
1

R E S E A R C H  A R T I C L E

Authorship note: AR and SEW 
contributed equally to the work.

Conflict of interest: SEW is a 
consultant for AstraZeneca, Novartis, 
Knopp, Glaxo Smith-Kline, and Sanofi-
Genzyme. She is also involved in 
clinical trials being run by AstraZeneca 
and initiated a study with Regeneron. 
SEW and AR have research support 
from Pieris Pharmaceuticals. MJC is 
an independent consultant to Pieris 
Pharmaceuticals. NK served as a 
consultant to Biogen Idec, Boehringer 
Ingelheim, Third Rock, Pliant, 
Samumed, NuMedii, Theravance, 
LifeMax, Three Lake Partners, Optikira, 
Astra Zeneca, RohBar, Veracyte, 
Augmanity, CSL Behring, and Thyron 
over the last 3 years; reports equity 
in Pliant and Thyron and grants from 
Veracyte, Boehringer Ingelheim, BMS; 
and reports nonfinancial support from 
MiRagen and Astra Zeneca. NK has IP 
on biomarkers and therapeutics in IPF 
licensed to Biotech.

Copyright: © 2021, Camiolo et 
al. This is an open access article 
published under the terms of the 
Creative Commons Attribution 4.0 
International License.

Submitted: March 25, 2021 
Accepted: September 29, 2021 
Published: September 30, 2021

Reference information: JCI Insight. 
2021;6(21):e149945. 
https://doi.org/10.1172/jci.
insight.149945.

Machine learning implicates the IL-18 
signaling axis in severe asthma
Matthew J. Camiolo,1,2 Xiuxia Zhou,3 Qi Wei,3 Humberto E. Trejo Bittar,4 Naftali Kaminski,5 
Anuradha Ray,1,6 and Sally E. Wenzel1,3,6

1Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School 

of Medicine, Pittsburgh, Pennsylvania, USA. 2Center for Systems Immunology, University of Pittsburgh, Pittsburgh, 

Pennsylvania, USA. 3Department of Environmental and Occupational Health, Graduate School of Public Health, University 

of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA. 4Department of Pathology, University of Pittsburgh 

Medical Center, Pittsburgh, Pennsylvania, USA. 5Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, 

New Haven, Connecticut, USA. 6Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, 

Pennsylvania, USA.

Introduction
The understanding that asthma is a heterogeneous disease has long been appreciated (1). In the age of  
molecular targeted therapies, this led to the pursuit of  treatments tailored to precise pathobiological mecha-
nisms (2). We now understand that, depending on disease severity, 40%–70% of  patients with asthma exhibit 
heightened Type-2 (T2) inflammation, which clinically improves with IL-4– and IL-5–targeted therapies (3, 
4). Response to these therapeutics is not uniform, however, even in patients with biomarker evidence of  T2 
inflammation. These data hint at underlying ontological heterogeneity and suggest that additional pathways 
may be involved in a subset of  patients (2).

Epithelial-derived signals have emerged as critical drivers of  asthma severity (5). The interplay between 
immune and epithelial compartments is now understood to be integral in promoting inflammation and man-
ifesting symptomology associated with severe disease. While prior studies have employed big-data approach-
es to understand asthma pathogenesis, they have often focused on clinical parameters (6–8) or predefined 
comparator groups derived from inflammatory phenotype (4, 9–11). Others have utilized asthma-relevant 
pathway expression from bronchial epithelial cell (BEC) brushings (12) or gene signatures associated with 
clinically validated biomarkers (13) to cluster patients. Though thought provoking, these analyses often return 
large lists of  genes for further hypothesis testing without prioritization or validation.

Machine learning tools are rapidly evolving and changing the way we approach biological discovery 
(14). These techniques allow for insights into big data sets that would be difficult or impossible for humans 

Asthma is a common disease with profoundly variable natural history and patient morbidity. 
Heterogeneity has long been appreciated, and much work has focused on identifying subgroups 
of patients with similar pathobiological underpinnings. Previous studies of the Severe Asthma 
Research Program (SARP) cohort linked gene expression changes to specific clinical and physiologic 
characteristics. While invaluable for hypothesis generation, these data include extensive candidate 
gene lists that complicate target identification and validation. In this analysis, we performed 
unsupervised clustering of the SARP cohort using bronchial epithelial cell gene expression data, 
identifying a transcriptional signature for participants suffering exacerbation-prone asthma 
with impaired lung function. Clinically, participants in this asthma cluster exhibited a mixed 
inflammatory process and bore transcriptional hallmarks of NF-κB and activator protein 1 (AP-1) 
activation, despite high corticosteroid exposure. Using supervised machine learning, we found 
a set of 31 genes that classified patients with high accuracy and could reconstitute clinical and 
transcriptional hallmarks of our patient clustering in an external cohort. Of these genes, IL18R1 (IL-
18 Receptor 1) negatively associated with lung function and was highly expressed in the most severe 
patient cluster. We validated IL18R1 protein expression in lung tissue and identified downstream 
NF-κB and AP-1 activity, supporting IL-18 signaling in severe asthma pathogenesis and highlighting 
this approach for gene and pathway discovery.
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to discern. Machine learning is composed of  both unsupervised learning, where algorithms identify inher-
ent structures of  unlabeled data, and supervised learning, in which the predictive models may be trained 
using labeled data (15). To facilitate understanding and improve performance of  learning models, feature 
selection may be utilized to identify elements of  a data set most useful for determining an outcome.

In this work, we revisited BEC gene expression data from phases 1 and 2 of  the Severe Asthma Research 
Program (SARP). Prior studies have clustered SARP participants based on BEC expression of  genes cor-
related with fraction exhaled nitric oxide (FeNO) or identified Weighted Gene Coexpression Network 
Analysis (WGCNA) gene modules associated with clinical characteristics (13, 16). Here, we employed a 
number of  machine learning tools to cluster participants, built a prediction model for external validation, 
and determined the most useful features (e.g., genes) for classification. Our approach identified heightened 
IL-18R1 expression in a subset of  patients with asthma with impaired lung function and frequent exacer-
bations. These patients showed transcriptional hallmarks of  NF-κB and activator protein 1 (AP-1) activity, 
despite high levels of  corticosteroid (CS) use. We validated IL-18R1 expression and downstream transcrip-
tion factor (TF) activity at the protein level in the SARP cohort, as well as in patients who underwent vid-
eo-assisted thoracoscopic surgery (VATS) lung biopsy for severe, treatment refractory asthma.

Results
Unsupervised clustering of  BEC genes reveals 4 clinically distinct clusters. A total of  155 participants from the 
parent SARP 1 and 2 cohort underwent bronchoscopy with bronchial epithelial brushing during phases 1 
and 2 of  the study. These participants included healthy controls (HCs) and a range of  patients with asthma 
including those with mild to moderate (MMA) and severe asthma (SA) as defined by 2001 ATS guidelines 
(17). The demographics of  this cohort have previously been reported (13).

Advances in machine learning offer the opportunity for new insight by returning to richly characterized 
data sets such as SARP 1 and 2 for reanalysis. As a starting point for our analysis, we identified genes that varied 
between asthma clinical disease severity classes and HC participants after controlling for biologic sex and CS 
use. Of 18,108 genes tested, 758 were found to be differential between HC, MMA, and SA participants (Figure 
1A). This included transcripts identified as up- and downregulated for each clinical disease severity class, con-
firming that distinguishing features could be found from a gene expression profile alone. We then used these 
differentially regulated transcripts for unsupervised participant clustering (Figure 1B). Inspection of gene expres-
sion values across patient clusters showed strong intracluster similarity, suggesting favorable performance of our 
unsupervised learning model (Figure 1C). The 4 patient clusters were approximately similar in size, ranging 
from 35 to 43 participants (Table 1). We found no difference in race or sex across clusters (Table 1).

Of  the patient clusters identified, BEC group 1 (BEC1) housed most of  the HCs in the data set, as well 
as some MMA patients (Figure 1D). The remaining 3 participant clusters were almost exclusively asthma 
cases, with BEC4 housing ~75% of  the patients with SA. Participants in this cluster were slightly older 
and had higher BMI than in other clusters (Table 1). We found no difference in self-reported allergic symp-
toms at any time of  year, positive skin prick testing, or age of  onset across clusters; however, we did find a 
significantly higher incidence of  nasal polyps in BEC4 (Table 1 and Supplemental Figure 1; supplemental 
material available online with this article; https://doi.org/10.1172/jci.insight.149945DS1). Participants in 
SA-predominant BEC4 were also more likely to have utilized an acute care setting for asthma care (Figure 
1E) and exhibited significantly lower forced expiratory volume in 1 second (FEV1), a standard measure of  
severity in obstructive lung disease (Figure 1F and Supplemental Figure 1).

Epithelial gene expression better identifies a complex inflammatory phenotype than current T2 biomarkers. Clin-
ical evaluation of  patients with asthma typically involves assessment of  inflammatory phenotype, partic-
ularly during consideration for molecular targeted therapy in difficult-to-control disease. T2-high (IL-4–, 
IL-5–, IL-13–driven) asthma is typified by eosinophilic inflammation, while T2-low disease has been linked 
to neutrophilia and molecular signals such as type 1 IFN and IFN-γ (18). Intriguingly, participants of  BEC4 
demonstrated a more prominent mixed inflammatory process in their bronchoalveolar lavage (BAL) cells, 
evidenced by significant enrichment for eosinophils when compared with BEC1 and BEC2 (Dunn’s test 
adjusted P = 0.02 and 0.03) and neutrophils when compared with BEC2 and BEC3 (Dunn’s test adjusted P 
= 0.0006 and 0.007) (Figure 1G and Supplemental Figure 1).

Though the T2 biomarkers were significantly variant across clusters (Figure 1H), BEC3 and BEC4 
could not be distinguished by absolute blood eosinophils (post hoc Dunn’s testing P = 0.125) or FeNO 
(post hoc Dunn’s testing P = 0.525). These data suggest that, despite differences in transcriptional program, 
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BEC3 and BEC4 would be impossible to differentiate using currently available biomarkers alone. These 
patient clusters also exhibited similar levels of  serum IgE (Supplemental Figure 1). Importantly, BEC3 
showed heightened expression of  genes associated with epithelial T2 response when compared with others, 
including BEC4 (post hoc Dunn’s testing P = 0.005) (Figure 1I). These data show that participants in BEC3 
exhibited a more classical T2 milieu compared with those in BEC4. Taken together, our patient clustering 

Figure 1. Unsupervised clustering of SARP cohort participants using BEC gene expression. (A) Venn diagram of genes differentially expressed between 
HC, MMA, and SA participants (n = 155) after controlling for sex and corticosteroid use. (B) Patient clustering results projected on t-stochastic neighbor 
embedding (tSNE) space. (C) Heatmap of expression of the 758 genes included in clustering with patient cluster or clinical disease severity as indicated 
in row sidebar. (D) Clinical disease severity across patient clusters is represented as relative percentage in stacked bar chart with P value calculated using 
Pearson’s χ2 testing of raw values. (E) Percentage of patients experiencing ED visit or hospitalization for asthma exacerbation in the preceding year is 
represented as stacked bar chart with P value from Pearson’s χ2 testing. (F) Box plot of FEV1 measured by spirometry across patient groups with P value 
calculated using Kruskal-Wallis testing. Error bars represent median values, with bounds of boxes representing IQR and whiskers representing 1.5× the 
upper or lower IQR. (G) Stacked bar plot of BAL cell manual cell count differential across patient clusters. (H) T2-biomarkers blood absolute (ABS) eosino-
phils or fraction exhaled nitric oxide (FeNO) across clusters with P value calculated using Kruskal-Wallis testing. (I) Geometric mean of Type-2 asthma gene 
score across patient clusters with P value calculated using Kruskal-Wallis testing. 
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captured a molecular signature associated with very severe, exacerbation prone asthma that was not readily 
identified by BEC T2 gene expression or standard biomarkers alone.

OCS dependence is increased in patients with a mixed inflammatory phenotype. CS are the backbone of  asthma 
treatment and have been shown to have numerous effects on both immune and epithelial cells. We assessed 
the potential effects of  medication compliance across the SARP cohort using BEC expression of  the ste-
roid-responsive gene FKBP5, observing appropriate increase with escalating doses of  inhaled CS (ICS) (Sup-
plemental Figure 2). FKBP5 expression also increased across patient clusters, consistent with appropriate 
response to escalating prescription of  controller medications. BEC3 and BEC4 showed comparable levels of  
FKBP5 expression (post hoc Dunn’s testing P = 0.23) and were both significantly increased compared with 
BEC2 (post hoc Dunn’s testing P = 0.03 and 0.015, respectively). These similar levels in BEC3 and BEC4 
were observed despite significantly higher levels of  oral CS (OCS) use in BEC4 (Supplemental Figure 2). 
Given the increased OCS use in BEC4, we next investigated whether this may be driving transcriptional 
changes that identified these subjects. To this end, we performed differential expression analysis between 
OCS users and nonusers in our data set while controlling for asthma severity and ICS use. We identified 
773 significantly variant genes (Supplemental Figure 2). Of  these transcripts, only 144 were included in the 
clustering analysis, suggesting that patient cluster definitions were unlikely to be driven by OCS use alone.

Pathway analysis identifies patient cluster–specific disease processes. To better understand the transcriptional 
programs that defined our patient clusters, we created differential expression models for cluster-specific 
up- or downregulated genes, accounting for sex and CS use (Supplemental Figure 3). Using these data, 
we performed gene ontology (GO) enrichment analysis to find biological processes that defined each 
patient cluster (Supplemental Figure 3). These data were corroborated with Gene Set Enrichment Anal-
ysis (GSEA), which relies on different statistical approaches to draw conclusions regarding functionality 
(Supplemental Figure 4). Patient clusters exhibited distinct biological processes with potential relevance to 
asthma pathogenesis (Figure 2A). BEC1, which featured most of  the HCs in the cohort, showed a relative 
increase in genes related to cilia structure and function, suggesting deficits in mucociliary clearance as a 
shared transcriptional feature among asthma-enriched patient clusters. BEC1 also demonstrated relatively 
lower expression of  genes related to extracellular matrix (ECM) remodeling, a feature shared with the 
well-controlled asthma group BEC2. BEC2 showed lower inflammatory cytokine and chemokine signal-
ing, suggesting appropriate antiinflammatory response to CS therapy in these individuals. Both BEC2 
and BEC3 showed similarly higher expression of  mitochondrial biogenesis genes compared with other 
clusters, a process that has been previously implicated in airway disease (19). BEC3 was distinguished by 
relatively higher ECM remodeling and inflammatory signaling gene expression than BEC2, which may 
relate to the impairment in lung function, higher CS requirements (Supplemental Figure 2), and elevation 

Table 1. Demographics of SARP patient clusters

SARP cluster 1  
(BEC1)

SARP cluster 2  
(BEC2)

SARP cluster 3  
(BEC3)

SARP cluster 4  
(BEC4)

P value

n = 43 35 37 40
Mean age 33.1 ± 12.4 33.8 ± 11.2 38.7 ± 13.6 41.1 ± 12.3 0.013364
Mean age at asthma onset 20.1 ± 14.7 10.3 ± 8.5 13.3 ± 14.6 13.3 ± 15.2 0.144888
Female/male 29/14 22/13 23/14 25/15 0.953785
Race (Asian/Black or AA/White/OtherA) 4/9/27/3 3/9/19/4 3/15/17/2 4/9/27/0 0.546823
Skinprick testing (negative/positive/not 
available)

11/30/2 9/24/2 3/31/3 6/31/3 0.190822

Nasal polyps (no/yes) 43/0 35/0 33/4 32/8 0.001557
Mean BMI 26.4 ± 5.8 28.8 ± 6.2 31.5 ± 7.8 31.7 ± 6.3 0.000467
Median FeNO (ppb) 18.3 ± 43.4 29.4 ± 20.8 41.4 ± 44.6 38.9 ± 43.8 0.000138
Mean ABS blood Eos (cell/mL) 137.6 ± 91.2 219.4 ± 124.1 297.6 ± 252.4 282.5 ± 197.3 8.96E-05
Mean FEV1 (%predicted) 86.4 ± 2.85 86 ± 2.4 70.1 ± 3.2 60.8 ± 3.6

Mean or median values are as reported in the table. Age, age of asthma onset, BMI, FeNO, ABS blood eosinophils are presented as mean ± SD. FEV1% 
predicted is presented as mean ± SEM. P value of differential testing for age, age of onset, BMI, FeNO, ABS blood eosinophils, and FEV1 was calculated using 
Kruskal-Wallis. P value reported for race, nasal polyps, skinprick testing, and sex was calculated using Pearson’s χ2. AA, African American. APatients were 
given the option to self-identify as other.
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of  T2 biomarkers seen in BEC3 participants compared with BEC2. Participants in BEC4 exhibited a dis-
tinct gene expression profile that included significant enrichment for ECM remodeling and inflammatory 
signaling when compared with all other clusters. It also featured prominent signals for programmed cell 
death pathways and the DNA damage response (Figure 2A), supporting a profoundly different transcrip-
tional phenotype in BEC4 compared with all other clusters.

DNA damage response and programmed cell death are linked to CS refractory AP-1 activation in the most SA 
patient cluster. TFs may promote the expression of  gene networks responsible for differences observed 
between our patient clusters. We next used GSEA to identify TFs linked to the gene expression chang-
es (Supplemental Figure 4). Unsupervised ranking for confidence of  enrichment identified depletion of  
NF-κB and AP-1 targets in BEC2 and BEC3 among the most significant TF-related changes between 
patient clusters. CS have been previously shown to inhibit NF-κB and AP-1 activity, suggesting that partic-
ipants in these clusters exhibited appropriate response to therapy, as indicated by the decreased expression 
of  target genes. Surprisingly, participants in BEC4 showed markedly heightened expression of  NF-κB and 
AP-1 transcriptional targets (Figure 2B), despite receiving the highest doses of  iCS and OCS. These data 
suggest that subversion of  CS response is an intrinsic feature of  the most SA patient cluster.

To better understand the relationship between patient cluster–enriched biological processes and TF acti-
vation, we developed the R function TF2GO, which constructs networks linking GO terms to TF target sets 
via commonly shared gene membership (available through Supplemental Data Set 1 and online at https://
github.com/camiolomj/TF2GO/). Using TF2GO, we constructed network maps for each of  the patient 
clusters based on upregulated genes from differential expression analysis (Figure 2C and Supplemental Fig-
ure 5). Retinoic acid–related orphan receptor-α (RORα) was linked to mitochondrial biogenesis in BEC2 and 
BEC3 (Supplemental Figure 5), consistent with previous reports supporting its role in mitochondrial quality 
(20). Interestingly, RORα was also shown to promote epithelial integrity via attenuation of  NF-κB transcrip-
tional activity, suggesting that it may play multiple roles in asthma severity (21). Programmed cell death and 
DNA damage response were specifically enriched in BEC4 (Figure 2A). We found linkage between the AP-1 
regulatory network and these processes, specifically in BEC4 participants (Figure 2C). These data suggest 
that paradoxical activation of  AP-1 target genes, despite high doses of  ICS or even chronic OCS use, may 
promote the distinguishing biological features of  BECs from the most severe patient cluster.

Machine learning identifies a 31-gene signature that recapitulates and validates patient clustering. Candidate 
selection from large patient sets is often constrained by the complex nature of  the data produced from the 
analysis. Satisfied that our clustering had identified clinically and molecularly interesting phenotypes, we 
next utilized supervised learning and feature selection to identify a paired-down list of  candidate genes of  
interest (Supplemental Figure 6). To do so, we first selected genes with greatest weighting from principal 
component analysis (PCA), as prior studies have demonstrated similarity between PCA and k-means clus-
tering (22). For details, please see the R script “Supervised Patient Classification” in Supplemental Data 
Set 1. Using these varying gene lists derived from eigenvectors identified by PCA, we trained a supervised 
learning model for classification on the original SARP data set. Plotting out model error rate, we identified 
a solution that provided the most effective patient clustering while utilizing the least number of  features 
(Supplemental Figure 6). This model showed strong performance on the original SARP data set (Figure 
3A), achieving a concordance of  assignment > 85% (Figure 3B). In all, 31 genes were required for our 
supervised prediction model.

To test the external validity of  our gene signature, we turned to a separate cohort of  HCs, MMAs, and 
patients with SA with bronchoscopically obtained airway brushings. The Immune Mechanisms of  Severe 
Asthma (IMSA) cohort was enrolled nearly a decade after SARP 1 and 2, shared no participant with the 
earlier study, and utilized RNA sequencing as opposed to microarray technology (23). We used our super-
vised learning model to predict patient cluster in the IMSA cohort, identifying 4 clusters with similar char-
acteristics to those identified in SARP. IMSA validation cluster-1 (IVC1) was again composed of  mostly 
HCs and MMA patients (Figure 3C). The other 3 clusters were enriched for asthma cases, with IVC4 being 
almost exclusively SA. IMSA patient clusters demonstrated significant difference in OCS use (P = 0.009) 
and acute care utilization for asthma (P = 0.002), mirroring SARP data. GSEA again showed enrichment 
for NF-κB and AP-1 transcriptional targets in IVC4, despite high levels of  CS exposure, recapitulating this 
crucial finding from SARP (Figure 3D). 

Our validation patient clusters displayed significant decrement to lung function (Figure 3E), with IVC4 
showing the greatest impairment FEV1. Since our pathway analysis data demonstrate increased extracellular 
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remodeling, inflammatory signaling, and cell death in this patient cluster, we reasoned that loss in FEV1 
may linked to these processes. We next employed elastic net (EN) modeling of  FEV1 on both SARP and 
IMSA cohorts using the gene signature identified by our supervised learning model. Our EN models of  
FEV1 prediction proved highly effective in both cohorts (Figure 3F), confirming an intrinsic link between 
lung function and transcripts critical to our patient clustering. Multiple coefficients of  determination were 
shared between cohorts and were able to be validated using Spearman’s rank correlation of  FEV1 versus gene 
expression value (Figure 3G and Supplemental Figure 7). Among these, IL-18 receptor 1 (IL-18R1) stood 

Figure 2. Pathway analysis links cell stress response to AP-1 activity in sick patients with asthma. (A) Infographic for summary of Gene Ontology enrich-
ment analysis and Gene Set Enrichment Analysis (GSEA) results as detailed in Supplemental Figures 3 and 4. Color coding next to summary terms is used 
to indicate relationship to information presented in Supplemental Figures 3 and 4. Arrows indicate relative enrichment (red, upward) or depletion (blue, 
downward) of genes corresponding to summary terms. (B) GSEA results for indicated transcription factor target (TFT) data sets in BEC4 versus remaining 
SARP participants (REST). P values and normalized enrichment scores are shown. (C) Network connectivity graph generated by TF2GO illustrates rela-
tionships between biological processes (BP) and TFT sets enriched in BEC4 where nodes represent individual BPs or TFTs and edges represent significant 
overlap in enriched genes as defined by P value of hypergeometric overlap < 10–8. Edges are colored according to parent BP or TFT, and nodes are colored to 
demonstrate relative enrichment of connected gene sets.
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Figure 3. Machine learning validation of a 31-gene signature for patient clustering. (A) Receiver operating characteristics (ROC) curve of a sparse-partial 
least squares discriminant analysis (sPLS-DA) model training for k-means cluster prediction on the SARP cohort. ROC curves were calculated as one class 
versus the others using 5 fold-validation on the original training set. Reported AUC are based on comparison of predicted scores of one class versus the 
others. (B) Circle plot demonstrating concordance of assignment between original SARP clustering and 31-gene solution. (C) Heatmap of expression of the 
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out as a strong negative predictor of  FEV1 in both cohorts (Figure 3G). Critically, IL-18 has been described 
as an upstream activator of  both NF-κB and AP-1 pathways, suggesting a possible link between transcrip-
tional hallmarks of  BEC4/IVC4 and this signaling axis (24, 25).

IL-18R1 expression is increased in the most SA patient clusters and tied to both T1 and T2 immune pathways. 
IL-18R1 showed strong negative association with FEV1 in our EN model of  lung function and was a 
component of  our 31-gene signature for patient classification, suggesting its expression may have critical 
function in promoting a SA phenotype. It is also a potentially targetable protein via neutralizing antibod-
ies to cytokine or receptor moieties. IL-18R1 is found in the asthma susceptibility locus on chromosome 
2q12 and has been linked to asthma risk in genome-wide association studies (26, 27). Prior evidence 
suggests that expression of  IL-18 pathway components, specifically IL-18R1, differs between those with 
asthma and those without (28–30). We found that IL-18R1 transcript levels were highest in SARP BEC4, 
as well as IMSA IVC4 (Figure 4A). IL-18R1 was also negatively correlated with FEV1 in both SARP and 
IMSA cohorts (Figure 4B).

IL-18 was initially described as an IFN-γ–inducing factor that was later found to also promote T2 
inflammation in the absence of  IL-12 (31, 32). Using GSEA, we found enrichment of  IFN-γ response genes 
in BEC4 and IVC4, suggesting that IL-18 signaling may indeed be active in these individuals (Figure 4C). 
BAL cells from IL-18R1hi patient clusters demonstrated mixed eosinophilia and neutrophilia, suggestive of  
a mixed inflammatory response. Using in vitro cytokine stimulation data mined from the Gene Expression 
Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/), we compared IL-18R1 expression level with scor-
ing of  gene expression associated with for IL-13 and IFN-γ treatment conditions (Figure 4D). We observed 
correspondence between IL-18R1 expression, mixed Type-1 (T1) and T2 inflammatory state, and clinical 
disease severity in both asthma cohorts.

IL-18 pathway components are increased in the most severe asthma patients. Given these suggestive RNA 
data, we validated the protein expression of  IL-18R1 using a separate cohort of  VATS lung biopsies in 
patients with extremely severe asthma who underwent the procedure to rule out confounding diagno-
ses such as eosinophilic granulomatosis with polyangiitis. IF microscopy of  their distal airway tissue 
demonstrated greater staining for IL-18R1 as compared with HC tissue obtained from spontaneous 
pneumothorax patients (Figure 5A), supporting an increase in IL-18R1 at both the transcript and 
protein level in both distal and proximal bronchial epithelium of  patients with SA. Quantification of  
staining (n = 5 samples for each) showed greater than a 3-fold median increase of  IL-18R1 expression 
in the airways of  the most SA patients (Figure 5B). Having found increased IL-18R1 expression in 
SA, we verified the presence of  cellular sources of  IL-18 in the airway (Figure 5C). IF microscopy 
verified increased number of  IL-18+ cells in patients with SA compared with HC (Figure 5D). Of  
note, IL-18R1+ and IL-18+ double-positive cells could be identified in the epithelial and lamina propria 
layers of  both patients with SA and HCs, though the identity of  these dual-expressing cells has yet to 
be determined. Our tissue validation analysis confirmed protein-level changes in IL-18R1 expression 
among the most SA patients and identified cellular sources of  IL-18 as increased in their airways.

Activation of  downstream NF-κB and AP-1 is present in IL-18R1hi patients with SA. Previous study of  IL-18 
has implicated both NF-κB and AP-1 in downstream transduction following receptor engagement (24, 25). 
Participant clustering from both the SARP and IMSA cohorts demonstrated that IL-18R1hi individuals 
exhibited enrichment of  transcriptional targets of  NF-κB and AP-1. We next sought to verify pathway acti-
vation using staining of  samples from the original cohort.

NF-κB TFs are master regulators of  immune and inflammatory response. In the latent state, they 
are sequestered in the cytosol by their inhibitor IκB (inhibitor of  NF-κB). Upon stimulation of  upstream 
receptors, a series of  events leads to proteasomal degradation of  IκBs and release of  NF-κB for nuclear 
translocation and activation of  gene transcription (33). The NF-κB family of  TFs consists of  5 members, 

genes included in clustering of the IMSA validation cohort with patient cluster or clinical disease severity as indicated in row sidebar. (D) GSEA results for 
indicated transcription factor target datasets in IVC4 vs remaining IMSA participants (REST). (E) Box plot of FEV1 across IMSA clusters with P value from 
Kruskal-Wallis testing. Error bars represent medians, with bounds of boxes representing IQR and whiskers representing 1.5× the upper or lower IQR. (F) 
Elastic net–predicted (EN-predicted) FEV1 based on gene expression versus measured FEV1% predicted in SARP or IMSA. Grayed area indicates the 95% 
confidence bounds around a linear regression model comparing the 2. Spearman’s ρ and P value are shown. (G) Graphical representation of EN modeling 
determinants of lung function (FEV1). Coefficients from SARP or IMSA are plotted in order of ascending value from left to right, with distance from the 
hashed line indicating magnitude of contribution to the model. Blue coloration of transcript ID denotes a negative coefficient, and red indicates positive. 
Asterisk in plot areas denote IL-18R1 in either data set.
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p50, p52, p65 (RelA), c-Rel, and RelB, though the transcription activation domain necessary for positive 
regulation of  gene expression is present only in p65, c-Rel, and RelB. We stained cytospin preparations 
from epithelial brushings of  participants from the SARP cohort for p65 and were able to identify cells 
with evidence of  nuclear translocation (Figure 6A). Assaying participants from our unsupervised tran-
scriptional clusters (Figure 6B), we saw increased IL-18R1 staining and nuclear translocation of  p65 as 
predicted by pathway analysis. Quantification of  IL-18R1+ cell per high-powered field (HPF) (Figure 
6C), as well as mean fluorescence intensity (MFI) of  IL-18R1 staining (Figure 6D), showed that BEC4 
participants had the greatest number of  IL-18R1+ cells, as well as the greatest magnitude of  IL-18R1 
production per cell. BEC4 participants also showed the greatest percentage of  cells with nuclear translo-
cation of  p65 (Figure 6E) and greatest MFI of  p65 (Figure 6F).

Previous work on IL-18 signaling in lung epithelial cells identified AP-1 transactivation as a down-
stream effector mechanism (34). AP-1 is a heterodimer composed of  proteins belonging to the c-Fos, 
c-Jun, JDP, and ATF families (35). Notably, our IL-18R1hi patient clusters demonstrated activation 

Figure 4. IL-18R1 expression is negatively associated with lung function and linked to mixed inflammation. (A) IL-18R1 expression across patient clusters 
in the SARP or IMSA cohorts. Error bars represent median values, with bounds of boxes representing IQR and whiskers representing 1.5× the upper or lower 
IQR. (B) Plot of FEV1% predicted versus IL-18R1 expression in the SARP or IMSA cohorts. Hashed line represents a linear regression model comparing them. 
Spearman’s ρ and P value are indicated. Data points are colored according to clinical disease severity. (C) GSEA results for IFN-γ response in BEC4 versus 
remaining SARP participants (REST) or IVC4 versus remaining IMSA participants (REST). (D) Geometric mean IL-13 signature expression score, geometric 
mean IFN-γ signature expression score and IL-18R1 expression plotted for participants of the SARP or IMSA cohorts. Individuals are colored by either clini-
cal disease severity (top) or patient clustering result (bottom).
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of  the AP-1 TF network despite receiving the highest levels of  CS exposure in the cohort. We stained 
additional cytospins from epithelial brushings of  participants from the SARP cohort for the phosphor-
ylated, active form of  c-Jun (ph–c-Jun) and identified IL-18R1+ cells with evidence of  nuclear trans-
location (Figure 7A). Quantification showed significantly greater ph–c-Jun+ cells per HPF in BEC4 
participants, corroborating TF target analysis (Figure 7B). Supporting this finding, high levels of  the 
active, ph–c-Jun N-terminal Kinase (phJNK), a known downstream target of  IL-18R1, were detected 
in the cytosol of  SA but not HC BECs from our VATS biopsy cohort (Figure 7C). We also observed 
ph–c-Jun within the cytosol and nucleus of  distal lung BECs from SA but not HC tissues (Figure 7C). 
These findings confirm transcriptional analysis showing enrichment of  NF-κB and AP-1 targets in 
IL-18R1hi patients. As both pathways are known to be negatively regulated via glucocorticoid signal-
ing (36, 37), these data again suggest subversion of  CS responses in IL-18R1hi patients with asthma, 
despite treatment with high-dose CS.

Figure 5. IL-18R1 expression and IL-18+ cells are increased in the distal bronchi of patients with SA. (A) Immunofluorescence (IF) microscopy of VATS 
biopsies from healthy controls and patients with SA. Representative fields shown from an assessment of n = 5 subjects from each group. Scale bar: 300 
μm. H&E staining of serial sections of respective airways are illustrated next to IF images. (B) Quantification of immunofluorescence labeling of IL-18R1 
corrected for background signal. Individual points represent mean value from (n = 3) technical replicates of n = 5 samples for HC and SA comparison 
groups. P value calculated from Wilcoxan signed-rank test. Error bars represent median values, with bounds of boxes representing IQR and whiskers rep-
resenting 1.5× the upper and lower IQR. (C) Staining for IL-18R1 and IL-18 in the airways of HCs and patients with SA demonstrates increased presence of 
double-positive cells within SAs compared with HCs. Asterisk denotes region of inset. Scale bar: 300 μm. Representative field shown for n = 3 subjects for 
each group. (D) Quantification of IL-18+ cells per distal bronchus in HCs and patients with SA (n = 3 for each group). Individual points represent mean value 
from (n = 3) technical replicates.
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Figure 6. IL-18R1hi patients exhibit Iincreased nuclear translocation of NF-κB family member p65. (A) Immunofluorescence (IF) microscopy of 
cytospin preparations from endobronchial brushings of the SARP cohort demonstrating nuclear translocation of p65 in IL-18R1+ epithelium. (B) 
Representative fields from IF staining of cytospins in the indicated participant clusters from SARP. (C) Quantification of percent IL-18R1+ cells per 
HPF, expressed as percentage of DAPI+ nuclei. Scale bar: 25 μm. Total n = 15. P value calculated from Kruskal-Wallis test. Error bars represent median 
values, with bounds of boxes representing IQR and whiskers representing 1.5× the upper and lower IQR. (D) Mean fluorescence intensity (MFI) of 
IL-18R1+ cells from each patient cluster, with significance calculated by Kruskal-Wallis. (E) Quantification of percent cells with nuclear translocation 
of p65 per HPF, expressed as percentage of DAP+ nuclei, with significance calculated by Kruskal-Wallis. (F) MFI of p65+ cells from each patient cluster, 
with significance calculated by Kruskal-Wallis.
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Discussion
Using a combination of  machine learning tools for reanalysis of  the SARP 1 and 2 cohort, we identified 
the targetable IL-18 pathway from over 18,000 genes expressed by airway epithelial cells. We began by 
identifying differentially expressed transcripts across asthma severity and then utilized a combination of  
unsupervised clustering, feature selection, and supervised learning to identify a 31-gene signature able to 
capture important clinical and molecular phenotypes. This signature was then validated on the external 
IMSA cohort, reconstituting patient clusters with remarkable similarity to those in SARP. Our approach 
to identifying candidate genes of  interest combined this signature with lung-function modeling, a critical 

Figure 7. AP-1 pathway activation is present in IL-18R1hi SA airways. (A) Immunofluorescence (IF) microscopy of cytospin preparations from endobron-
chial brushings of the SARP cohort demonstrating nuclear translocation of phosphorylated c-Jun (ph–c-Jun) in IL-18R1+ epithelium. (B) Quantification of 
percent cells with nuclear translocation of ph–c-Jun per HPF, expressed as percentage of DAPI+ nuclei. Scale bar: 25 μm. Total n = 14. P value calculated 
from Kruskal-Wallis test. Error bars represent median values, with bounds of boxes representing IQR and whiskers representing 1.5× the upper and 
lower IQR. (C) Staining for phosphorylated JNK (phJNK) or phosphorylated c-Jun (ph–c-Jun) in the airways of HCs and SAs. Scale bar: 150 μm. Represen-
tative field shown for n = 5 subjects for each group.
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clinical characteristic that varied between clusters. Importantly, though lung function may play a significant 
role in how a patient experiences morbidity from asthma, low lung function is not essential for the diagnosis 
of  severe disease. Therefore, capturing this phenotype was less likely a consequence of  our initial approach 
to gene filtering.

Using both biased and unbiased approaches, multiple asthma phenotypes have been previously described. 
Analysis of  the Unbiased Biomarkers in Prediction of  Respiratory Disease Outcomes (U-BIOPRED) cohort 
utilized patient clustering based on gene set variation analysis (GSVA) signatures from bronchial biopsies 
and brushings to identify T2hi and T2lo patients (12). Unlike our study, this work utilized preselected gene 
sets derived from literature on asthma pathobiology, potentially limiting discovery. Previous clustering of  the 
SARP cohort used genes correlated with FeNO to find expression patterns associated with varying clinical 
features, including lower lung function, atopy, eosinophilic inflammation, and age of  onset (13). Our study 
employs different methodology to refine this analysis, including a variety of  systems-level techniques to infer 
NF-κB and AP-1 activity in IL-18R1hi patients, which is then validated in multiple external cohorts.

The patient clusters identified in our study varied across a number of  parameters, including BMI, age, and 
lung function (Table 1). BEC1, which housed the vast majority of  HCs, had lower levels of  the T2 biomarkers 
FeNO and absolute blood eosinophils than the 3 asthma-predominant clusters. Of these clusters, BEC2 had 
relatively intact lung function and could be distinguished at the molecular level by relative downregulation 
of  genes associated with inflammatory cytokine signaling and ECM remodeling. Of the remaining 2 asthma 
clusters, BEC3 showed very high T2 gene expression and relatively worse lung function when compared with 
BEC1 and BEC2. BEC4 exhibited mixed neutrophilic and eosinophilic inflammation in BAL, had the worst 
lung function across cohort participants, and had the highest burden of  chronic OCS use.

BEC4, identified as the most severe cluster, was highly distinguishable from other asthma clusters by 
its unique transcriptional profile. There was evidence for activation of  cell death pathways, despite study 
participants being free of  exacerbation or infection at the time of  bronchoscopy. Thus, BECs of  these indi-
viduals may be primed for overexuberant stress responses or experience chronic cell death even in steady 
state conditions. Recent work from our laboratory and others has demonstrated a role for nonapoptotic 
programmed cell death in asthma bronchial epithelium (38, 39). Chronic activation of  these pathways 
could be the cause or consequence of  chronic inflammation — and even asthma exacerbations themselves.

Earlier gene expression studies have identified T2 immune, epithelial growth and repair, inflammasome 
activity, and CS-related genes in relation to more SA (12, 13, 16) but with little ability to distinguish the most 
relevant genes or pathways. Here, we have employed feature selection from PCA analysis to generate candidate 
gene lists for supervised model training. This process allowed us to focus on principal sources of variance in 
the data set based on the assumption that these genes may be of biologic significance. The performance of  
our supervised model system was objectively measured in relation to the number of genes required, with the 
goal of selecting parameters that optimized classification accuracy while still allowing us to focus on a small, 
manageable subset of the original gene pool. We, thus, identified 31 transcripts able to cluster the SARP cohort, 
with 85% concordance to the assignment initially achieved with over 700 genes. Subsequent EN modeling of  
FEV1 narrowed that list to a handful of candidates and highlighted the potential importance of IL-18R1. The 
coexpression of TF networks downstream of IL-18R1 during pathway analysis further guided our study.

IL-18R1hi patient clusters in both the SARP and IMSA cohorts showed enrichment for AP-1 transcrip-
tional targets; AP-1 is a known downstream target of  IL-18 signaling in human bronchial epithelium (34). 
Our study, therefore, identifies the IL-18RI/JNK/AP-1 axis as a potentially critical inflammatory pathway 
linked to the most SA. Our computational identification is supported by numerous previous studies linking 
epithelial IL-18R1 expression to more SA (13, 16, 40) and the consistent linkage of  single nucleotide poly-
morphisms in the IL-18R1 genetic locus to asthma (41). To further investigate this pathway, we confirmed 
expression of  IL-18R1 on the bronchial epithelium of  the most SA patients, as well as the presence of  
IL-18–producing cells within and adjacent to their airways. In fact, the cytokine, its receptor, and evidence 
of  downstream JNK/AP-1 pathway activation were all concomitantly observed. Importantly, we also iden-
tified IL-18+ and IL-18R1+ double-positive cells in the airways of  patients with SA, suggesting that signal-
ing may occur in an autocrine manner consistent with evidence suggesting IL-18 promotes expression of  its 
own receptor via a positive feedback loop (42).

IL-18’s role in asthma or its phenotypes remains speculative, partly because it is a complex cytokine 
that may promote either T1 or T2 inflammation depending on the presence or absence of  IL-12 (43). BEC4 
showed evidence of  both T1 and T2 immunity, with mixed eosinophilic and neutrophilic infiltrates in BAL, 
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elevation of  T2 biomarkers, and activation of  IFN response pathways at the transcriptional level. IL-18 may 
promote type I inflammation via immune cell production of  IFN-γ (44, 45), which has been previously impli-
cated in CS-resistant asthma (2, 46–50). Additionally, IFN signaling, a hallmark of  viral infection, is height-
ened in subsets of  patients with SA (23). In humans, IFN-γ has been linked to neutrophil chemotaxis via the 
chemokine receptors CCR1 and CCR3 (51).

In our recent work with the IMSA cohort, we identified a subset of  patients with SA characterized 
by enrichment of  IFN-γ+ T cells in their BAL fluid in whom IL-18 may be an upstream regulator (52). It 
is important to note that these patients also displayed concomitant T2 inflammation, which was indis-
tinguishable from those without the high T1 phenotype. In the present study, patients with hallmarks 
of  IL-18/AP-1 activation were also poorly distinguished by peripheral markers of  T2 inflammation, 
suggesting that T2 inflammation runs in parallel or is differently regulated across BEC3 and BEC4. It is 
notable that, in the absence of  IL-12, IL-18 has been reported to drive IL-4 production from basophils 
or NKT cells, consistent with differing sources of  T2 cytokines across clusters (53–55). Thus, IL-18 
could promote T2 cytokine production from innate cells or lymphocytes in patients with SA who do not 
harbor a distinctly T1hi phenotype.

IL-18 signaling is influenced by multiple factors, including the level of  free protein unbound by its 
endogenous inhibitor, IL-18 binding protein (IL-18BP), known to be in BAL fluid (56, 57). Once the recep-
tor is activated, signal transduction is accomplished via molecules including MyD88, IRAKs, and TRAF6 
leading to activation of  the NF-κB or AP-1 TFs (58). Costimulation with IL-12, which leads to STAT4 
activation, may further promote expression of  specific genes in T cells such, as Ifng, through combinato-
rial effects on its promoter region (43). Cell lineage may also determine the final impact of  IL-18. While 
IL-1β induced the expression of  the NF-κB reporter genes, in human lung epithelial cells, IL-18 responses 
were weak or absent (34). IL-18 treatment did, however, cause significant transactivation of  AP-1 reporter 
constructs (34). Given the persistent activation of  NF- κB targets in IL-18R1hi patient clusters, however, the 
influence of  concomitant signaling on downstream IL-18 transduction must be explored in future studies.

AP-1 pathway activation has a well-established role in cellular stress response (35). As IL-18 is 
an inflammasome-activated protein, paracrine signaling via this axis may play an important role in 
mediating epithelial stress in SA. Furthermore, NF-κB activation may reciprocally promote inflam-
masome-mediated signaling via transcription of  key constituents required for cleavage and activation 
of  IL-18 (59). IL-18R1 showed positive correlation to gasdermin-B (GSDMB, P = 2.4 × 10–6, ρ = 0.55) 
and GSDMC (P < 2.2 × 10–16, ρ = 0.67) in our study. GSDMB was recently implicated in pyroptosis 
of  human embryonic kidney epithelial cells (60). Thus, IL-18 signaling evident in BEC4 may lead to 
pyroptosis of  airway epithelial cells via noncanonical mechanisms involving other gasdermin family 
members such as GSDMB and GSDMC.

Despite the inflammatory and death signals found in BEC4, patients in this cluster are on the highest 
doses of  CS. CS regulate gene expression by binding to the glucocorticoid receptor (GR) causing the ligand-
bound receptor to translocate to the nucleus (61). A central mechanism by which CS exert antiinflammatory 
effects is via transrepression of  AP-1 and NF-κB by ligand-bound GR (37, 62, 63) resulting in downregulation 
of  their targets (64–66). Previous work has demonstrated increased levels of  active, phosphorylated JNK, 
and downstream AP-1 in the peripheral blood cells and bronchial epithelium of patients with CS-resistant 
asthma (67, 68). Direct phosphorylation of  GR at S226 by active JNK was linked to nuclear export of  GR, 
thus abrogating its impact on gene expression (69). IL-18–induced JNK activation could, therefor, interfere 
with CS response via GR S226 phosphorylation, leading to unimpeded transactivation of  target genes AP-1 
and NF-κB as observed in BEC4.

In summary, using machine learning, we identified and then validated a transcriptional signature that 
discerned a cluster of  patients with high CS dosing, frequent exacerbations, and impaired lung function. 
Using additional downstream analysis, we associated the most severe and physiologically impaired patients 
with high levels of  IL-18R1 expression. This expression was associated with persistent NF-κB, AP-1, ECM 
remodeling, and cell death pathway activation, as well as poor response to high-dose CS. These findings 
strongly support investigation of  IL-18 as a therapeutic target in CS-refractory disease.

Methods
Materials availability. Software and custom code can be found in Supplemental Methods, as well as online 
at: https://github.com/camiolomj/TF2GO.
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Human cohort gene expression data availability. The SARP microarray data set is available online in the 
National Center for Biotechnology Information’s GEO database (accession GSE63142 and GSE43696). 
The IMSA RNA sequencing data set is available through GEO accession GSE158752.

SARP patient clustering. Microarray gene expression data was prepared as previously described (13). 
Briefly, microarray images were processed according to Agilent Feature Extraction protocol in 3 batches. 
Normalization was done using cyclic-LOESS, and floor value was set as the mean signal across all negative 
control probes, across all samples. Differential expression between HC, MMA, and patients with SA was 
performed using the limma package for R (70) (version 3.46.0) accounting for CS use and sex. Genes were 
filtered for significance using a threshold P value of  less than 0.05 after correction for a FDR less than 5%. 
For details, please see Disease Severity DEG in Supplemental Methods. The determination of  4 patient 
groups was arrived at by gap statistic calculation using the R package “NbClust” (71) (version 3.0). Cluster-
ing was performed using the R package “multiClust” implementation of  k-means (72) (version 1.16.0). For 
details, please see Participant Clustering and DEG in Supplemental Methods.

Epithelial phenotype scoring. Patients in SARP were scored for strength of  expression for a curated list of  
genes related to T2 asthma phenotype that includes CLCA1, POSTN, and SERPINB2 (4). Mean value of  
these 3 genes were calculated for each cohort participant.

Differential expression analysis. For OCS user versus nonuser analysis, differential expression was per-
formed using the limma package for R accounting for ICS use and sex (70). To identify patient cluster–spe-
cific transcript, the limma package for R was used accounting for CS use and sex. Patient cluster–specific 
up- or downregulated transcripts were determined based on significant difference in expression to all 3 
other groups as defined by a P value of  less than 0.05 after correction for FDR < 5%. For details, please see 
Participant Clustering and DEG in Supplemental Methods.

GO analysis. GO enrichment analysis was performed using the TopGO package for R (73) (version 
2.42.0). Patient cluster–specific downregulated processes were determined using term enrichment from 
patient cluster–specific downregulated genes, as identified above. Patient cluster–specific upregulated pro-
cesses were identified using cluster-specific upregulated genes. The top 5 up- and downregulated processes 
were included in bar plot. All terms included met a significance threshold of  P value of  less than 0.05 after 
correction for FDR < 5%. For details, please see GO Enrichment Analysis in Supplemental Methods.

GSEA across patient clusters. GSEA was performed using the R package clusterProfiler (74) (version 
3.18.1). Comparison was made to the Hallmark (H), curated (C2), TF target (C3), and GO set (C5) libraries 
(75). Only terms with a P value adjusted for FDR < 5% were included in the analysis.

TF and biological process network assembly. GO enrichment analysis was performed as described above. 
The R package Enrichr (76) (version 3.0) was used for TF target analysis using patient cluster–specific 
upregulated transcripts. TFs and biological processes were then used as nodes for network assembly with 
the Linkcomm package in R (77) (version 1.0-14). Linkage between biological processes and TFs was 
accomplished via shared gene membership between network nodes. Edges, therefore, represent shared gene 
membership between biological process or TF enrichment terms. For details and code for implementation 
of  this process, please see TF2GO in Supplemental Materials.

Supervised modeling of  k-means patient clusters. Previous work demonstrated a relationship between 
the categorical output of  k-means clustering and PCA (22). We performed PCA using the genes used 
for initial k-means clustering with the R package FactoMineR (78) (version 2.0). In an iterative process, 
gene lists were first generated using a set number of  genes from each eigenvector. These gene lists were 
then used for sparse-partial least square discriminant analysis training on the original SARP data set 
using the R package “mixOmics” (79) (version 6.10.8). Model performance was evaluated using plot-
ting of  balance error rate (BER) versus number of  genes required for clustering (Supplemental Figure 
6). Optimum parameters were identified using the “elbow” method on graphically plotted data, where-
by the inflection point of  the LOESS regression line was identified and the solution yielding the lowest 
BER with the fewest genes was accepted for further study. For code and further details, please see Sup-
plemental Methods Supervised Participant Classification. Following training, this model was used for 
IMSA cohort participant classification.

Modeling determinants of  FEV1. Genes included in the selected model for supervised classification were 
used in modeling FEV1 of  participants from the SARP and IMSA cohorts using EN-regularized regres-
sion analysis from the R package “glmnet” (80) (version 3.0-2) with 154-fold or 65-fold model cross vali-
dation, respectively. Model prediction was cross-validated using leave-one-out to estimate FEV1 based on 
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an individual’s cell count. Model performance was evaluated via comparison of  actual measured FEV1% 
predicted and values derived from EN modeling by Spearman’s rank correlation.

Immunostaining of  tissue slides. Slides were cleared using Histoclear and rehydrated in stepwise alcohol. 
Following washing, slides were boiled in citrate antigen retrieval buffer for 20 minutes. After permeabiliza-
tion with 0.5% triton X-100 in TBS with 2% BSA followed by washing in 1% BSA, slides were incubated 
with primary antibody at 4°C overnight. Secondary labeling was performed with species-appropriate flu-
orescent conjugate for 1 hour at room temperature the next day. DAPI was used to label nuclei, and slides 
were mounted in anti-fade media. Imaging was performed on a Leica confocal microscope. Unstained, 
primary antibody–only and secondary antibody–only slides were prepared from each patient for compar-
ison. Quantification of  fluorescent staining was accomplished using the ImageJ software (version 1.51w). 
Anti–IL-18R1 antibody was obtained from Sigma-Aldrich (HPA007615; anti–IL-18R1 antibody produced 
in rabbit). Anti-phJNK antibody was obtained from Cell Signaling Technology (phospho-SAPK/JNK 
[Thr183/Tyr185], catalog G9; mouse mAb, catalog 9255). Anti–ph–c-Jun antibody was obtained from Cell 
Signaling Technology (ph–c-Jun [Ser73], catalog 9164).

Immunostaining of  Cytospin preparation. Endobronchial brushings were washed, and cells were fixed to 
slides using the Cytospin centrifuge (Thermo Fisher Scientific). Staining was performed as described above. 
Anti-p65 was obtained from Santa Cruz Biotechnology Inc. (sc-8008). Images were obtained on a Leica 
confocal microscope. Quantification of  mean fluorescence intensity was accomplished using the ImageJ 
software (version 1.51w). Calculation of  IL-18R1+, p65 nuclear translocated, or ph–c-Jun nuclear translo-
cated cells was done by reader blinded to patient cluster.

Statistics. All statistical analysis was performed using the R computing environment (81) (Version 
3.6.1) unless otherwise noted. Statistical testing and methodology are described or in figure legends 
when appropriate.

Study approval. All subjects provided informed consent in accordance with an IRB protocol approved 
by the University of  Pittsburgh. Lung tissue was obtained with consent from patients undergoing clinically 
indicated VATS biopsy during evaluation of  their disease.
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