiratory burst 
(27). In contrast, in endothelial cells, BCR depletion suppresses the production of  proinflammatory IL-6 
(22). Our findings that BCR downregulation in RPTECs increased MCP-1 production, while BCR over-
expression decreased MCP-1 production, indicate that BCR exerts an antiinflammatory role in the kidney.

In addition, we showed that unphosphorylated BCR modulated MCP-1 production by inhibiting 
β-catenin activity. Our data demonstrated that a) BCR depletion increased β-catenin nuclear transloca-
tion, consistent with BCR functioning as a negative regulator of  β-catenin activation; b) increased MCP-1 
production in BCR depleted cells was reversed by inhibition of  β-catenin activation; and c) the increase 
in MCP-1 production after collagen-induced DDR1 activation/BCR phosphorylation was reversed by 
treatment with IWR1-endo. The WNT/β-catenin signaling has been implicated in several inflammato-
ry diseases, and β-catenin activates the MCP-1 promoter (28). Consistent with our data, a recent study 
using a mouse expressing stabilized β-catenin in renal tubules, “Tubcat” mouse, showed that β-catenin acti-
vation in tubules promotes tubulointerstitial macrophage infiltration and MCP-1 production in a protein 
overload model of  injury (29). Interestingly, β-catenin and MCP-1 colocalize in the tubules of  the Tubcat 
mouse. This result, together with our finding that DDR1 promotes MCP-1 production in RPTECs and is 
upregulated in human injured proximal tubules (11), supports the idea that DDR1 expression in injured 
proximal tubules promotes inflammatory cell infiltration by enhancing the secretion of  proinflammatory 
cytokines. Whether the DDR1/β-catenin axis plays a role beyond inflammation is not clear. The lack of  
fibrosis or activation of  epithelial-mesenchymal transition markers in the Tubcat mouse suggests that the 
DDR1/β-catenin axis primarily regulates inflammatory responses.

Figure 9. Schematic representation of DDR1-mediated proinflammatory and profibrotic signaling. Upregulation 
of DDR1 in injured RPTECs leads to a) phosphorylation of BCR, thus enabling β-catenin to regulate the production of 
proinflammatory MCP-1; and b) phosphorylation of STAT3 that induces the expression of the profibrotic TGF-β.  
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A central question is how DDR1 leads to the development of  fibrosis after AKI. In this regard, DDR1 
activation in RPTECs promotes the secretion of  the profibrotic cytokine TGF-β and induces tyrosine 
phosphorylation of  the profibrotic transcription factor STAT3. Ddr1-KO mice have reduced renal levels 
of  TGF-β in the UUO and NTS nephritis injury models (6, 7), but whether this reduction was due to 
attenuated injury or a direct role for DDR1 in promoting TGF-β secretion is unclear. Our finding that in 
RPTECs collagen induces TGF-β production, and this effect is inhibited by the DDR1 inhibitor Cmp-1, 
clearly suggests that DDR1 directly promotes TGF-β production. We also showed that activation of  STAT3 
is a key step in mediating DDR1-induced TGF-β secretion. Consistent with this finding, STAT3 activation 
increases TGF-β expression and promotes liver fibrosis in mice (30). In intestinal smooth muscle cells 
isolated from patients with Crohn’s disease, STAT3 activation increases TGF-β, connective tissue growth 
factor, and collagen I gene expression (31). Interestingly, in fibrotic skin of  patients with systemic sclerosis, 
TGF-β downregulates the expression of  SOCS3, which results in activation of  STAT3. In turn, activated 
STAT3 promotes fibroblast-to-myofibroblast transition, collagen production, and fibrosis (32).

DDR1 has been shown to both activate and inhibit STAT3 in a cell type– and context-dependent man-
ner. For instance, DDR1-mediated STAT3 activation is required for bladder tumor cell colonization to the 
lung (33) and for metastatic reactivation of  breast cancer cells (34). In contrast, in Madin-Darby canine kid-
ney cells, DDR1 inhibits Stat3 phosphorylation by activating the protein tyrosine phosphatase SHP2, thus 
inhibiting cell migration (35). In this study, we showed that a) STAT3 phosphorylation increased primarily 
in the proximal tubules of  WT but not Ddr1-KO mice after AKI; and b) DDR1 activation increased STAT3 
phosphorylation in RPTECs, and this event was reduced by treatment with the selective DDR1 inhibi-
tor Cmp-1. Thus, we propose that after kidney injury, DDR1-mediated STAT3 activation may promote 
a vicious cycle whereby activated STAT3 promotes TGF-β production, which in turn further increases 
STAT3 activation, thus contributing to fibrosis.

In conclusion, DDR1 inhibition represents an attractive therapeutic option for kidney diseases. Suc-
cessful inhibition of  this pleotropic receptor would ameliorate kidney inflammation regulated by the BCR/
MCP1 axis and kidney fibrosis regulated by the STAT3/TGF-β axis.

Methods
IR injury with delayed nephrectomy. Ddr1-KO mice, received from the Samuel Lunenfeld Research Institute, 
Mount Sinai Hospital, Toronto, Canada, were backcrossed onto the 129Sv/Ev background for more than 
10 generations. 129Sv/Ev WT and Ddr1-KO littermates generated from Ddr1het × Ddr1het mating were used 
for the in vivo experiments. DDR1 mice on the C57Bl6/129Sv mixed background with a KO-first tm1a allele 
(Ddr1tm1a), were purchased from EUCOMM. This constitutive KO-first allele has a LacZ-neomycin resistance 
cassette inserted between exons 5 and 6 of the DDR1 gene (see Supplemental Figure 1) to provide a reporter for 
Ddr1 expression. Ddr1tm1a/+ × Ddr1tm1a/+ crossing were established in order to obtained Ddr1tm1a/tm1a mice, which 
do not express DDR1 and express β-gal. Genotyping was performed according to European Mouse Mutant 
Archive (EMMA)/Infrafrontier protocol using the primers described in Supplemental Figure 1. Twelve-week-
old male mice underwent left renal pedicle clamping for 31 minutes and nephrectomy of the right kidney after 
8 days as previously described (13, 14). Mice were euthanized at different time points as described in the text.

Clinical parameters and morphology analysis. To determine BUN levels, plasma was collected at d–1, d9, 
and d28, and BUN was measured using the QuantiChrom Urea Assay kit (BioAssay Systems) following 
the manufacturer’s instructions.

Kidneys were fixed in 4% paraformaldehyde and embedded in paraffin. Paraffin tissue sections were 
stained with periodic acid–Schiff  (PAS) for evaluation of  tubular injury. For analysis, nonoverlapping fields 
in the kidney cortex PAS-stained sections were scored by a renal pathologist (400× original magnification) 
unaware of  group assignment as follows: 0 = no injury; 1 = 1%–25% of  area injured; 2 = 26%–50%; 3 = 
51%–75%; 4 = 76%–100%. Acute tubular injury parameters included loss of  brush border, vacuolization 
and/or blebbing, sloughing of  tubular epithelial cells, tubular cast formation, tubular dilation, or naked 
tubular basement membranes. Chronic tubulointerstitial injury was defined as a matrix-rich expansion 
of  the interstitium with infiltrating interstitial cells and chronic tubular injury (intratubular casts, atrophy 
of  tubular cells with flattened/simplified tubular epithelial cells with thickened tubular basement mem-
branes). A minimum of  27 nonoverlapping kidney cortex areas were analyzed for each kidney.

For fibrillar collagen deposition, paraffin sections were stained with Picrosirius red, and images of  non-
overlapping kidney cortices (200× original magnification) were quantified using ImageJ (NIH) as described 
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(https://imagej.nih.gov/ij/docs/examples/stained-sections/index.html). Fibrillar collagen was expressed 
as percentage area occupied by Picrosirius red–positive structures/microscopic field. A minimum of  5 non-
overlapping kidney cortex areas were analyzed for each kidney.

IHC. Paraffin kidney sections from uninjured and injured mice were stained with anti-F4/80 (1:200, 
Abcam, 6640) or anti–α-SMA (1:200, Sigma-Aldrich, A5228) antibody followed by HRP-conjugated sec-
ondary antibodies (1:300, Jackson ImmunoResearch, 712-035-153 or 715-035-150) and Sigma-Aldrich 
Fast DAB chromogenic tablets (Sigma-Aldrich). The number of  F4/80-positive cells was counted in 400× 
nonoverlapping microscopic fields (20 images/kidney), and values were expressed as a percentage of  
F4/80-positive fields. Images of  kidney cortices stained with anti–α-SMA antibody (200× original magni-
fication) were quantified using ImageJ (7–8 images/kidney) as described above, and values were expressed 
as a percentage of  α-SMA–positive areas.

For pSTAT3 staining, paraffin kidney sections were incubated with anti–pY705-STAT3 antibody (1:100, 
Cell Signaling Technology, 9145) followed by incubation with goat anti-rabbit Alexa Fluor 647 (1:500, Invitro-
gen, A21245) and fluorescein-conjugated lotus tetragonolobus lectin (LTL, 1:50, Vector Laboratories, FL-1321-
2). Images (200× original magnification) were collected using the Zeiss LSM880 confocal microscope, and the 
number of pSTAT3-positive cells in LTL-positive proximal tubules was evaluated using ImageJ (5 images/
kidney). Values were expressed as a percentage of positive p-STAT3/total number of proximal tubule cells.

β-Gal staining was performed as previously described (36). Briefly, euthanized mice underwent intrac-
ardiac perfusion with ice-cold 10% buffered formalin (Thermo Fisher Scientific, SF100-4), and then the kid-
neys were dissected and 2 mm sections were fixed in 10% formalin for 1 hour at room temperature, washed 
with PBS, incubated in 30% sucrose (MP Biomedicals, 821713) for 12 hours at 4°C, and then embedded on 
OCT compound (Thermo Fisher Scientific, 23-730-571). Kidney sections were incubated with β-gal stain 
solution (phosphate buffer pH 7.4 containing 2 mM MgCl2, 5 mM EGTA, 0.01% sodium deoxycholate, 
0.02% Igepal, 5 mM potassium ferrocyanide, 5 mM potassium ferricyanide, and 1 mg/mL X-gal) for 12 
hours at 37°C and then fixed with 10% formalin for 5 minutes at room temperature. After washing with 
PBS, sections were incubated with FITC-conjugated LTL (1:100, Vector Laboratories, FL-1321) for 2 hours 
at room temperature, washed with PBS, mounted with anti-fade mounting medium containing DAPI (Invi-
trogen, P36931), and then analyzed under an epifluorescence microscope.

Plasmids. For this study, we used human DDR1b, here referred to as DDR1. To generate DDR1-Bi-
oID, human DDR1 cDNA was amplified using the primers 5′-GATGGAATTCGGAGCTATGGGAC-
CAGAGG-3′ and 5′-GCTGGATCCCCACCGTGTTGAGTGCATC using pRK5-DDR1 as a template, as 
previously described (17). The PCR product was digested with EcoRI and BamHI and cloned between the 
same sites in MCS-BioID-HA (Addgene plasmid 74224), a gift from Kyle Roux (37). To generate DDR1-
Flagb-TurboID, human DDR1 cDNA was released from DDR1-BioID with NheI and BamHI and cloned 
in the same sites in pcDNA3.1(+). Flag-TurboID was amplified from Flag-TurboID plasmid (Addgene 
plasmid 124646, a gift from Feng-Qian Li and Ken-Ichi Takemura) using the primers: 5′-TGCAGGATC-
CACCATGGATTA-3′ and 5′-TCGAGCGGCCGCCTATAGTTCT-3′. The PCR product was digested 
with BamHI and NotI and cloned into pcDNA3.1-DDR1.

Murine BCR-Flag–tagged cDNA was obtained from Origene (MR222863). pRCStat3C was previously 
described (38). pIRES-DDR1 and pIRES-DDR1-K655A were previously described (17).

Cell culture, transfection, and retroviral infections. HEK293 cells expressing DDR1, generated as previously 
described (17), were cultured in DMEM (Gibco, 11995-065) supplemented with penicillin/streptomycin, 
10% FBS, and puromycin 2.5 μg/mL (Sigma-Aldrich). DDR1-K655A, HEK-DDR1-BioID, HEK-DDR1-
Flag-TurboID, and HEK-Flag-TurboID were generated as previously described (17). Briefly, HEK293 cells 
(ATCC, CRL-1573) were transfected with 2 μg of  the corresponding DNA construct using Lipofectamine 
2000 (Life Technologies) and then cultured in media containing 2.5 μg/mL puromycin or 2 mg/mL G418 
(RPI). Drug-resistant clones were sorted by FACS for comparable levels of  DDR1 expression using an 
antibody to the DDR1 extracellular domain (MilliporeSigma, MABT333) as previously described (17).

Conditionally immortalized mouse RPTECs, generated as described (39), were maintained at 33°C 
in DMEM/F12 media (Gibco, 11330-032) supplemented with 2.5% FBS, 50 ng/mL hydrocortisone (Sig-
ma-Aldrich, H0135), 5 μg/mL insulin/transferrin/selenium (Sigma-Aldrich, I1884), 6.5 ng/mL triiodo-
thyronine (Sigma-Aldrich, T5516), 92 μg/mL D-valine (Sigma-Aldrich, V1255), penicillin/streptomycin 
(Thermo Fisher Scientific, 15070063), and 10 U/mL IFN-γ (Sigma-Aldrich, I17001). For experiments, 
IFN-γ was removed and cells were maintained at 37°C for 72 hours to allow differentiation. To generate 
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BCR-Flag or Stat3C-Flag cells, RPTECs were transfected with 2 μg of  the corresponding cDNA constructs 
using Lipofectamine 2000 and then cultured in the presence of  G418 (2 mg/mL) as previously described 
(38). After 4–6 weeks, G418-resistant clones were analyzed for BCR-Flag or Stat3C-Flag expression by 
Western blot analysis.

BCR-shRNA and Cnt-shRNA cells were generated by incubating RPTECs with lentiviral transduction 
particle carrying BCR-specific shRNA and expressing GFP (Sigma-Aldrich, SHCLNV TRCN0000374363) 
or nonmammalian shRNA control (Sigma-Aldrich, SHC002V) followed by treatment with puromycin (2.5 
μg/mL). Two weeks later, BCR-shRNA RPTECs were sorted for GFP expression, and BCR downregula-
tion was verified by Western blot analysis.

Human kidney proximal tubule cell line HK2 (HK-2, ATCC CRL-2190) was cultured in DMEM/F12 
supplemented with 10% FBS and penicillin/streptomycin.

Primary RPTECs were isolated from 8–12-week-old WT and Ddr1-KO mice as shown in Supplemental 
Figure 4. Briefly, the kidney cortex was minced into small pieces, digested with collagenase (3 mg/mL, 
Worthington, S3N6800)/Dispase (1 mg/mL, Gibco, 17105-041)/DNAase (0.1 mg/mL, Sigma-Aldrich, 
11284932001) in PBS, and passed through a 40 μm strainer (Thermo Fisher Scientific, 22363547). RPTECs 
labeled with biotinylated LTL (Vector Laboratories, B-1325-2) were separated on anti-biotin microbeads 
(Miltenyi Biotec, 130-090-485) and seeded on collagen I–coated dishes (30 μg/mL) and grown in DMEM/
F12 media supplemented with 50 ng/mL hydrocortisone, 5 μg/mL insulin/transferrin/selenium, 6.5 ng/
mL triiodothyronine, 92 μg/mL D-valine, murine EGF (20 ng/mL, Peprotech, 315-09) penicillin/strepto-
mycin, and 0.5% BSA (Sigma-Aldrich, A3059). Cells were used between passages 2 and 4.

Inflammatory cytokine array and kinase array. For analysis of  the inflammatory cytokines in RPTEC super-
natants, we used the Mouse Inflammation Antibody Array membrane kit (Abcam, ab133999) following the 
manufacturer’s instructions. Briefly, supernatants from RPTECs treated with vehicle (20 mM acetic acid) 
or collagen I (50 μg/mL, Corning) for 24 hours were clarified by centrifugation and then incubated with 
the blocked membranes overnight at 4°C. The next day, membranes were washed and incubated sequen-
tially with biotin-conjugated anti-cytokines, HRP-conjugated streptavidin, and chemiluminescent detection 
reagents. For the identification of  kinases phosphorylated in response to DDR1 activation, we used Human 
Phospho Kinase Array (R&D Systems, ARY003B) according to the manufacturer’s instructions. Briefly, 
HEK-DDR1b treated with vehicle or collagen I (50 μg/mL) or HEK-vector cells treated with collagen for 
2 hours were collected, lysed, and incubated with the blocked kinase array membranes overnight. The next 
day, membranes were washed and incubated with detection antibody cocktails followed by streptavidin-HRP 
and chemiluminescence detection reagents. Positive signals were quantified by densitometry analysis.

Immunofluorescence. To determine β-catenin localization, RPTECs were seeded in 8 multi-well chamber 
slides (2 × 104/well) in complete medium. Twenty-four hours later, the cells were incubated in serum-free media 
with vehicle (20 mM acetic acid) in the presence or absence of 30 μM IWR1-endo (Tocris, 3532). After 24 hours, 
cells were fixed with 4% PFA and blocked with 3% BSA and 0.3% Triton X-100 in PBS. Cells were incubat-
ed with anti–β-catenin antibody (1:500, Vanderbilt Antibody and Protein Resource Core) at 4°C for 12 hours, 
and then incubated with Alexa Fluor 555–conjugated secondary antibody (1:400, Invitrogen, A-21422). Slides 
were mounted with anti-fade mounting medium containing DAPI (Vector Laboratories) and analyzed under an 
epifluorescence microscope. Images (400× original magnification) were recorded, and the numbers of nuclear 
β-catenin–positive cells and DAPI-positive cells per microscopic field (9 fields with a minimum of 400 cells) were 
evaluated. Values were expressed as a percentage of nuclear β-catenin–positive cells per microscopic field.

For zonula occludens-1 (ZO-1) and aquaporin 1 (AQP-1) staining, primary RPTECs grown on a polycar-
bonate culture insert (0.4 μm pore size, Costar, 3401) were fixed with 4% paraformaldehyde (Electron Micros-
copy Sciences, 15714), blocked and permeabilized with 3% BSA and 0.2% Triton X-100 in PBS, incubated with 
anti-ZO1 antibody (1:50, Invitrogen, 40-2200) followed by Alexa Fluor 488–conjugated secondary antibody 
(1:400, Invitrogen, A21206) or Alexa Fluor 647–conjugated anti–AQP-1 antibody (1:1000, Abcam, ab225225) 
for 12 hours at 4°C, then incubated with DAPI (1:200, Cell Signaling, 4083) in PBS for 10 minutes at room 
temperature. Slides were mounted with Prolong Gold Antifade reagent (Invitrogen, P36930), and images were 
acquired using a Zeiss LSM 880 confocal microscope with a 63×/1.40 Plan-Apochromat (Oil) objective.

Western blot analysis. Cells were lysed using lysis buffer (Cell Signaling Technology) supplemented with 
protease and phosphatase inhibitor (Sigma-Aldrich); kidney tissue was lysed in RIPA buffer (Sigma-Al-
drich) supplemented with protease and phosphatase inhibitors and dissociated using a tissue homogenizer 
(Omni International). Both tissue and cell lysates were sonicated and centrifuged at 12,900g for 10 minutes 
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to remove debris, and 20–100 μg for cells or 200–300 μg for tissue were separated by SDS-PAGE, trans-
ferred onto nitrocellulose, and immunoblotted as indicated.

Nonnuclear and nuclear fractions were isolated from kidney cortex or from cells as previously described 
(11). Equal amounts of  proteins (10–20 μg for the nuclear fraction and 40–50 μg for the cytosol fractions) 
were separated by SDS-PAGE and transferred onto nitrocellulose and immunoblotted as indicated.

For detection of  biotinylated protein, membranes were blocked with 5% BSA (Cell Signaling Technol-
ogy), and then incubated with HRP-conjugated streptavidin (Jackson ImmunoResearch). For immunoblot-
ting, membranes were incubated with the following primary antibodies from Cell Signaling Technology: 
DDR1 (catalog 5583), pY513-DDR1 (catalog 14531), pY792-DDR1 (catalog 11994), BCR (catalog 3902), 
pY177-BCR (catalog 3901), Stat3 (catalog 4904), pY705-Stat3 (catalog 9145), β-tubulin (catalog 15115), β-ac-
tin (catalog 4970), NF-κB-p65 (catalog 8242), pS536–NF-κB–p65 (catalog 3033), GAPDH (catalog 2118), 
N-cadherin (catalog 13116), and PARP (catalog 9532). In some experiments, cells were incubated with Flag 
(Sigma-Aldrich, F3165), collagen I (MD Bioproducts, SKU 203002), AQP-1 (Abcam, ab65837), and Clau-
din-2 (Invitrogen, 32-5600) antibodies overnight at 4°C. Membranes were then incubated with the appropriate 
HRP-conjugated (Jackson ImmunoResearch) or IRDye-conjugated secondary antibody (LICOR) and bands 
were detected using enhanced chemiluminescence (Perkin-Elmer, NEL 104001) or the Odyssey CLx imaging 
system, respectively. Bands were quantified using ImageJ or software provided with the Odyssey CLx.

IP. HEK-Flag-TurboID and HEK-DDR1-Flag-TurboID cells treated with vehicle or collagen I for 2 
hours were lysed (Cell Signaling Technology lysis buffer), sonicated, clarified by centrifugation, and then 
equal amounts of  cell lysates (200 μg) from HEK-turboID or HEK-DDR1-turboID were precleared by 
incubation with protein A for 1 hour at 4°C, and then incubated with Flag M2 affinity beads (Sigma-Al-
drich) overnight at 4°C. The next day, Flag-beads were washed with 50 mM Tris pH 7.5 containing 150 
mM NaCl and 1% Triton X-100, eluted in sample buffer (62.5 mM Tris pH 6.8, 2% SDS, 10% glycerol), 
and analyzed by Western blot for phosphorylated and total DDR1 and for total BCR.

Mass spectrometry analysis. Cells expressing DDR1(HEK-DDR1BioID) or empty vector (HEK-BioID) 
were serum-starved and treated with biotin (50 μM) followed by acetic acid (20 mM) or collagen I (50 
μg/mL) for 24 hours. Cells were lysed and biotinylated proteins isolated using Neutravidin-Agarose 
beads (Thermo Fisher Scientific, 29200). Proteins were eluted by denaturation in sample buffer at 95°C 
for 5 minutes. Shotgun proteomic of  eluted proteins was performed by first partially resolving protein 
mixtures at about 1.5 cm using a 10% Novex precast gel. The protein region was excised and subjected 
to in-gel tryptic digestion to recover peptides. Resulting peptides were analyzed by data-dependent liquid 
chromatography with tandem mass spectrometry. Briefly, peptides were autosampled onto a 200 mm by 
0.1 mm (Jupiter 3 μm, 300A), self-packed analytical column coupled directly to an LTQ linear ion trap 
mass spectrometer (Thermo Fisher Scientific) using a nanoelectrospray source and resolved using an 
aqueous to organic gradient. Both the intact masses (MS) and fragmentation patterns (MS/MS) of  the 
peptides were collected in a data-dependent manner utilizing dynamic exclusion to maximize depth of  
coverage. Using SEQUEST (40), resulting peptide MS/MS spectral data were compared with and scored 
against predicted tryptic peptides from a canonical human protein database (Uniprot) to which common 
contaminants and reversed versions of  each protein were added. Peptide spectral matches (PSMs) were 
collated, filtered, and compared using Scaffold (Proteome Software). A Fisher’s exact test was performed 
within Scaffold to evaluate aggregate PSM differences between DDR1 and the control.

Real-time PCR. For RNA isolation, renal cortices were disrupted in Lysis Matrix Tubes (MP Biomed-
icals) containing TRIzol (Life Technologies, 15596018), and then further cleaned using RNeasy isolation 
kit (Qiagen). RNA was quantified using a nanodrop, and then equal amounts of  RNA (1 μg) were used 
for cDNA synthesis using iScript cDNA Synthesis kit (Bio-Rad, 170-8890). Quantitative real-time PCR 
was performed using iO SYBR Green Supermix using the Bio-Rad CFX96 thermal cycler as previously 
described (11). The following primers were used: Ccl2 (MCP-1) forward 5′-CCCAATGAGTAGGCTG-
GAGA, reverse 5′-TCTGGACCCATTCCTTCTTG, Havcr1 (KIM-1) forward 5′-AAACCAGAGATTC-
CCACACG, reverse 5′- GTCGTGGGTCTTCCTGTAGC, and Gapdh forward 5′-TGGAGAAACCTGC-
CAAGTATGA, reverse 5′-GAAGAGTGGGAGTTGCTGTTGA.

ELISA. MCP-1 and TGF-β in 24-hour–conditioned medium from RPTECs or human kidney cells (HK2, 
ATCC, CRL-2190) were quantified using an MCP-1 ELISA kit (Abcam, ab100721) or a TGF-β1 ELISA kit 
(R&D Systems, DB100B or MB100B) following the manufacturer’s instructions. Briefly, cells were plated in 
6-well plates (3 × 105 to 4 × 105 cells/well) in complete medium. Twenty-four hours later, cells were incubated 
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with serum-free medium containing 20 mM acetic acid or collagen I (50 μg/mL in 20 mM acetic acid, Corn-
ing). In some experiments, cells were incubated with the DDR1 inhibitor Cmp-1 (3 μM) synthesized as pre-
viously described (16), or the WNT/β-catenin inhibitor IWR1-endo (30 μM, Tocris), or the STAT3 inhibitor 
S31-201 (10 μM, MilliporeSigma) for 30 minutes prior to 24 hours of  treatment with acetic acid or collagen I.

Statistics. Data are expressed as mean ± SD. Statistical analysis was done using GraphPad Prism 9. For 
comparison of  2 groups, we used a 2-tailed t test. For comparison of  multiple groups, we used 1-way ANO-
VA followed by post hoc analysis using Dunnett’s or Tukey’s multiple-comparison test. Repeated measure-
ments on the same mouse data were analyzed by 2-way ANOVA followed by Sidak’s multiple-comparison 
test. P values less than or equal to 0.05 were considered significant. For the mass spectral data, Fisher’s 
exact test was performed with the Scaffold viewer (Proteome Software) with the Benjamini-Hochberg 
method used to estimate threshold P values for significance.

Study approval. The in vivo experiments were approved by Vanderbilt University’s IACUC and per-
formed according to institutional animal care guidelines and conducted in facilities accredited by the Asso-
ciation for Assessment and Accreditation of  Laboratory Animal Care.
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