# T-cell receptor sequencing identifies prior SARS-CoV-2 infection and correlates with neutralizing antibodies and disease severity

Rebecca Elyanow,<sup>1\*</sup> Thomas M. Snyder,<sup>1\*</sup> Sudeb C. Dalai,<sup>1,2\*\*</sup> Rachel M. Gittelman,<sup>1</sup> Jim Boonyaratanakornkit,<sup>3,4</sup> Anna Wald,<sup>3,4,5,6</sup> Stacy Selke,<sup>6</sup> Mark H. Wener,<sup>3,6</sup> Chihiro Morishima,<sup>6</sup> Alexander L. Greninger,<sup>6</sup> Michael Gale Jr.,<sup>7,8,9</sup> Tien-Ying Hsiang,<sup>7</sup> Lichen Jing,<sup>3</sup> Michael R. Holbrook,<sup>10</sup> Ian M. Kaplan,<sup>1</sup> H. Jabran Zahid,<sup>11</sup> Damon H. May,<sup>1</sup> Jonathan M. Carlson,<sup>11</sup> Lance Baldo,<sup>1</sup> Thomas Manley,<sup>1\*\*</sup> Harlan S. Robins,<sup>1</sup> David M. Koelle<sup>3,4,6,9,12</sup>

\*These authors share the first-author position and are listed in alphabetical order. \*\*Author was an Adaptive employee at time of research.

<sup>1</sup>Adaptive Biotechnologies, Seattle, Washington, USA
<sup>2</sup>Stanford University School of Medicine, Stanford, California, USA
<sup>3</sup>Department of Medicine, University of Washington, Seattle, Washington, USA
<sup>4</sup>Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
<sup>5</sup>Department of Epidemiology, University of Washington, Seattle, Washington, USA
<sup>6</sup>Department of Laboratory Medicine and Pathology, University of Washington, USA

<sup>7</sup>Department of Immunology, University of Washington, Seattle, Washington, USA <sup>8</sup>Department of Microbiology, University of Washington, Seattle, Washington, USA <sup>9</sup>Department of Global Health, University of Washington, Seattle, Washington, USA <sup>10</sup>National Institute of Allergy and Infectious Diseases Integrated Research Facility, Frederick, Maryland, USA <sup>11</sup>Microsoft Research, Redmond, Washington, USA

<sup>12</sup>Benaroya Research Institute, Seattle, Washington, USA

Corresponding author:

David M. Koelle, MD

750 Republican Street

Room E651, Mail Stop 358061

Seattle, WA 98109 USA

Tel (206) 616-1940

DKoelle@medicine.washington.edu

## **Supplemental Materials**

# **Supplemental Tables**

#### Supplemental Table 1. Longitudinal sensitivity of the T-Cell, EUROIMMUN, and

#### Abbott ARCHITECT tests by time from symptom onset.

| Days From            | T-Cell Test |           | EUROIMMUN     |           | Abbott ARCHITECT |           |
|----------------------|-------------|-----------|---------------|-----------|------------------|-----------|
| Symptom              |             |           | (anti-S1 IgG) |           | (anti-NP IgG)    |           |
| Onset                | Sensitivity | 95% CI    | Sensitivity   | 95% CI    | Sensitivity      | 95% CI    |
| All                  | 317/357     | 85 1_91 9 | 297/357       | 79 0-86 8 | 300/357          | 79 8-87 7 |
| samples <sup>A</sup> | (88.8%)     | 00.1 01.0 | (83.2%)       | 10.0 00.0 | (84.0%)          | 10.0 01.1 |
| 29–50                | 60/70       | 77.1–92.9 | 57/70         | 71.4–90.0 | 59/70            | 75.7–91.4 |
|                      | (85.7%)     |           | (81.4%)       |           | (84.3%)          |           |
| 51_100               | 154/170     | 85 9_94 7 | 145/170       | 80 0-90 6 | 146/170          | 83 5-93 5 |
|                      | (90.6%)     |           | (85.3%)       |           | (88.8%)          |           |
| 101–150              | 84/97       | 79.4–92.8 | 81/97         | 76.3–90.7 | 80/97            | 75.3–89.7 |
|                      | (86.6%)     |           | (83.5%)       |           | (82.5%)          |           |
| 150–190 <sup>в</sup> | 19/20       | 85 0-100  | 14/20         | 50.0–90.0 | 10/20            | 30.0–70.0 |
|                      | (95%)       |           | (70%)         |           | (50%)            |           |

<sup>A</sup> P=0.01, T-cell test vs EUROIMMUN or Abbott ARCHITECT by mid-p McNemar's test.
 <sup>B</sup> P<0.03, T-cell test vs EUROIMMUN or Abbott ARCHITECT by mid-p McNemar's test.</li>
 NP, nucleoprotein; S1, spike protein subunit 1.

Supplemental Table 2. Longitudinal sensitivity of the T-cell, EUROIMMUN, and

| Days                 | T-Cell Test   |              | EUROIMMUN     |              | Abbott ARCHITECT |              |
|----------------------|---------------|--------------|---------------|--------------|------------------|--------------|
| From                 |               |              | (anti-S1 IgG) |              | (anti-NP IgG)    |              |
| Symptom              | Lloopitalized | Non-         | Lloopitalized | Non-         | Lloopitalized    | Non-         |
| Onset                | nospitalized  | Hospitalized | nospitalized  | Hospitalized | nospitalized     | Hospitalized |
| All                  | 41/44         | 276/313      | 44/44         | 254/313      | 42/45            | 257/313      |
| samples <sup>A</sup> | (93.2%)       | (88.2%)      | (97.7%)       | (81.2%)      | (95.5%)          | (82.4%)      |
| 29–50                | 3/4           | 57/66        | 4/4           | 53/66        | 4/4              | 55/66        |
|                      | (75%)         | (86.4%)      | (100%)        | (80.3%)      | (100%)           | (83.3%)      |
| 51–100               | 16/17         | 138/153      | 16/17         | 129/153      | 16/17            | 135/153      |
|                      | (94.1%)       | (90.2%)      | (94.1%)       | (84.3%)      | (94.1%)          | (88.2%)      |
| 101–150              | 18/19         | 66/78        | 19/19         | 62/78        | 18/19            | 62/78        |
|                      | (94.7%)       | (84.6%)      | (100%)        | (79.5%)      | (94.7%)          | (79.5%)      |
| 150–190              | 4/4           | 15/16        | 4/4           | 10/16        | 4/4              | 6/16         |
|                      | (100%)        | (93.8%)      | (100%)        | (62.5%)      | (100%)           | (37.5%)      |

Abbott ARCHITECT tests for hospitalized and non-hospitalized patients.

<sup>A</sup> *P*=0.15 for hospitalized individuals and *P*=0.01 for non-hospitalized individuals comparing T-cell test vs EUROIMMUN or Abbott ARCHITECT by mid-p McNemar's test.

NP, nucleoprotein; S1, spike protein subunit 1.

### **Supplemental Figures**



Supplemental Figure 1. Quantification of SARS-CoV-2–specific enhanced sequences and MIRA TCRs in ex vivo AIM-sorted CD4+ T cells. (A) PBMCs from 3 convalescent donors at 2 timepoints were subjected to AIM-based enrichment of SARS-CoV-2–specific T-cells using whole cell-associated viral antigen. Clonal breadth of SARS-CoV-2–specific enhanced sequences was compared between AIM-sorted CD4+ T cells and matched convalescent PBMCs. Significance was evaluated by Mann-Whitney U test. Data are expressed as median ± interquartile ranges. (B) Intersection of SARS-CoV-2–specific TCRs present in ex vivo AIM-sorted CD4+ T-cells and MIRA TCR set, annotated by protein specificity.



Supplemental Figure 2. Association of T-cell clonal depth with clinical variables. Correlation of clonal depth with (**A**) hospitalization, (**B**) fever, (**C**) difficulty breathing, (**D**) sex, and (**E**) age was evaluated by univariate Mann-Whitney U test (p) and multivariate linear regression with age, sex, hospitalization, fever, difficulty breathing, and TCR rearrangements as variables ( $\hat{p}$ ). Data are expressed as median ± interquartile ranges (*n*=302). Population means and 95% confidence interval (CI) values for panels A–E were as follows: (**A**) Non-hospitalized, 88.3 (97.0-97.8), hospitalized, 168.3 (126.2-210.5); (**B**) no fever, 63.6 (50.3-76.9, fever, 108.2 (96.3-120.1); (**C**) no difficulty breathing, 85.6 (73.4-97.8), difficulty breathing, 105.4 (90.5-120.2); (**D**) female, 85.0 (72.4-97.6), male, 107.6 (93.1–122.1).



Supplemental Figure 3. Neutralizing antibody titer as a function of days from symptom onset to sample collection. Blue and red dots indicate hospitalized and non-hospitalized individuals, respectively. Trend lines connect visit 1 and visit 2 samples from the same individual. Blue and red bold trend lines indicate smoothed means [locally estimated scatterplot smoothing, LOESS (1)] for hospitalized and non-hospitalized individuals (*n*=302), respectively.

# Supplemental Reference

 Cleveland WS. LOWESS: a program for smoothing scatterplots by robust locally weighted regression. *Am Stat.* 1981;35(1):54.