SUPPLEMENTAL INFORMATION

2 Supplemental Figure 1

A >DOT1L; human; range -1000bp to 100bp.

TACCTCAGCCCCCGCAGTAGCTGGGATTACAGGCGCCCCGCCACCGCGCCCAGCTAATTTTGTATTTTTA ATAGAGACAGGGTTTCACCATGTTGGCCAGGCTGATCTCGAACTCCTGACCTCAGGTGATCTTCCCGGCCT ${\tt CGGCCTCACAAAGTGCTGGGATTACAGGCATGAGCCAGGGCTCCTGGCCGTGAGAGGGGGTTTCTCCATG}$ TTGGTCAGGCTGGTCTCGAACTCCTGACCTCAGGTGATCTGCCCGCCTTGGCCTCCCAAAGTGCTGGGAT TGAATACTGGACTTGGAGCTACAGCAAGTCCTGGACCGTGACTCTTATGGGGGGGAAATTCGGATTTTTGG TTTTACTAAGCCGTGTGTGGGGGGGGGGGGGTGTCCGGCGTCCTCCTCGGGGCGGGGGTTCGAACCCGCTATCCG ACGGGCCCGCCCACAGGGTCTCCCCGGGTCCCCCGCTTCGGGCCGAGTGGGGGAAGGGGTCGGCCGAG GGCAACCGAGG<mark>ACGTCCGTG</mark>CGTACGTTCGT<mark>GCGTCCGTG</mark>GATTCGGGCGGGCGGGCGGGCGAGTCCACGGGGC GGGCTCCCCTAGCGCGCGGGGCGAGTGGTTCCGCCCGGCCCCCGGCTCATTGTGCTCGCTTCACGCCGGC CCAAGATGGCGGAGGCGCTGGAGGCCCCGGGCCTGTGACTACAAAGAGGGAGTCGGGGGCCGGGCCGGAC CGGAGCGCGGCGGCGGCGGCGGCGGCGGCCGAGGCCGAGGCCCAGGCCCCTCCCCTCAGCCTCCCGCCCC CGGCGGCCGCGCGCGCGGACATGGGGGGAGAAGCTGGAGCTGAGACTGAAGTCGCCCGTGGGGGGCTGAGCC CGCCGTCTACCCGTGGCCGCTGCCGGTCT<mark>ACGTG</mark>AGTGCCGCCCTCCACCG

B >DOT1L; mouse; range -1000bp to 100bp.

TTCTAGCTCCGGATCCTTCTTTTGGGGGGCTGGCAAGCGCTAGGATGAGGGGTGGGAGCCATCTCCCCTAG ATTACATTCACTCCCATGTAGTCAGGAAGAAGAAGCAGCTATCCAGAAGCGGCTGGTGAGCTGGTGACAG GGCCTAAGAAGGAAATAAGTTTGGCTCCTGACTCTGTAAAGTTCTGGGCAGGTCAGAGAATAACATTGCT TAAATAAACAATAAGCAGATAGGCTAGAAAAGTGAAAAAATAGAAAAGCTAAAGAAGGGGAAAAATTGAA AAATGAAAAAAAAAAAGAAAGAAAAAAGCCAGAAAAACAGAAAAAGAAAATTGACGGGAAGGGAAGAG AAAGAAAAAGAACAGGAAATGGAAAGAAAAAAAAAAGCAAAGCAAAGCGAAGGGACGCGAAGCCAAGCCT CCGCTTCCGGCTGGCGGCGACGTCGGAGGGCAACCGAGG<mark>ACGTGCGTG</mark>CGCCGCT<mark>GCGTG</mark>CGTAAGT<mark>GCG</mark> CCGACCCCCGGCTCATTGTGCCTTCTCCTCACGCCGGCCCAAGATGGCGGCGGCTCTAGACGCCCCGGC

C >DOT1L; rat; range -1000bp to 100bp.

ATGTATGTTTATGCACCACGATTGCCTGGTGCATGGAGAGGCCAGAAGAGGGCGTTGGAACCCTGGGAAT TCAGTCAGAGATGGTTGTGAGCCCGAGGGAGGGCTGGGAATGGAATCTAAGGTTCTCTAAAAGAGCAGCC TGTAGTCTTAGCTACTGAACCATCTCTCTAACCCATTTGATGATTTTGTTTTTCAGTTTTGTTCTTGCTG TTAGGAATGGTTTCACTCTGTAGCTCAAGTGGGCTTTGAGTCGTGATCCCTTGCCTCAGCTTCCCAAGAC ${\tt CTTGGATTATGGGTCATAGATTCACGGTTTTGTTAGTGTGAAACTGCATAGAAAGTCGGAAAATATCTTC$ AAAAAGAATGAAAAGAAGCTAG<mark>GCGTG</mark>GTGGTGCACACCTTTAATCCCAGCACTAGGGAGGGAGGCAGAG GCGGGGAATCTTGGTGAATTTGAGGTAAGACTGGTCAACAGAGTAGACGGAGTTCCAGGACAGCCAGGGC AAAGTGAAAAGAGAAACAGAAAAAGGAAAAAAGCCGGAAAAAACAGAAAAAGAATAGGGACGAGAAGAGAGA CCGCTTCCGGCTGGCGTGGCGTCGGAGGGCAACCGAGG<mark>ACGTGCGTG</mark>CGACCCT<mark>GCGTG</mark>CGA<mark>ACGTGCG</mark> **TG**CGTCGGCGGGAGGTGGGCGAGTCCAAGGGG<mark>GCGTG</mark>GCGTACGAGGGGTGGTGCGCGCGGCGCGGGG ${\tt CGGAGGCTTTGGGCGCGCGCCCCCTTTGGCTCCCGGCCTCCCCGCGCGCGCGCGCCCAGTGGTTCAGC}$ TCTGTGACTCCTACAAAGAGGGGAGCTGGGGGCCACACGGGAGCGGTGGCCG

4	Supplemental Figure 1 Predicted hypoxia response elements (HREs) in human, mouse and rat
5	DOT1L gene promoters. (A-B-C) Sequences of the human (A), mouse (B) and rat (C) DOT1L
6	gene promoters from 1000 base pairs (bp) upstream of the transcription start site (TSS) to 100
7	bp downstream of the TSS as determined by the Eukaryotic Promoter Database. HREs with
8	core consensus sequence 5'-(A/G)CGTG-3', potential binding sites for HIF heterodimers, are
9	marked with a yellow box. The bp downstream of the TSS are highlighted in grey.

Multiple sequence alignment by MUSCLE

12

human mouse rat	TACCTCAGCCCCCGCAGTAGCTGGGATTACAGGCGCCCGCCACCGCGCCCAGCTAATTTTGTATTTT TTCTAGCTCCGGATCCTTCTTTGGGGGCTGGCAAGCGCTAGGATGAGGGGGGGGGG
human mouse rat	AATAGAGACAGGGTTTGAACTCC AGGAAGAAGAAGCAGATCTCGAACTCC AGGAAGAAGAAGCAGCAGCTCACCTCAAGGTAACTTA GTGAGCCCGAGGGAGGGCTGGGAATGGAAT
human mouse rat	TGACCTCAGGTGATCTT TTCTCAGAAGGTTTTGGGGGGGGGAACTTAAGTATTAGAAGGATTGGAATGGCCTAAGAAGGAAATAAGTTTGGCT TTTGATGATTTTGTTTTTCAGTTTTGTTCTTGCTGTTAGGAATGGTTTCACTCTGTAGCTCAAGTGGGCTTTGAGTCGTGAT * * * * * * * * * * * * *
human mouse rat	CCCGCCTCGGCCTCACAAAGTGCTGGGATTACAGGCATGAGCCAGGGCTCCTGGCCGTGAGAGGGGGTT CCTGACTCTGTAAAGTTCTGGGCAGGTCAGAGAATAACATTGCTTTGAACTCTTAATTGAGAGCCTCCGACCTATAGGGTC CCCTTGCCTCAGCTTC-CCAAGACCTTGGATTATGGGTCATAGATTCACGGTTTTGTTAGTGTGAAACTGCATAGAAAGTCGGAA ** * *** * *** * *** ** ** ** ** ** **
human mouse rat	TCTCCATGTCAGGTGATTTATTAATTAACTTATGCCCAGGCTGGTCTCGAACTCCTGACCTCAGGAGGCAGAGGCAGGTGGT CAATTTGACTGATGATGATTATTAATTAACTTATTGCTCACATCTTTAATCCCAGCTCTCAGGAGGCAGAGGCAGGGCAG
human mouse rat	GCCTTGGCCTCCCAAAGTGCTGGGATTACAGGGGTGAATCACCGCGCCTGGCCTTTTTTTTTT
human mouse rat	TTTGTACCCAATAAACAGCATTGTTGTCGAATGAATACTGGACTTGGAGCTACAGCAAGCCTGGACCTGGACCGG AAAAAAAGCATGTAAATAAACAATAAGCAGATAGGCTAGAAAAGTGAAAAATTGAAAAAGCTGAAAAATTGAAAAATGAAAAAA ACCAAATAAGTAAATAAACAATAAATAAACGGAAAAATAAAAGTGAA *** ******* * * * * * * * * * * * * *
human mouse rat	GACTCTTATGGGGGGAAATTCGGATTTTGGTTTTACTAAGCCGTGTGTGGGGGAGGTG
human mouse rat	TCCGGCGTCCTCCTCCTGGGACGGATTCGAACCGGCTATCCGACGGGCCCGCCCACAGGGT AAAAGCAAAGCAAAGCGAAGGGACGCGAAGCAAGCCTGTGCAACTGGACTTGAACTTGAC-CCCGCCTGGTCTCTCTCGCTTTCCTCCGCAGGG AAAAGAAAAG
human mouse rat	CTCCCCGGGTCCCCGCTTCGGGCCGGCGAGTGGGGGAAGGGGTCGGCCGAGGGCAACCGAGG <mark>ACGTGCGTG</mark> CGTACGTTCGTGCGTGCGTGCGTGCCGCGGGCGGCGGCGGCGCGCGCGCGCGCGCGCGCGCGC
human mouse rat	ATTCG-GGCGGGCGGGCGAGTCCAC-GGGGCGGGGCGCCGAGGGGGTGGCGCGCGGGGGCGGGGC
human mouse rat	CGCTCCGGGCTCCCCTAGCGCGCGGGGCGAGTGGTTCCGCCCGG-CCCCGGCTCATTGTGCTCGCTTCACGCCGGCCCAAGATGGCGGAGG GGCTCCCGGCCTCCCCGCGCGCGCGCGCCCCGGGTCGTCCGCCCGACCCCCGGCTCATTGTGCCTTCTCCTCACGCCGGCCCAAGATGGCGGCGG GGCTCCCGGCCTCCCCCGCGCGCGCGCGCCCCAGTGGTTCAGCCCGACCCCCGGCTCATTGTGCCTTCTCCTCACGCCGGCCCAAGATGGCGGCGG ***** *** *** *** ******* * *********
human mouse rat	CGCTGGAGGCCCCGGGCCTGTGACTACAAAGAGGGAGTCGGGGGCCGGGCC
human mouse rat	GGCCAGGCCCCTCCCCTCAGCCTCCCCCCCCCCCCCCCC
human mouse rat	ATGGTGCGGCGGCGCGCGCGCGGGGCATGGGGGGAGAAGCTGGAGCTGAGACTGAAGTCGCCCGTGGGGGCTGAGCCCGCCGTCTACCCGTGGCCGC GCGGCGGCCG
human mouse rat	TGCCGGTCT <mark>ACGTG</mark> AGTGCCGCCCTCCACCG

Supplemental Figure 2 Alignment of the human, mouse and rat *DOT1L* gene promoters.
Alignment of the human, mouse and rat sequences of the *DOT1L* gene promoters from 1000
base pairs (bp) upstream of the transcription start site (TSS) to 100 bp downstream of the TSS
as determined by the Eukaryotic Promoter Database. This alignment was performed using
MUSCLE. Hypoxia response elements (HREs) are marked with a yellow box.

Supplemental Figure 3 Promoter constructs for the luciferase reporter assay. (A) The full 20 21 human DOT1L promoter from 1000 base pairs (bp) upstream to 91 bp downstream relative to the transcription start site (TSS) as defined by the Eukaryotic Promoter Database was cloned 22 23 into the pGL3 basic luciferase reporter vector. This 1092 bp fragment contains the conserved 24 overlapping tandem Hypoxia response elements (HREs) located at -429 bp relative to the TSS. (B) The shorter *DOT1L* promoter from 412 bp upstream to 91 bp downstream relative to the 25 TSS was cloned into the pGL3 basic luciferase reporter vector. This 504 bp fragment does not 26 contain the conserved overlapping tandem HREs. 27

Supplemental Figure 4 Efficiency of siRNA-mediated gene silencing in C28/I2 cells. (A) Real-time PCR analysis of *HIF1A* and *HIF2A* in human articular chondrocyte C28/I2 cells after treatment with hypoxia mimetic IOX2 (20 μ M) and siRNA-mediated silencing of *HIF1A* (siHIF1A), *HIF2A* (siHIF2A) or scrambled control (siSCR) (n=3, **p*<0.05, ****p* <0.001, *****p*<0.0001 Sidak-corrected for 6 tests in one-way ANOVA). (B) Real-time PCR analysis of *DOT1L*, *VEGF*, *HIF1A* and *HIF2A* in C28/I2 cells after siRNA-mediated silencing of *HIF1A*, *HIF2A* or scrambled control (siSCR) (n=1). Bar graphs are mean±sem.

Supplemental Figure 5 Efficiency of siRNA-mediated gene silencing in hACs. (A-B) Realtime PCR analysis of *DOT1L* in primary human articular chondrocytes (hACs) after treatment with hypoxia mimetic IOX2 (20 μ M) or vehicle (V) (A) (n=3, **p*<0.05, Sidak-corrected for 6 tests in two-way ANOVA) or culturing in hypoxic conditions (1% O₂) (B) and siRNA-mediated silencing of *DOT1L* or scrambled control (siSCR) (n=3, Sidak-corrected for 6 tests in two-way ANOVA). Bar graphs are mean±sem.

Supplemental Figure 6 DOT1L and HIF-1A protein levels in osteoarthritis murine articular
cartilage. (A-B) Immunohistochemical detection of DOT1L (A) and HIF1A (B) in the articular
cartilage of wild-type mice with OA triggered by destabilisation of the medial meniscus (DMM)
surgery compared to sham operated mice. The images are representative of three different
animals. Scale bar, 50 μm.

53

Human primers used for qPCR

Primer name	Sequence
hACAN fw	ATCCGAGACACCAACGAGAC
hACAN_rv	CACTCATTGGCTGCTTCCTG
hCOL2A1_fw	TGGCAGAGATGGAGAACCTG
hCOL2A1_rv	CATCAAATCCTCCAGCCATC
hDOT1L_fw	GGATCTCAAGCTCGCTATGG
hDOT1L_rv	GTCGATGGCACGGTTGTACT
hHIF1A_fw	TCATCCATGTGACCATGAGG
hHIF1A_rv	TTCCTCGGCTAGTTAGGGTACA
hHIF2A_fw	CTGCGACCATGAGGAGATTC
hHIF2A_rv	GTACGGCCTCTGTTGGTGAC
hS29_fw	GGGTCACCAGCAGCTGTACT
h829_rv	AAACACTGGCGGCACATATT
hTCF1 fw	CCCCCAACTCTCTCTCTACGA
hTCF1_rv	TGCCTGAGGTCAGGGAGTAG
hVEGF_fw	TGCAGATTATGCGGATCAAACC
hVEGF_rv	TGCATTCACATTTGTTGTGCTGTAG

56

Human primers used for ChIP-qPCR

Primer name	Sequence		
hDOT1Lprom_fw	CCAATAAACAGCATTGTTGTCG		
hDOT1Lprom_rv	CCCACACACGGCTTAGTAAAA		
hVEGFprom_fw	TCACTTTCCTGCTCCCTCCT		
hVEGFprom_rv	GCAATGAAGGGGAAGCTCGA		

9	Primers used for the PCR amplification for luciferase assay					
	Construct	Primer	Sequence			
	Full DOT1L promoter (1092 bp)	Forward Reverse	GGTACCTACCTCAGCCCCCGCAGTA ACGCTCGAGGCGGCACTCACGTAGACC			
	Shorter DOT1L promoter (504 bp)	Forward Reverse	GGTACCCGTGCGTGCGTGGATTCG ACGCTCGAGGCGGCACTCACGTAGACC			

63

Statistical Analysis Details

FIGURE 3A	Generalized least square model with constant plus power variance function structure							
DOT1L	beta=0.006, t=6.209 <i>p</i> <0.0001							
VEGF	beta=0.018, t=10.65 <i>p</i> <0.0001							
FIGURE 3B	Generalized least square model with constant plus power variance function structure							
DOT1L	beta=0.015, t=11.14 p-	<0.0001						
VEGF	beta=0.005, t=24.62 p-	<0.0001						
FIGURE 3C	Welch-correct unpaire	d t-test						
DOT1L	t ₂ =4.940 <i>p</i> =0.0385							
VEGF	t ₂ =6.231 <i>p</i> =0.0248							
FIGURE 3F	Generalized least squa	re model						
Immuno-	beta=0.007, t=17.32 p	<0.0001						
fluorescent								
FIGURE 4A	Two-way ANOVA	V:Empty vs.	V:Empty vs.	V:Empty vs.	V:DOT1L vs.	V:DOT1Lvs.	IOX2:Empty vs.	
		V:DOT1L	IOX2:Empty	IOX2:DOT1L	IOX2:Empty	IOX2:DOT1L	IOX2:DOT1L	
Luciferase	$F_{1,8} = 21,71, n = 0,0016$	t∘= 3 078 <i>n</i> =0 088	t∘= 3 067 <i>n</i> =0 089	t₃= 6 601 <i>p</i> =0 001	t∘= 0 0115	t₀= 3 522 n=0 046	t₀= 3 534 n=0 045	
	11,8 21.719 0.0010	ta- 5.070 p-0.000	13 - 5.007 p - 0.005	to 0.001 p 0.001	18 0.0115	10^{-} 3.322 p=0.040	10^{-} 3.334 p^{-} 0.043	
activity	for IOX2 treatment	t ₀ = 3.070 p=0.000	ta= 3.007 p=0.003	us 0.001 p 0.001	p=0.99	ι _δ - 3.322 μ-0.040	ι _δ - 3.334 μ-0.043	
activity	for IOX2 treatment $F_{1,8} = 21.86 p = 0.0016$	18- 3.070 p-0.000	u- 3.007 p-0.003		<i>p</i> =0.99	ι _θ = 3.322 μ=0.040	ια- 3.33+ <i>μ</i> -0.043	
activity	for IOX2 treatment $F_{1,8} = 21.86 p = 0.0016$ for reporter	ε ₀ - 3.070 μ 0.000	ta 5.007 p=0.005		p=0.99	ι ₀ - 3.322 μ-0.040	6- 5.554 p-0.045	
activity	for IOX2 treatment $F_{1,8} = 21.86 p=0.0016$ for reporter $F_{1,8} = 1.38 p=0.755$	ε ₈ - 3.070 μ 0.000	ta 5.007 p=0.005		p=0.99	ι ₀ - 3.322 μ-0.040	6- 5.55+ p-0.045	
activity	for IOX2 treatment $F_{1,8} = 21.86 \ p$ =0.0016 for reporter $F_{1,8} = 1.38 \ p$ =0.755 for interaction	6- 5.07 C p 0.000	ta 5.007 p=0.005		p=0.99	ι ₀ - 3.322 μ-0.040	6- 5.55+ p-0.045	
activity FIGURE 4B	for IOX2 treatment $F_{1,8} = 21.86 p=0.0016$ for reporter $F_{1,8} = 1.38 p=0.755$ for interaction One-way ANOVA	siSCRv vs. siSCR	siSCRv vs. siHIF1A	siSCRv vs. siHIF2A	p=0.99	siSCR vs. siHIF2A	siHIF1A vs. siHIF2A	
activity FIGURE 4B	for IOX2 treatment $F_{1,8}$ = 21.86 <i>p</i> =0.0016 for reporter $F_{1,8}$ = 1.38 <i>p</i> =0.755 for interaction One-way ANOVA	siSCRv vs. siSCR	siSCRv vs. siHIF1A	siSCRv vs. siHIF2A	siSCR vs. siHIF1A	siSCR vs. siHIF2A	siHIF1A vs. siHIF2A	
activity FIGURE 4B DOT1L	for IOX2 treatment $F_{1,8} = 21.86 \ p$ =0.0016 for reporter $F_{1,8} = 1.38 \ p$ =0.755 for interaction One-way ANOVA $F_{3,8} = 36.28$	siSCRv vs. siSCR t ₈ = 9 . 53 . 0801 0001	siSCRv vs. siHIF1A t ₈ =4.426	siSCRv vs. siHIF2A t ₈ =8.10 <i>p</i> =0.0002	siSCR vs. siHIF1A t ₈ =5.10	siSCR vs. siHIF2A t ₈ =1.427 <i>p</i> =0.7207	siHIF1A vs. siHIF2A	
activity FIGURE 4B DOT1L	for IOX2 treatment $F_{1,8} = 21.86 \ p$ =0.0016 for reporter $F_{1,8} = 1.38 \ p$ =0.755 for interaction One-way ANOVA $F_{3,8} = 36.28$	siSCRv vs. siSCR t ₈ = 9 . 53 . 0801 0001	siSCRv vs. siHIF1A t ₈ =4.426 p=0.0132	siSCRv vs. siHIF2A t ₈ =8.10 <i>p</i> =0.0002	siSCR vs. siHIF1A t ₈ =5.10 p=0.0055	siSCR vs. siHIF2A t ₈ =1.427 <i>p</i> =0.7207	siHIF1A vs. siHIF2A t ₈ =3.678 <i>p</i> =0.0369	
activity FIGURE 4B DOT1L VEGF	for IOX2 treatment $F_{1,8} = 21.86 \ p$ =0.0016 for reporter $F_{1,8} = 1.38 \ p$ =0.755 for interaction One-way ANOVA $F_{3,8} = 36.28$ $F_{3,8} = 113.0$	siSCRv vs. siSCR t ₈ = 9.53.001 001 t ₈ = 17.2.5000 0001	ts 5.007 p=0.005 siSCRv vs. siHIF1A ts=4.426 p=0.0132 ts=10.68	siSCRv vs. siHIF2A t ₈ =8.10 <i>p</i> =0.0002 t ₈ =14.2 <i>p</i> <0.0001	siSCR vs. siHIF1A t ₈ =5.10 p=0.0055 t ₈ =6.57	siSCR vs. siHIF2A t ₈ =1.427 <i>p</i> =0.7207 t ₈ =3.042 <i>p</i> =0.0923	ts= 3.534 <i>p</i> =0.045 siHIF1A vs. siHIF2A ts=3.678 <i>p</i> =0.0369 ts=3.526 <i>p</i> =0.0458	
activity FIGURE 4B DOT1L VEGF	for IOX2 treatment $F_{1,8} = 21.86 \ p$ =0.0016 for reporter $F_{1,8} = 1.38 \ p$ =0.755 for interaction One-way ANOVA $F_{3,8} = 36.28$ $F_{3,8} = 113.0$	siSCRv vs. siSCR t ₈ = 9.50.001 t ₈ = 17.2.5000 .0001	siSCRv vs. siHIF1A t ₈ =4.426 p=0.0132 t ₈ =10.68 p<0.0001	siSCRv vs. siHIF2A t ₈ =8.10 <i>p</i> =0.0002 t ₈ =14.2 <i>p</i> <0.0001	siSCR vs. siHIF1A t ₈ =5.10 p=0.0055 t ₈ =6.57 p=0.0011	siSCR vs. siHIF2A t ₈ =1.427 <i>p</i> =0.7207 t ₈ =3.042 <i>p</i> =0.0923	ts= 5.554 p=0.045 siHIF1A vs. siHIF2A ts=3.678 p=0.0369 ts=3.526 p=0.0458	
activity FIGURE 4B DOT1L VEGF FIGURE 5A	for IOX2 treatment $F_{1,8} = 21.86 \ p$ =0.0016 for reporter $F_{1,8} = 1.38 \ p$ =0.755 for interaction One-way ANOVA $F_{3,8} = 36.28$ $F_{3,8} = 113.0$ Linear mixed model	siSCRv vs. siSCR t ₈ = 9 .53.0001 t ₈ = 17 .2.500001	siSCRv vs. siHIF1A t ₈ =4.426 p=0.0132 t ₈ =10.68 p<0.0001	siSCRv vs. siHIF2A t ₈ =8.10 <i>p</i> =0.0002 t ₈ =14.2 <i>p</i> <0.0001	siSCR vs. siHIF1A t ₈ =5.10 p=0.0055 t ₈ =6.57 p=0.0011	siSCR vs. siHIF2A t ₈ =1.427 <i>p</i> =0.7207 t ₈ =3.042 <i>p</i> =0.0923	ts= 5.554 p=0.045 siHIF1A vs. siHIF2A ts=3.678 p=0.0369 ts=3.526 p=0.0458	
activity FIGURE 4B DOT1L VEGF FIGURE 5A DOT1L	for IOX2 treatment $F_{1,8} = 21.86 \ p = 0.0016$ for reporter $F_{1,8} = 1.38 \ p = 0.755$ for interaction One-way ANOVA $F_{3,8} = 36.28$ $F_{3,8} = 113.0$ Linear mixed model beta=0.01, t=2.73 p=0.	siSCRv vs. siSCR t ₈ = 9.53.0001 0001 t ₈ = 17.0.50000 0001	siSCRv vs. siHIF1A t ₈ =4.426 p=0.0132 t ₈ =10.68 p<0.0001	siSCRv vs. siHIF2A t ₈ =8.10 <i>p</i> =0.0002 t ₈ =14.2 <i>p</i> <0.0001	siSCR vs. siHIF1A t ₈ =5.10 p=0.0055 t ₈ =6.57 p=0.0011	siSCR vs. siHIF2A t ₈ =1.427 <i>p</i> =0.7207 t ₈ =3.042 <i>p</i> =0.0923	ts= 5.554 p=0.045 siHIF1A vs. siHIF2A ts=3.678 p=0.0369 ts=3.526 p=0.0458	

FIGURE 5B	Paired t-test						
DOT1L	t ₂ =3.280 <i>p</i> =0.0817						
VEGF	t ₂ =10.27 <i>p</i> =0.0093						
FIGURE 5C	Linear mixed model						
COL2	beta=0.02, t=4.27, <i>p</i> =0	.0009					
ACAN	beta=0.024, t=4.69, <i>p</i> =	0.0007					
FIGURE 5D	Paired t-test						
COL2	t ₂ =14.51 <i>p</i> =0.0047						
ACAN	t ₂ =16.84 <i>p</i> =0.0035						
FIGURE 5E	Two-way ANOVA	Vehicle-siSCR vs vehicle-siDOT1L	Vehicle-siSCR vs IOX2-siSCR	Vehicle-siSCR vs IOX2-siDOT1L	Vehicle-siDOT1L v IOX2-siSCR	Vehicle-siDOT1L vs IOX2-siDOT1L	IOX2-siSCR vs IOX2- siDOT1L
COL2	$F_{1,2}$ = 3.378 p=0.2075for IOX2 treatment $F_{1,2}$ = 9.659 p =0.089 for DOT1L silencing $F_{1,2}$ = 3.33 p =0.2084 for interaction	t ₂ =2.254 <i>p</i> =0.6306	t₂=6.480 <i>p</i> =0.1303	t ₂ =1.644 <i>p</i> =0.8103	t ₂ =8.734 <i>p</i> =0.0747	t ₂ =3.898 <i>p</i> =0.310	t₂=4.836 <i>p</i> =0.218
ACAN	$F_{1,2}$ = 0.768 p=0.4732 for IOX2 treatment $F_{1,2}$ = 25.93 p=0.0365 for DOT1L silencing $F_{1,2}$ = 1.14 p=0.3977 for interaction	t ₂ =2.792 <i>p</i> =0.496	t ₂ =1.343 <i>p</i> =0.8933	t ₂ =2.958 <i>p</i> =0.461	t ₂ =4.136 <i>p</i> =0.282	t ₂ =0.1656 <i>p</i> =0.9	t ₂ =4.301 <i>p</i> =0.265
TCF1	$F_{1,2}$ = 31.30 <i>p</i> =0.0305 for IOX2 treatment $F_{1,2}$ = 80.53 <i>p</i> =0.0122 for DOT1L silencing $F_{1,2}$ = 8.81 <i>p</i> =0.097 for interaction	t ₂ =4.880 <i>p</i> =0.215	t2=3.384 <i>p</i> =0.383	t ₂ =5.694 <i>p</i> =0.164	t ₂ =8.265 <i>p</i> =0.083	t ₂ =0.814 <i>p</i> =0.985	t₂=9.079 <i>p=</i> 0.069
FIGURE 5F	Two-way ANOVA	Normoxia-siSCR vs normoxia-siDOT1L	Normoxia-siSCR vs hypoxia-siSCR	Normoxia-siSCR vs hypoxia-siDOT1L	Normoxia- siDOT1 vs hypoxia-siSCR	Normoxia-siDOT1L vs hypoxia-siDOT1L	Hypoxia-siSCR vs hypoxia-siDOT1L
COL2	F _{1,2} = 226.3 <i>p</i> =0.0044 for oxygen exposure	t ₂ =3.435 <i>p</i> =0.375	t ₂ =12.68 p=0.0364	t ₂ =9.61 <i>p</i> =0.0623	t ₂ =16.1 <i>p</i> =0.0227	t ₂ =13.04 <i>p</i> =0.0344	t ₂ =3.07 <i>p</i> =0.4383

	F _{1,2} = 12.95 <i>p</i> =0.069 for DOT11 silencing						
	$F_{1,2}$ = 0.07 <i>p</i> =0.812 for						
	interaction						
ACAN	F _{1,2} = 158.4 <i>p</i> =0.0063	t ₂ =11.0 <i>p</i> =0.0476	t ₂ =15.58	t ₂ =4.39 <i>p</i> =0.2555	t ₂ =26.6 <i>p</i> =0.0083	t ₂ =15.43 <i>p</i> =0.0248	t ₂ =11.18 <i>p</i> =0.0456
	for oxygen exposure		<i>p</i> =0.0243				
	$F_{1,2}$ = 65.75 <i>p</i> =0.0149						
	For DUTIL sliencing $E_{1,2} = 0.012 \text{ p} = 0.0225$						
	for interaction						
TCF1	$F_{1,2}$ = 2.609 <i>p</i> =0.2476	t ₂ =5.945 p=0.152	t ₂ =3.553 p=0.357	t ₂ =6.691 p=0.123	t ₂ =9.50 <i>p</i> =0.0637	t ₂ =0.745 p=0.989	t ₂ =10.24 <i>p</i> =0.055
	for oxygen exposure	,	,	,		1	,
	F _{1,2} = 130.6 <i>p</i> =0.0076						
	for DOT1L silencing						
	$F_{1,2}$ = 9.23 <i>p</i> =0.093 for						
	Interaction						
FIGURE 5G	Two-way ANOVA	Normoxia V vs. normoxia EPZ	Normoxia V vs hypoxia V	Normoxia-V vs hypoxia EPZ	Normoxia UPZ vs hypoxia V	Normoxia EPZ vs hypoxia EPZ	Hypoxia V vs hypoxia EPZ
	F _{1,2} = 77.07 <i>p</i> =0.0127	t ₂ =11.7 <i>p</i> =0.0426	t ₂ =14.55	t ₂ =8.528 <i>p</i> =0.078	t ₂ =26.2 <i>p</i> =0.0087	t ₂ =20.22 <i>p</i> =0.0145	t ₂ =6.022 <i>p</i> =0.1487
	for oxygen exposure		<i>p</i> =0.0278				
	$F_{1,2}$ = 45.62 <i>p</i> =0.0212						
	$F_{1,2} = 16.08 \ n = 0.057$						
	for interaction						
FIGURE 6B	Kruskal -Wallis	SHAM V vs DMM		DMM V vs DMM IOX	2	SHAM V vs DMM IOX2	
OARSI	χ ² =14.297 <i>p</i> =0.0008	Z=3.09 <i>p</i> =0.002		Z=2.31 <i>p</i> =0.021		Z=2.41 <i>p</i> =0.016	
FIGURE 6C	Kruskal -Wallis	SHAM V vs DMM V		DMM V vs DMM IOX	2	SHAM V vs DMM IOX2	
osteophyte	χ ² =15.36 <i>p</i> =0.0004	Z=2.71 <i>p</i> =0.0068		Z=2.22 <i>p</i> =0.0267		Z=2.71 <i>p</i> =0.0068	
FIGURE 6D	Kruskal -Wallis	SHAM V vs DMM		DMM V vs DMM IOX	2	SHAM V vs DMM IOX2	
synovitis	χ ² =10.93 <i>p</i> =0.0064	Z=2.57 <i>p</i> =0.01		Z=1.75 <i>p</i> =0.08		Z=1.13 <i>p</i> =0.26	
FIGURE 6E	One-way ANOVA	SHAM V vs DMM		DMM V vs DMM IOX	2	SHAM V vs DMM IOX2	
HIF1A	F _{2,12} =45.45 <i>p</i> <0.0001	t ₁₂ =9.533 <i>p</i> <0.0001		t ₁₂ =4.909 <i>p</i> =0.001		t ₁₂ =4.624 <i>p</i> =0.0018	
DOT1L	F _{2,12} =15.07 <i>p</i> =0.0005	t ₁₂ =4.574 <i>p</i> =0.0019		t ₁₂ =4.917 <i>p</i> =0.001		t ₁₂ =0.3435 <i>p</i> =0.98	
H3K79	F _{2,12} =45.12 <i>p</i> <0.0001	t ₁₂ =7.792 <i>p</i> <0.0001		t ₁₂ =8.60 <i>p</i> <0.0001		t ₁₂ =0.808 <i>p</i> =0.82	

FIGURE S4A	One-way ANOVA	Vehicle-siSCR vs IOX2-siSCR	Vehicle-siSCR vs IOX2-siHIF1a	Vehicle-siSCR vs IOX2-siHIF2a	IOX2-siSCR vs IOX siHIF1a	IOX2-siSCR vs IOX2- siHIF2a	IOX2-siHIF1a vs IOX2-siHIF2a
HIF1A	F _{3,8} = 77.26	t8= ₽.60.300⊕0 .0007	t ₈ =14.80 <i>p</i> <0.0001	t ₈ =4.374 <i>p</i> =0.0141	t ₈ =7.786 <i>p</i> =0.0003	t ₈ =2.639 <i>p</i> =0.1659	t ₈ =10.42 <i>p</i> <0.0001
HIF2A	F _{3,8} = 191.4	t8= 3.20&0⊕0 .0725	t₃=0.4094 <i>p</i> =0.9992	t₃=18.36 <i>p</i> <0.0001	t ₈ =3.617 <i>p</i> =0.0402	t ₈ =21.57 <i>p</i> <0.0001	t₃=17.96 <i>p</i> <0.0001
FIGURE S5A	Two-way ANOVA	Vehicle-siSCR vs vehicle-siDOT1L	Vehicle-siSCR vs IOX2-siSCR	Vehicle-siSCR vs IOX2-siDOT1L	Vehicle-siDOT1L v IOX2-siSCR	Vehicle-siDOT1L vs IOX2-siDOT1L	IOX2-siSCR vs IOX2- siDOT1L
DOT1L	$F_{1,2}$ = 7.730 <i>p</i> =0.1087 for IOX2 treatment $F_{1,2}$ = 140.9 <i>p</i> =0.0070 for DOT1L silencing $F_{1,2}$ = 0.7453 <i>p</i> =0.4789 for interaction	t₂=9.986 <i>p</i> =0.0578	t ₂ =2.150 ρ=0.6601	t₂=9.057 <i>p</i> =0.0697	t ₂ =12.14 <i>p</i> =0.0397	t ₂ =0.9286 <i>p</i> =0.9727	t ₂ =11.21 <i>p</i> =0.0463
FIGURE S5B	Two-way ANOVA	Normoxia-siSCR vs normoxia-siDOT1L	Normoxia-siSCR vs hypoxia-siSCR	Normoxia-siSCR vs hypoxia-siDOT1L	Normoxia-siDOT1 vs hypoxia-siSCR	Normoxia-siDOT1L vs hypoxia-siDOT1L	Hypoxia-siSCR vs hypoxia-siDOT1L
DOT1L	$F_{1,2}$ = 12.32 <i>p</i> =0.0725 for oxygen exposure $F_{1,2}$ = 91.27 <i>p</i> =0.0108 for DOT1L silencing $F_{1,2}$ = 0.06641 <i>p</i> =0.8207 for interaction	t₂=9.809 <i>p</i> =0.0599	t ₂ =2.292 ρ=0.6201	t ₂ =7.153 <i>p</i> =0.1087	t ₂ =12.10 ρ=0.0399	t ₂ =2.656 <i>p</i> =0.5270	t ₂ =9.445 <i>p</i> =0.0644