#### Supplemental Figure 1. Adenovirus-mediated targeting of HSCs (A-C)

Immunofluorescence analysis of liver sections of adult C57BL/6 wild type mice injected with GFP-expressing adenoviruses (Ad-GFP). Pictures of liver cells coexpressing GFP and the HSCs marker desmin (A), the hepatocyte marker HNF4 (B) and Lectin from Bandeiraea simplicifolia (C). Arrowheads indicate cells co-expressing both markers. (D) Quantification of double labelled cells for GFP and Desmin, GFP and HNF4, and GFP and lectin (percentage per total cells) in liver of adult mice C57BL/6 wild type injected with Ad-GFP (n=3 each group). (E) PCR using specific primers for Gata4 on genomic DNA from liver of wild type (+/+), Gata4 floxed mice injected with *Cre*-expressing adenovirus (*Gata4* <sup>flox/flox</sup>; Ad-Cre) or GFP-expressing adenovirus (Gata4 flox/flox; Ad-GFP) demonstrates Cre-mediated excision of the Gata4 floxed alleles. Polarized light microscopy pictures of Sirius-red-stained liver sections of Gata4<sup>+/+</sup> control mice injected with *Cre*-expressing adenovirus (Ad-Cre) (F) or with GFP-expressing adenovirus (Ad-GFP) (G) and Gata4<sup>flox/flox</sup> mice injected with GFPexpressing adenovirus (Ad-GFP) (H). (I) Quantification of Sirius red-stained area of liver per total tissue area in each experimental group (n=3 each group). Scale bars= 25µm for A-B; 100µm for C, F-H. Statistical analyses was performed using two-tailed Student Test. Error bars represent mean  $\pm$  SEM.

**Supplemental Figure 2. Labelling of** *G2Cre***-targeted cells.** (A) Immunofluorescence analysis of YFP and Desmin accumulation in liver sections of adult *G2-Cre; ROSA26ReYFP* mice. (B) Quantification of cells coexpressing YFP and Desmin relative to total Desmin-positive cells in liver of *G2-Cre; ROSA26ReYFP* mice (n=3). Scale

bars: 25µm.

**Supplemental Figure 3. CCl4-treatment induce liver fibrosis similarly in male and female mice.** (A) Relative quantification of Sirius red-stained area per total liver area in CCl<sub>4</sub>-treated and control-treated (oil) adult male and female C57BL/6 mice. Polarized light microscopy pictures of Sirius-red-stained liver sections from CCl<sub>4</sub>-treated male (D) and female mice (E) and control-treated (oil) (B) male and female mice (C) (n=3). (F) Serum AST levels in CCl<sub>4</sub>-treated and control-treated (oil) male and female adult mice (n=3 oil; n=6 CCl<sub>4</sub>). (G) Serum ALT levels in CCl<sub>4</sub>-treated and control-treated (oil) male and control-treated (oil) male and female adult mice (n=3 oil; n=6 CCl<sub>4</sub>). (G) Serum ALT levels in CCl<sub>4</sub>-treated and control-treated and control-treated and control-treated (oil) male and female adult mice (n=3 oil; n=6 CCl<sub>4</sub>). (G) Serum ALT levels in CCl<sub>4</sub>-treated and control-treated and control-treated (oil) male and female adult mice (n=3 oil; n=6 CCl<sub>4</sub>). Scale bars: 100µm. Statistical analyses was performed using two-tailed Student Test. Error bars represent mean ± SEM. \*\*p < 0.01.

#### Supplemental Figure 4. Gata4 expression during liver fibrosis regression. (A)

Quantitative RT-PCR analysis of *Gata4* expression and relative quantification of Sirius red-stained area per total liver area (B) (n=3-4) of mice treated with vehicle (oil), CCl<sub>4</sub> and two-three and 4-weeks after CCL<sub>4</sub> treatment (recovery phase) (n=3-4). Statistical analyses was performed using one-way ANOVA test. Error bars represent mean  $\pm$  SEM. \*p < 0.05, \*\*p < 0.01, \*\*p < 0.001.

Supplemental Figure 5. Vascular hemorrhage in *G2-Cre;HIF2dPA* embryos. Representative pictures of whole E13.5 *G2-Cre;HIF2dPA* (B) and control littermate embryos (A). (C, D) Immunostaining for HIF2 $\alpha$  in E13.5 embryonic hearts of control and *G2-Cre;HIF2dPA* embryos. Note the accumulation of HIF2 $\alpha$  protein in the epicardium of *G2-Cre;HIF2dPA* embryos (arrows in D) compared with control embryos. Hematoxylin-eosin staining of heart sections of E13.5 *G2-Cre;HIF2dPA* (F) and littermate control embryos (E). (G, H) Higher magnification images of panels E and F. The hearts of E13.5 *G2-Cre;HIF2dPA* embryos display a thinner ventricular septum and a more compacted myocardium (marked by double arrows) compared to control embryonic hearts. The hearts of E13.5 *G2-Cre;HIF2dPA* embryos show lack of myocardial compaction, ventricular trabeculae close to the epicardium (J, arrowheads) and epicardium distended from the underlying myocardium (J, arrows) compared to control hearts (I). At least 4 embryos per experimental group (from two independent litters) were analyzed. Scale bars: 500µm for A, B, E and F; 100µm for C, D, G and H; 25µm for I and J.

Supplemental Figure 6. Proliferation analysis in *G2-Cre;HIF2dPA* liver embryos. Hepatocytes (marked by HNF4 $\alpha$  immunoreactivity) of E15.5 embryonic *G2-Cre;HIF2dPA* livers (B) show decreased proliferation (assessed by Ki-67 immunofluorescence) compared with control embryonic livers (A). Arrowheads in A and B indicate double labelled cells for HNF4 $\alpha$  and Ki-67. (C) Quantification of proliferating hepatocytes (positive for HNF4 $\alpha$ ) in E15.5 embryonic livers (n=3 each group). Reduced hepatic stellate cell (marked by desmin immunofluorescence) proliferation in E15.5 embryonic *G2-Cre;HIF2dPA* livers (E) compared with control embryonic livers (D) (n=3 each group). Arrows in D and E indicate double labelled cells for Desmin and Ki-67. (F) Quantification of proliferating hepatic stellate cells (positive por desmin) in E15.5 embryonic livers (n=3 each group). Immunostaining for cleaved Caspase 3 in control liver (G) or *G2-Cre;HIF2dPA* (H) of E15.5 embryos. Scale bars: (A, B, D, E, G, H): 10µm. Statistical analyses was performed using two-tailed Student Test. Error bars represent mean ± SEM. \*p < 0.05.

| GENE            | SEQUENCES                              |
|-----------------|----------------------------------------|
| mouse Gata4     | Rec2: TCCATGAGACCCCAGAGTGTGCCTGAG      |
| deletion floxed | Rec4: ACCCTGGAAGACACCCCAATCTCGG        |
|                 | Rec5: TGTCATTCTTCGCTGGAGCCGC           |
| alleles         |                                        |
| mouse TIMP1     | Forward ACC TGG TCA TAA GGG CTA AA     |
|                 | Reverse ATT TCC CAC AGC CTT GAA TC     |
| mouse IL-6      | Forward CAG AGT CCT TCA GAG AGA TAC A  |
|                 | Reverse GTG ACT CCA GCT TAT CTG TTA G  |
| mouse TGFBR1    | Forward TGC CAT AAC CGC ACT GTC A      |
|                 | Reverse AAT GAA AGG GCG ATC TAG TGA TG |
| mouse TGFBR2    | Forward GAG TCG TTC AAG CAG ACG GA     |
|                 | Reverse GAA CCA AAT GGG GGC TCG TA     |
| mouse PDGFRA    | Forward GGA AGG CAC AGA AGC AAT A      |
|                 | Reverse GGC TCA GTC TTC ACA CTT AC     |
| mouse PDGFRB    | Forward GTC CTT ACC GTC ATC TCT CT     |
|                 | Reverse CAC AGA CTC AAT GAC CTT CC     |
| mouse TLR4      | Forward CAA CAT CAT CCA GGA AGG C      |
|                 | Reverse GAA GGC GAT ACA ATT CCA CC     |
| mouse SMAD7     | Forward GGG CTT TCA GAT TCC CAA CTT    |
|                 | Reverse CAC GCG AGT CTT CTC CTC C      |
| mouse STAT1     | Forward GAT CTC TAA CGT CTG TCA GCT G  |
|                 | Reverse GAG GTC CAG GAT TCC TTC GA TC  |
| mouse TCF21     | Forward AGG TCA TTC TCT GGT TTG CC     |
|                 | Reverse GCT ACA TCG CTC ACT TAA GGC    |
| mouse GATA4 EX2 | Forward GTG GCC CTG GCG CCT TCA TG     |
|                 | Reverse TCC CAG GCC CTG CAC CCG AC     |
| mouse β-ACT     | Forward TCC TGT GGC ATC CAC GAA ACT    |
|                 | Reverse ACC AGA CAG CAC TGT GTT GGC    |
| human TGFBRA1   | Forward GGA CCA TTG TGT TAC AAG A      |
|                 | Reverse CCA TGC TCA TGA TAA TCT G      |
| human TGFBRA2   | Forward GTA GCT CTG ATG AGT GCA A      |
|                 | Reverse CAG ATA TGG CAA CTC CCA G      |
| human PDGFRA    | Forward AAA GAA GTT CCA GAC CAT C      |
|                 | Reverse AGG TGA CCA CAA TCG TTT CC     |
| human PDGFRB    | Forward CAG CAA GGA CAC CAT GCG G      |
|                 | Reverse GGG GCT CCT GGG ACA TCC GT     |
| human SMAD7     | Forward AGA AGG TGC GGA GCA AAA T      |
|                 | Reverse GTG TGG CGG ACT TGA TGA        |
| human STAT1     | Forward CTA GTG GAG TGG AAG CGG A      |
|                 | Reverse CAC CAC AAA CGA GCT CTG AA     |
| human TCF21     | Forward TCC TGG CTA ACG ACA AAT AC     |
|                 | Reverse TTT CCC GGC CAC CAT AAA GG     |
| human B-ACT     | Forward GAT CAG CAA GCA GGA GTA TG     |
|                 | Reverse AAG GGT GTA ACG CAA CTA AG     |





Gata4+/+;Ad-Cre

Gata4+/+; ;Ad-GFP

Gata4flox/flox;Ad-GFP



















A



В \*\*\* 2.5-\*\* n.s % Sirius red area/ total area 2.0 1.5 1.0 0 0.5 0.0 oil CCI4 - recovery 2-weeks 3-weeks 4-weeks











#### Uncropped gels Figure 4

