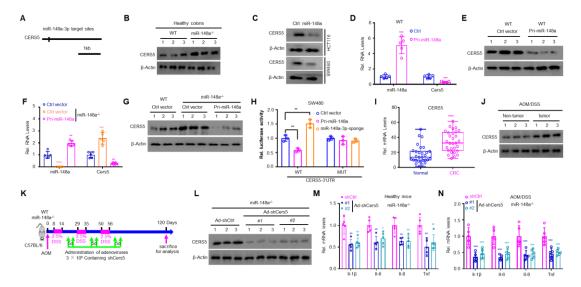
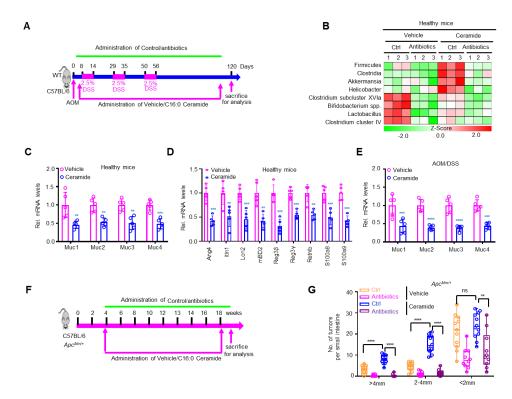

# **Supplementary Materials**

# Ceramide-mediated Gut Dysbiosis Enhances Cholesterol Esterification and Promotes Colorectal Tumorigenesis in Mice

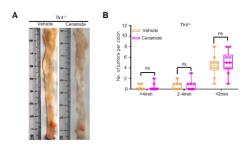

Yahui Zhu, Li Gu, Xi Lin, Jinmiao Zhang, Yi Tang, Xinyi Zhou, Bingjun Lu, Xingrong Lin, Cheng Liu, Edward V. Prochownik, Youjun Li

#### **Supplemental figures**



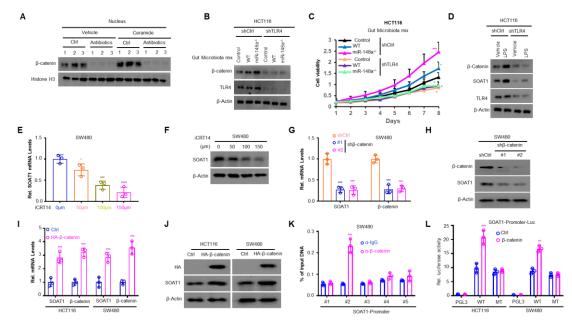

Supplemental Figure 1. Depletion of miR-148a increased gut dysbiosis to enhance colorectal tumorigenesis. (A and B) The colon weights (A) and tumor diameters (B) of both WT and *miR-148a<sup>-/-</sup>* mice in either separately housed or co-housed from Figure 1A (n = 10-12/group). (C) gPCR assays on the relative levels of indicated gut microbiota of either separately housed or co-housed littermates of both WT and *miR-148a<sup>-/-</sup>* mice before any treatment (n = 3/group). (D) The endotoxin concentrations in either separately housed or co-housed WT and *miR-148a*<sup>-/-</sup> mice from Figure 1A (n = 6/group). (E and F) The transcript levels of *II-1\beta, II6, II8* and *Tnf* were determined by reverse transcription quantitative-PCR in colon tissues collected from separately housed or cohoused WT and miR-148a<sup>-/-</sup> mice before (E) and after (F) AOM/DSS treatment (n = 5/group). (G and H) Tumor diameters (G) and average volumes (H) of Colon tumor in mice from indicated treatment (n = 10-11/group). (I) qPCR assays on the relative levels of indicated gut microbiota of mice from Supplemental Figure 1G (n = 3/group). (J) Schematic overview of treatment regimen of AOM/DSS-induced CRCs. (K) The endotoxin concentrations in WT and *miR-148a<sup>-/-</sup>* mice from Figure 1D (n = 6/group). (L) The transcript levels of *II-1* $\beta$ , *II6*, *II8* and *Tnf* were determined by reverse transcription quantitative-PCR in CRC tissues collected from Figure 1D (n = 5/group). Data were

presented in mean ± SEM for A, B, D, E, F, G, H, K and L. \*p<0.05, \*\*p<0.01, \*\*\*p<0.001, \*\*\*\*p<0.001. Statistical significance was calculated by using one-way ANOVA (**A** and **B**) or two-tailed unpaired t test (**D**, **E**, **F**, **G**, **H**, **K** and **L**).

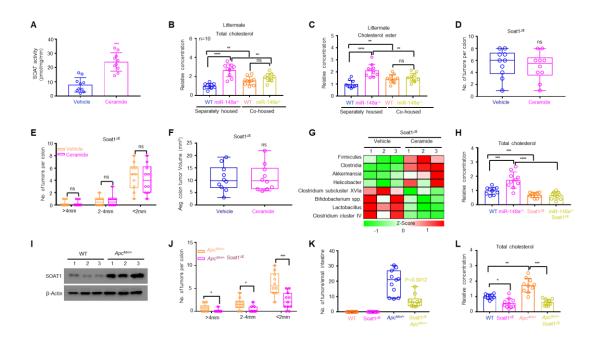



Supplemental Figure 2. Depletion of miR-148a upregulated CERS5 expression to increase colorectal tumorigenesis. (A) Schematic of human CERS5 3' UTRs. The predicted miR-148a-3p binding sites. (B) Western blot was used to detect the CERS5 protein levels in colon of WT and  $miR-148a^{-/-}$  before any treatment (n = 3/group). (C) The protein levels of CERS5 in CRC cells transfected with control or miR-148a. (D and **E**) The mRNA (D) (n = 5/group) and protein (E) (n = 3/group) levels of CERS5 in colon tissues collected from WT mice administrated with indicated lentivirus. (F and G) The mRNA (F) (n = 5/group) and protein (G) (n = 3/group) levels of CERS5 in the colon tissues collected from WT and *miR-148a<sup>-/-</sup>* mice administrated with indicated lentivirus. (H) Luciferase activity of the reporter vector containing the WT or miR-148a-3p binding mutant 3' UTR of CERS5 was determined after cotransfection with indicated vector in SW480 cells. (I) The CERS5 expression in 29 pairs of CRCs from Wuhan Union Hospital (n = 29/group). (J) The protein levels of CERS5 in non-tumor and tumor tissues after AOM/DSS induction (n = 3/group). (K) Schedule of adenoviruses treatment during AOM/DSS-induced CRC tumorigenesis in mice. (L) Western blot was used to detect the CERS5 protein expression in AOM/DSS-induced mouse CRC tissues treated with the indicated vector (n = 3/group). (**M** and **N**) The transcript levels of *II-1\beta*, *II6*, *II8* and *Tnf* were determined by quantitative-PCR in colon tissues collected from *miR-148a<sup>-/-</sup>* mice treated with indicated adenovirus before (M) and after (N) AOM/DSS induction (n = 5/group). Data in D, F, H, I, M and N were presented in mean ± SEM. \*p<0.05, \*\*p<0.01, \*\*\*p<0.001, \*\*\*\*p<0.001. Statistical significance was calculated by using two-tailed

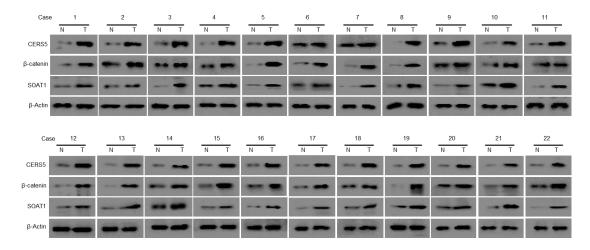
unpaired t test. Data shown in H are representatives of 3 independent experiments.



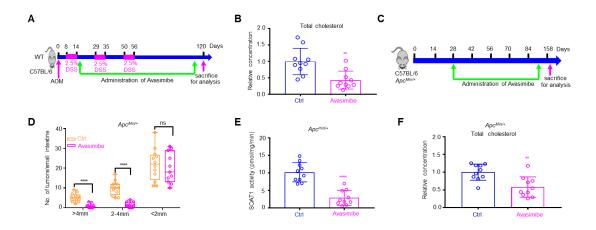

Supplemental Figure 3. Ceramide increased gut dysbiosis to promote colorectal tumorigenesis. (A) The experimental scheme showed how AOM/DSS induced colorectal cancer with the indicated treatments. (B) qPCR analyses on Bacterial 16S rRNA indicated gut microbiota from the native mice with indicate treatment (n = 3/group). (C and D) The relative mRNA levels of mucus (C) and AMPs (D) of vehicle or ceramide treated healthy mice by qPCR analysis (n = 5/group). (E) The relative mRNA levels of mucus of mucus of mice from indicated treatment by qPCR analysis (n = 5/group). (F) The experimental scheme showed how  $Apc^{Min/+}$  mice developed CRC with the indicated treatments. (G) The small intestine tumor diameters of mice from Supplemental Figure 3F (n = 10–12/group). Data were presented as mean ± SEM in C, D, E and G. \*\*p<0.01, \*\*\*p<0.001, \*\*\*\*p<0.001. Statistical significance was calculated by using one-way ANOVA (G) or two-tailed unpaired t test (C, D, E).




Supplemental Figure 4. miR-148a depletion promoted CRC growth dependent on ceramide-mediated alterations in the gut microbiota to activate TLR4.


(A) Representative images of colon tumors from  $Tlr4^{-/-}$  + vehicle,  $Tlr4^{-/-}$  + ceramide mice in AOM/DSS-induced CRC. (B) Colon tumor sizes from Supplemental Figure 4A (n = 10/group). Data were presented in mean ± SEM in B. Statistical significance was calculated by using two-tailed unpaired t test.




Supplemental Figure 5. SOAT1 was transcriptionally activated by  $\beta$ -catenin/TCF1 **complex.** (A) Western blot was used to detect  $\beta$ -catenin expression in the nuclear extract of CRCs from vehicle or ceramide treated mice (n = 3/group). (B) The protein levels of β-catenin in HCT116 cells after transfection with shCtrl or shTLR4 were treated with the gut microbiota from WT or *miR-148a<sup>-/-</sup>* mice. (C) MTT assay was used to detect on cell viability of HCT116 cells from Supplemental Figure 5B. (D) The protein levels of β-catenin and SOAT1 in HCT116 cells with indicated treatments. (E and F) The mRNA (E) and protein (F) levels of SOAT1 in SW480 cells were treated with  $\beta$ -catenin inhibitor (iCRT14). (**G** and **H**) Depletion of  $\beta$ -catenin decreased the mRNA (G) and protein (H) levels of SOAT1 in SW480 cells. (I and J) mRNA (I) and protein levels (J) of SOAT1 in HCT116 and SW480 cells after  $\beta$ -catenin overexpression. (K) ChIP-qPCR analysis of the SOAT1 promoter in SW480 cells. (L) Luciferase activity of SOAT1 promoter in HCT116 and SW480 cells after  $\beta$ -catenin overexpression. Data were presented as mean ± SD in C. Data were presented as mean ± SEM in E, G, I, K and L. \*p<0.05, \*\*p<0.01, \*\*\*p<0.001, \*\*\*\*p<0.001. Statistical significance was calculated by using two-tailed unpaired t test. Data shown in B-L are representatives of 3 independent experiments.



Supplemental Figure 6. *Soat1* loss attenuated intestine tumorigenesis in *miR-148a<sup>-/-</sup>* and *Apc<sup>Min/+</sup>* mice. (A) The SOAT1 activity in CRCs treated with vehicle or ceramide. (B and C) The colon total cholesterol (B) and cholesterol ester (C) levels from indicated mice (n = 10/group). (D-F) Levels of colon tumor numbers (D), tumor sizes (E) and tumor volumes (F) from *Soat1<sup>Δ/E</sup>* + vehicle and *Soat1<sup>Δ/E</sup>* + ceramide treated mice in AOM/DSS-induced CRC (n = 10/group). (G) qPCR assays on Bacterial 16S rRNA indicated gut microbiota from Supplemental Figure 6D (n = 3/group). (H) The colon total cholesterol levels from indicated mice (n = 10/group). (I) Western blot was used to detect the SOAT1 protein level in WT and *Apc<sup>Min/+</sup>* mice (n = 3/group). (J) The sizes of colon tumors from *Apc<sup>Min/+</sup>* and *Soat1<sup>Δ/E</sup>*, *Apc<sup>Min/+</sup>* and *Soat1<sup>Δ/E</sup>*, *Apc<sup>Min/+</sup>* mice (n = 10–11/group). (K) Small intestine tumor numbers from WT, *Soat1<sup>Δ/E</sup>*, *Apc<sup>Min/+</sup>* and *Soat1<sup>Δ/E</sup>*, *Apc<sup>Min/+</sup>* mice (n = 10/group). Data were presented as mean ± SEM in A, B, C, D, E, F, H, J, K and L. \*p<0.05, \*\*p<0.01, \*\*\*\*p<0.001. Statistical significance was calculated by using one-way ANOVA (B, C, H and L) or two-tailed unpaired t test (A, D, E, F, J and K).



**Supplemental Figure 7. The CERS5-Ceramide-β-catenin-SOAT1 signaling axis was dysregulated in human CRC tissues.** Western blot assay was used to analyze 22 colorectal cancer patient samples (T) with the adjacent normal colon tissues (N).



Supplemental Figure 8. Targeting SOAT1 significantly suppressed both spontaneous colorectal carcinogenesis and chemical-induced one. (A) Schematic overview of treatment regimen of AOM/DSS-induced WT mice. (B) The total cholesterol levels in CRCs from WT mice with indicated treatments (n = 10/group). (C) Schematic overview of treatment regimen of  $Apc^{Min/+}$  mice. (D) The small intestine tumor diameters of  $Apc^{Min/+}$  mice from Supplemental Figure 8C (n = 11–12/group). (E and F) The levels of SOAT1 activity (E) and total cholesterol (F) in CRCs from Figure 8C (n = 10/group). Data were presented as mean ± SEM in B, D, E and F. \*\*p<0.01, \*\*\*\*p<0.001. Statistical significance was calculated by using two-tailed unpaired t test.

| shRNA              | Target Sequences (5'>3') |
|--------------------|--------------------------|
| sh <i>Cers5</i> #1 | GCATGTGGAGATTCACTTATT    |
| sh <i>Cers5</i> #2 | GATGCTGTTTGAGCGATTTAT    |
| sh <i>TLR4</i> #1  | CCAAGTAGTCTAGCTTTCTTA    |
| sh <i>TLR4</i> #2  | CGTTTGGTTCTGGGAGAATTT    |
| shβ-catenin #1     | TTGTTATCAGAGGACTAAATA    |
| shβ-catenin #2     | ТСТААССТСАСТТБСААТААТ    |

## Supplemental Table 1. ShRNA sequences used in this study.

| Insert                    | Forward Primer (5'>3')                                | Reverse Primer (5'>3')                    |
|---------------------------|-------------------------------------------------------|-------------------------------------------|
| CERS5 3'UTR               | CGC TCTAGA CCCATATCT ACTCTTCTGT GAT                   | CGC GGATCC CCATCCATGGTTCTGTTTCTAT         |
| CERS5 3'UTR MUT           | CGCTCTAGAGTGATTGGGAGACTGCAAGTAGAGTGAGAGT<br>ATCAAAGAA | CGC GGATCC CCATCCATGGTTCTGTTTCTAT         |
| HA-β-catenin              | CGC GTCGAC T GCTACTCAA GCTGATTTGA T                   | CGCGCGGCCGC TTACAGGTCAGTATCAAACCA         |
| PGL3-SOAT1-Promoter       | CGC AGATCT CCAATGACAGCCAGTACTAA                       | CGC AAGCTT CAGGAGATTCCTTACCGT             |
| <i>SOAT1</i> -Promoter MT | GGATGCTGAGGGCCATTTCTGAGGGTCGTGAACAGTGCA               | CCCAGCAGGCTGCACTGTTCACGACCCTCAGAAATGGCCCT |

#### Supplemental Table 2. Primer sequence for constructs used in this study.

| Gene      | Company    | Catalog No | Source                     | Dilutior |
|-----------|------------|------------|----------------------------|----------|
| CERS5     | Abcam      | ab73289    | Rabbit polyclonal antibody | 1:500    |
| SOAT1     | Abcam      | ab39327    | Rabbit polyclonal antibody | 1:500    |
| SOAT1     | Santa Cruz | sc-69836   | mouse monoclonal antibody  | 1:1000   |
| β-catenin | Abcam      | ab6302     | Rabbit polyclonal antibody | 1:2000   |
| с-Мус     | Santa Cruz | A2814      | mouse monoclonal antibody  | 1:500    |
| HA        | OriGene    | AF4911     | mouse monoclonal antibody  | 1:2000   |
| Flag      | SIGMA      | F3165      | mouse monoclonal antibody  | 1:5000   |
| β-Actin   | Santa Cruz | H1914      | mouse monoclonal antibody  | 1:2000   |

| Amplicons | Forward Primer (5'>3') | Reverse Primer (5'>3') |
|-----------|------------------------|------------------------|
| SOAT1 #1  | CTCAACATGGTCTACAAACTT  | GTAGGAGGAGTTTTGTCATCA  |
| SOAT1 #2  | GCACACGTGGCAATCACAGTT  | GGTTTAGCAGAACTGACTA    |
| SOAT1 #3  | CCTCAGGTAACGGTGGTGCT   | GGGCGCCTGACGGTAACTTT   |
| SOAT1 #4  | GGATAAAGACCTACTGAGTGA  | CTGAGGCAGGTATAAGAGTT   |
| SOAT1 #5  | GCTGTCTACTTAGCTTT      | CTAGCAGTGAAGGAATCTCTA  |

# Supplemental Table 4. ChIP PCR primers for *SOAT1* promoters.

| Gene    | Forward Primer (5'>3' ) | Reverse Primer (5'>3')  |
|---------|-------------------------|-------------------------|
| β-Actin | ATCATGAAGTGTGACGTGGACAT | AGGAGCAATGATCTTGATCTTCA |
| Col4a1  | CTGGCACAAAAGGGACGAG     | ACGTGGCCGAGAATTTCACC    |
| ltga11  | TGCCCCAATGGAAACCAATG    | CACTCGTGCGACCAGAGAG     |
| Cers5   | CGGGGAAAGGTGTCTAAGGAT   | GTTCATGCAGTTGGCACCATT   |
| Ltbp1   | CCAGTCCCAAGTCTCTTACCA   | CTGGAAGCATCGGCCAAGT     |
| Usp32   | GCGGCCTCTCCTATTACATGA   | ATAGCTCCCGGATTCACTTGA   |
| II-1β   | GAAATGCCACCTTTTGACAGTG  | TGGATGCTCTCATCAGGACAG   |
| 116     | CGGCCTTCCCTACTTCACAA    | TGCAAGTGCATCATCGTTGT    |
| 118     | CTGCAACAGAAAGGAAGTGAT   | AGCTTCATTGCCGGTGGAAA    |
| Tnf     | TGATCGGTCCCCAAAGGGAT    | CACTTGGTGGTTTGCTACGA    |
| Muc1    | AGTGCCAAGTCAATACCCTGT   | CTGGGGTGAACTGTTACTGGA   |
| Muc2    | AGGGCTCGGAACTCCAGAAA    | CCAGGGAATCGGTAGACATCG   |
| Мис3    | CCGAGAGCGGAAGTGTGTG     | TGTAACTGTGGTTTTGGTCTTCA |
| Muc4    | ACAGGTGTAACTAGAAGCCTCG  | CAGGGGTGCTATGCACTACTG   |
| Ang4    | GCCCTTATGGAGAAAACTTC    | CCATGACAGTGAACGCTGAA    |
| ltln1   | CAGCACTTGGGACATAATCTGT  | TCCTTCTCCGTATTTCACTGGG  |
| Lcn2    | TGGCCCTGAGTGTCATGTG     | CTCTTGTAGCTCATAGATGGTGC |
| mBD2    | GGAGGAAGTGATCCGAAAATCAG | AGCATTTCCCAGGTATCTTGC   |
| Reg3ß   | CCCTCCGCACGCATTAGTT     | CAGGCCAGTTCTGCATCAAA    |
| Reg3y   | ATGCTTCCCCGTATAACCATCA  | GGCCATATCTGCATCATACCAG  |

## Supplemental Table 5. Quantitative PCR primers used in this study.

| Retnlb        | AAGCCTACACTGTGTTTCCTTTT | GCTTCCTTGATCCTTTGATCCAC |
|---------------|-------------------------|-------------------------|
| <i>S100a8</i> | AAATCACCATGCCCTCTACAAG  | CCCACTTTTATCACCATCGCAA  |
| <i>S100a9</i> | ATACTCTAGGAAGGAAGGACACC | TCCATGATGTCATTTATGAGGGC |
| Soat1         |                         |                         |
| 30011         | GAAGGCTCACTCATTTGTCAGA  | GTCTCGGTAAATAAGTGTAGGCG |
| SOAT1         | CAAGGCTCACTCATTIGTCAGA  | GTCTCGGTAAATAAGTGTAGGCG |

| Bacteria                    | Forward Primer (5'>3')        | Reverse Primer (5'>3')  |
|-----------------------------|-------------------------------|-------------------------|
| Akkermansia                 | CAGCACGTGAAGGTGGGGAC          | CCTTGCGGTTGGCTTCAGAT    |
| Anaerostipes                | AAGTCGAACGAAGCACCTTG          | TCCGCCACTCAGTCACAATG    |
| Bacteroides                 | GGTTCTGAGAGGAGGTCCC           | CTGCCTCCCGTAGGAGT       |
| Bacteroides fragilis        | ATAGCCTTTCGAAAGRAAGAT         | CCAGTATCAACTGCAATTTTA   |
| Bifidobacterium spp.        | ATTCTGGCTCAGGATGAACGC         | CTGATAGGACGCGACCCCAT    |
| Clostridia                  | CTCAACTTGGGTGCTGCATTT         | ATTGTAGTACGTGTGTAGCCC   |
| Clostridium cluster IV      | GCACAAGCAGTGGAGT              | CTTCCTCCGTTTTGTCAA      |
| Clostridium coccoides       | ACTCCTACGGGAGGCAGC            | GCTTCTTAGTCAGGTACCGTCAT |
| Clostridium perfringens     | CGCATAACGTTGAAAGATGG          | CCTTGGTAGGCCGTTACCC     |
| Clostridium subcluster XVIa | AAATGACGGTACCTGACTAA          | CTTTGAGTTTCATTCTTGCGAA  |
| Dorea                       | ACGGTACCTGACTAAGAAGCCC        | CCTCAACGTCAGTCATCGTCC   |
| E. coli                     | CATGCCGCGTGTATGAAGAA          | CGGGTAACGTCAATGAGCAAA   |
| Enterococcus spp.           | CCCTTATTGTTAGTTGCCATCATT      | ACTCGTTGTACTTCCCATTGT   |
| Enterobacteriaceae          | TGCCGTAACTTCGGGAGAAGGCA       | TCAAGGCTCAATGTTCAGTGTC  |
| EREC                        | ACTCCTACGGGAGGCAGC            | GCTTCTTAGTCAGGTACCGTCA  |
| Eubacteria(Universal)       | ACTCCTACGGGAGGCAGCAGT         | ATTACCGCGGCTGCTGGC      |
| Firmicutes                  | GGAGYATGTGGTTTAATTCGAAGCA     | AGCTGACGACAACCATGCAC    |
| Flexispira                  | AATACATGCAAGTCGAACGATGA       | AATCACCGTTTCCAGTGGCT    |
| Helicobacter                | CTTAACCATAGAACTGCATTTGAAACTAC | GGTCGCCTTCGCAATGAGTA    |
| Lactobacillus               | AGCAGTAGGGAATCTTCCA           | CACCGCTACACATGGAG       |

#### Supplemental Table 6. bacteria 16S rDNA primers used in Quantitative PCR of this study.

| MIB                 | CCAGCAGCCGCGGTAATA           | CGCATTCCGCATACTTCTC      |
|---------------------|------------------------------|--------------------------|
| P. gingivalis       | CTTGACTTCAGTGGCGGCAG         | AGGGAAGACGGTTTTCACCA     |
| Prevotellaceae      | CCAGCCAAGTAGCGTGCA           | TGGACCTTCCGTATTACC       |
| γ-Proteobacteria    | TAACGCTTGGGAATCTGCCTRTT      | CATCTRTTAGCGCCAGGCCTTGC  |
| SFB                 | AGGAGGAGTCTGCGGCACATTAGC     | CGCATCCTTTACGCCCAGTTATTC |
| Staphylococcus spp. | TTTGGGCTACACGTGCTACAATGGACAA | AACAACTTTATGGGATTTGCWTGA |
| Streptococcus spp.  | AGATGGACCTGCGTTGT            | GCTGCCTCCCGTAGGAGTCT     |
| TM7                 | GCAACTCTTTACGCCCAGT          | GAGAGGATGATCAGCCAG       |