Title: TNFRSF13B genotypes control immune-mediated pathology by regulating the functions of innate B cells **Authors:** Mayara Garcia de Mattos Barbosa¹, Adam R. Lefferts¹, Daniel Huynh¹, Hui Liu¹, Yu Zhang¹, Beverly Fu¹, Jenna Barnes², Milagros Samaniego³, Richard J. Bram⁴, Raif S. Geha⁵, Ariella Shikanov⁶, Eline T. Luning Prak⁷, Evan Farkash², Jeffrey L. Platt^{1,8,*}, Marilia Cascalho^{1,8,*} ⁵Division of Immunology, Boston Children's Hospital and Department of Pediatrics; Harvard Medical School; Boston, MA, 02115, USA ⁶Department of Biomedical Engineering; University of Michigan; Ann Arbor, MI, 48109, USA ⁸Department of Microbiology and Immunology; University of Michigan; Ann Arbor, MI, 48109, USA Supplemental data and figures: ¹Department of Surgery, University of Michigan, Ann Arbor, MI, 48109, USA ²Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA ³Department of Medicine, University of Michigan, Ann Arbor, MI, 48109, USA ⁴Department of Pediatric and Adolescent Medicine and Department of Immunology; Mayo Foundation; Rochester, MN, 55905, USA ⁷Department of Pathology and Laboratory Medicine; Perelman School of Medicine; University of Pennsylvania; Philadelphia, PA, 19104, USA Figure S1. Anti-IgM, IgG and C3d immunostainings in transplanted hearts 14 days after transplantation. Hearts from CB6F1 mice (C57BL/6-BALB/c F1, H-2^{b/d} haplotype) were transplanted heterotopically into the abdomen of C57BL/6 (H-2^{b/b} haplotype) WT and Tnfrsf13b-KO. Deposition of IgM, IgG and C3d was evaluated by immunofluorescence. (A) Anti-IgM immunostaining of sections obtained from cardiac allografts excised at day 14. Images are representative of a mouse of each group. (B) Anti-IgG and anti-C3d immunostainings of sections obtained from cardiac allografts at rejection. Images are representative of two mice of each group. See also Figure 1. Bars: 40 μ m. Figure S2. Anti-IgM, IgG and C3d immunostainings of sections of native hearts obtained at rejection of cardiac allografts. Hearts from CB6F1 mice (C57BL/6-BALB/c F1, H- $2^{b/d}$ haplotype) were transplanted heterotopically into the abdomen of C57BL/6 (H- $2^{b/b}$ haplotype) WT and Tnfrsf13b-KO. Both transplanted and native hearts were retrieved at rejection. Deposition of IgM, IgG and C3d into the native heart was evaluated by immunofluorescence. Images are representative of a mouse of each group. Bar: $40 \, \mu m$. **Figure S3. Splenic B cell populations in** *Tnfrsf13b***-mutant mice.** Spleens from naïve mice with different *Tnfrsf13b* genotypes were harvested. Splenic percentages of live lymphocytes with phenotypes of B cells (CD19⁺), naive B cells (CD19⁺ IgD⁺) and percentages of CD19⁺ B cells that were marginal zone (CD19⁺ CD21^{high} CD23⁻), follicular (CD19⁺ CD21⁺ CD23⁺) and germinal center (CD19⁺ CD95⁺ GL7⁺) B cells in the spleen. Graphs are representative of Mean ± SEM of 3 naïve mice per group. Mann-Whitney test: * p≤0.05 in relation to the WT control. **Figure S4. Germinal center B cells sorting and microarray quality analysis.** Mice were immunized by intraperitoneal injection with 5 x 10⁷ allogenic splenocytes and thymocytes. Spleens were collected after 10 days, germinal center (GC) B cells were sorted, RNA was extracted, and gene expression was analyzed by microarray. (**A**) Singlet viable lymphocytes that were CD19⁺ (B cells) were further analyzed for the expression of GL7 and FAS (CD95). B cells with a GC phenotype (CD19⁺ CD95⁺ GL7⁺) were sorted (green) for RNA microarray analysis. (**B**) Probe densities in each microarray chip analyzed (n = 3). (**C**) Box plot shows the standard errors for each array calculated after fitting a probe-level model. (**D**) Distribution of analyzed samples in the first two principal components, responsible for 31% of the variation in the principal component analysis. Colored ellipses represent clustered samples by genotype. Sample numbers: 1-3 WT, 4-6 *Tnfrsf13b*-KO, 7-9 A144E/WT, 10-12 A144E/A144E. Figure S5. *Tnfrsf13b* deficiency evokes decreased IgM and increased IgG responses to allografts and allo-immunization. (A and B) Hearts from CB6F1 mice (C57BL/6-BALB/c F1, H-2^{b/b} haplotype) were transplanted heterotopically into the abdomen of C57BL/6 (H-2^{b/b} haplotype) WT and *Tnfrsf13b*-KO mice and sera of recipient mice were collected at time of transplant and at rejection. (A) Graphs represent the Mean \pm SEM of concentrations of total IgM and IgG before transplantation (Day 0) and at rejection of 5-7 mice per group. (B) Paired analysis of immunoglobulin concentrations before transplantation (Day 0, green) and at rejection (red). (C) Mice were immunized via intraperitoneal injection with 5 x 10⁷ BALB/c splenocytes and thymocytes, blood was collected weekly for 21 days. The concentrations of total IgM and IgG at the peak of the response post-immunization with allogeneic cells. Graphs are representative of Mean \pm SEM of 5-7 mice per group. Unpaired (A, B), paired T test (B), Mann-Whitney test (B, C), One-Way ANOVA with Dunnett's multiple comparison test or Kruskal-Wallis with Dunn's multiple comparison test (C): * p \leq 0.05; ** p \leq 0.01; *** p \leq 0.001; **** p \leq 0.001 in relation to WT control; # p \leq 0.05; ### p \leq 0.001 in relation to day 0 (D0). Figure S6. Tnfrsf13b protects native kidneys from immune and inflammatory injury. (A and B) Native kidneys were harvested from naïve mice (pre) or mice immunized via intraperitoneal injection with 5 x 10^7 BALB/c splenocytes and thymocytes (post). Glomerular IgM (A) and IgG (B) deposits were examined with anti-mouse IgM or IgG immunostaining of frozen native kidney sections pre- or 8 days post-allogeneic stimulation. Bars = 25 μ m. Graphs show Mean \pm SEM calculated from analysis of 5-7 fields with 3 or more glomeruli per mouse per group. Open shapes represent data from naive mice (pre) and filled shapes represent data of mice 8 days of post-immunization (post). One-Way ANOVA with Dunnett's multiple comparison test or Kruskal-Wallis with Dunn's multiple comparison test: * p \le 0.05; ** p \le 0.01; **** p \le 0.0001 in relation to WT control. **Figure S7. C3d and IgG deposition in native kidneys of natural antibody-deficient mice.** Native kidneys were harvested from naive Quasi-Monoclonal (QM) mice *Tnfrsf13b* proficient or deficient. Quasi-Monoclonal mice produce only 4-hydroxy-3-nitrophenyl-acetyl (NP)-specific IgM and lack natural IgM. Glomerular C3d deposits (**A**) or IgG (**B**) were identified with antimouse C3d or goat anti-mouse IgG on frozen sections obtained from native kidneys. Figures show typical sections obtained from two distinct *Tnfrsf13b* proficient (left) or deficient (right) Quasi-Monoclonal mice, representative from stainings in 7 different mice of each genetic background. Bar: 25 μm. (**C**) Hearts (transplanted heterotopically into the abdomen) from BALB/c mice H-2^{d/d} haplotype) were transplanted into C57BL/6 (H-2^{b/b} haplotype) WT and QM mice and allograft survival was evaluated daily until rejection. Graph depicts the survival curves showing overlapping rejection kinetics. **Table S1. Predicted impact of** *TNFRSF13B* **mutations on protein function**. Impact of *TNFRSF13B* missense mutations on protein structure and function, according to SIFT, PolyPhen-2, CADD, REVEL, MetaLR and MutationAssessor prediction tools and the ClinVar database. | Exon 3 C104R 17-16852187-A-G rs34557412 0.000 deleterious 0.999 probably damaging 25 likely benign 0.919 disease causing 0.828 medium framedium probably damaging framedium probably damaging 0.828 medium framedium | ClinVar conflicting interpretations of pathogenicity, risk factor: likely benign (2); likely pathogenic (2); pathogenic (2); uncertain significance (4) N.A. conflicting interpretations | |--|---| | Exon 3 C104R 17-16852187-A-G rs34557412 0.000 deleterious 0.999 probably damaging 25 likely benign 0.919 disease causing 0.828 medium framedium probably damaging framedium probably damaging 0.828 medium framedium framedium probably damaging 0.828 medium framedium framediu | of pathogenicity, risk
factor: likely benign (2);
likely pathogenic (2);
pathogenic (2); uncertain
significance (4)
N.A. | | A181E 17-16843729-G-T rs72553883 0.000 deleterious 0.395 benign 10 likely benign 0.607 disease causing 0.600 damaging 0.528 medium pa (2) | | | A181E 17-16843729-G-T rs72553883 0.000 deleterious 0.395 benign 10 likely benign 0.607 disease causing 0.600 damaging 0.528 medium radical part (2) | conflicting interpretations | | Exon 4 | of pathogenicity: likely
benign (1); likely
pathogenic (2); pathogenic
(2); uncertain significance
(1) | | | benign | | K188M 17-16843708-T-A rs74811083 0.000 deleterious 0.360 benign 15 likely benign 0.399 likely benign 0.323 tolerated 0.169 neutral | benign/likely benign | | R189M 17-16843705-C-A rs199777698 0.000 deleterious 0.520 possibly damaging 16 likely benign 0.603 disease causing 0.783 damaging 0.528 medium | uncertain significance | | G190R 17-16843703-C-G | uncertain significance | | S209F N.A. rs1314475404 0.030 deleterious 0.019 benign 16 likely benign 0.326 likely benign 0.692 damaging 0.581 medium | N.A. | | Exon 5 P251L 17-16842991-G-A rs34562254 0.100 tolerated 0.284 benign 12 likely benign 0.261 likely benign 0.000 tolerated 0.261 low | | Abbreviations: SIFT, Sorting Intolerant From Tolerant; PolyPhen-2, Polymorphism Phenotyping v2; CADD, Combined Annotation-Dependent Depletion; REVEL, Rare Exome Variant Ensemble Learner: N.A.. Not available. Table S2. Top 500 germinal center B cell genes differentially expressed between wild type and Tnfrsf13b-mutant mice 10 days post-allogenic stimulation.