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Description of supplemental material:

All the supplementary tables are provided as separated Excel files.

Supplemental table 1: ST-1a: Terminology and metrics definition, ST-1b-c: Clinical annotations of
patients and controls in study

Supplemental table 2: ST-2a: Quantitative characteristics of TCR repertoires of all the individual groups
in study ST-1b: Rearrangement details of TCR repertoire in HC and donors (normalized dataset); ST-2c:
Quantitative diversity metrics of TCR repertoires in HC and donors.

Supplemental table 3: ST-3a: Rearrangement details of shared clonotypes in donors ST-3b: Quantitation
of pairwise clonotype sharing in donors.

Supplemental table 4: ST-4a: Rearrangement details of TCR repertoire in recipients; ST-4b: Quantitative
diversity metrics in recipients; ST-4c: Distribution of clonotypes per size category; ST-4d: Distribution of
clonotypes according to clonal expansion; ST-4e: Top clonal proportions; ST-4f: Quantitative
characteristics of TCR repertoires of all the individual groups in study

Supplemental table 5: ST-5a: Rearrangement details of clonotypes shared between recipients and
donors; ST-5b: Quantitation of shared and de novo clonotypes; ST-5c: Origin of shared clonotypes
according to expansion status in donors; ST-5d: Pairwise overlap analysis between samples.

Supplemental table 6: ST-6a: Rearrangement details of samples at acute GVHD onset vs control group;
ST-6b: Quantity and diversity metrics in GVHD vs non-GVHD samples; ST-6¢: Rearrangement details of
pre-GVHD and GVHD samples of index case CCF43.

Supplemental table 7: Rearrangement details of anti-CMV specificities

Supplemental table 8: Aggregated and curated dataset of known clonotype specificities.
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Supplemental methods

Research strategy rationale

The present research seeks to investigate the dynamics of bulky T cell receptor (TCR) V beta repertoire
reconstitution in patients receiving an allogeneic hematopoietic cell transplantation (allo-HCT) for
myeloid malignancies. Pre-transplant and post-transplant blood specimens were collected at precise
time points (-28, +30, +100 and +180 days). Quantitative characteristics of recipients’ repertoire were
compared with those of a control cohort of related donors for the patients enrolled in this study. A
population of unrelated healthy controls was used for the baseline computation of normal diversity
and overlap parameters and to define the strategy of categorization of clonal expansion patterns. We

decided to analyze bulky TCR repertoires for different reasons:

-First, because of the inevitable lymphodepletion implicit in all transplant platforms and associated
with the immunosuppressive procedures and the intensive chemotherapy-based pre-transplant
treatments (standard practices in a population of patients with myeloid malignancies), a further

breakdown would have decrease depth because of the cell sorting procedure.

-Second, the analysis of the clonotypic spectrum of complement determining region 3 (CDR3) related

specificities sought to encompass specific T cell subtypes.

-Third, the design of this study was conceived to provide an easy-to-reproduce analytic framework
helping our understanding of the superstructures involved in the overlap and diversity of TCR
repertoires, reducing the level of their complexity to potentially translate this analytical strategy to

other contexts and to clinical practice.
Sequencing platform accuracy

We decided to use for our study ImmunoSeq Assay (Adaptive Biotechnologies), a validated and
scientifically accepted TCR sequencing platform. This assay utilizes a multiplex PCR-based assay,
providing quantitative abundance data on either sorted or bulky cell populations (1).

Each immunoSEQ Assay contains rigorously designed synthetic immune templates as in-line controls

plus optimized primers that ensure accurate, quantitative, and unbiased results with batch-to-batch
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consistency. This platform takes advantage of a synthetic immune repertoire designed to
represent all VJ-gene combinations. The measures against this synthetic repertoire enables to

adjust the primer concentrations in order to significantly reduce amplification bias.

Sample quality and lymphocyte content

Per sample T cell content range was approximately 20-30% of the total cell population for each blood
specimen and the starting DNA input concentration was 30-60 ng/ulL, based on manufacturer’s
recommendations. Mean lymphocyte count was distributed as following: Pre: 1.3 10*9/I (IQR 0.88-1.67)
Day + 30: 0.61 10*9/I (IQR 0.4-0.79); Day +100: 1.13 10*9/I (IQR 0.51-1.57); Day +180: 1.34 10*9/I (IQR
0.7-1.70).

Conditioning regimens and GvHD prophylaxis

High-resolution HLA-typing was used to select donors for allo-HCT. Donor types included matched
related donor (MRD), matched (MUD) and mismatched unrelated donor (MMUD), and haploidentical
donors. Stem cell sources were peripheral blood (PB), bone marrow (BM) while umbilical cord blood
(UCB) was excluded for the small number of transplants performed with this graft source during the
study period.

Myeloablative conditioning regimens (MAC) included busulfan (3.2 mg/kg/day for 4 days) combined with
cyclophosphamide (60 mg/kg/day for 2 days) (2) or total body irradiation (TBI) of 1200 cGy combined
with fludarabine (40 mg/m2/day for 4 days) (3). Reduced-intensity regimens (RIC) included fludarabine-
based protocols, according to the disease and donor type. Standard protocols of immunosuppression
including tacrolimus (FK) and short-term methotrexate (MTX) or cyclosporine (CsA) with mycophenolic
mofetil (MMF) were used for GvHD prophylaxis for fully matched transplants. In addition, recipients of
unrelated donor transplants received rabbit anti-thymocyte globulin (Thymoglobuline® 2.5 mg/kg/day
for 2-4 days before transplantation) if indicated based on the underlying disease and the degree of donor
HLA matching. Patients receiving an haploidentical allo-HCT received instead post-transplant

cyclophosphamide (50mg/kg/day at day +3 and +4 after graft infusion) in combination with FK and MMF.
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Bioanalytic workflow

Raw sequences were demultiplexed according to Adaptive’s proprietary barcode sequences.
Demultiplexed reads were then further processed to: remove adapter and primer sequences; identify
and correct for technical errors introduced through PCR and sequencing. The data were filtered and

clustered using a modified nearest-neighbor algorithm, to merge closely related sequences.

The resulting sequences were analyzed trough the ImmunoSeq Analizer 3.0 suite which allowed the
annotation of the VDJ genes constituting each unique CDR3 and the translation of the encoded CDR3
amino acid sequence. V, D and J gene definitions were based on annotation in accordance with the
IMGT database (www.imgt.org). A series of preliminary statistics were performed on non-normalized
data (including total templates, total productive templates, number of productive rearrangements,

productive frequency, see Supp. table 1).

After sample export (sample overview and rearrangement details), down-stream analyses were
conducted with the Immunomind/immunarch v.0.6.6 R suite, and the R Bioconductor environment (4).
To overcome the issue related to differences in intersample depth, we performed a normalization
procedure, resampling the immune repertoire for all the specimens, to the smallest acceptable depth
of the samples in study. More in details, the downsampling is an analytical strategy able to reduce in
silico the sequencing depth and to enable instersample comparisons from imbalanced datasets, as, for
their intrinsic nature, TCR repertoires are. Intrinsic drawbacks of this procedures concern the reduction
of the sample size and the loss of samples with inadequate sample depth, however this strategy allow
for comparisons of direct metrics (i.e. number of clonotypes, size of clonal expansion...) that would not
be possible without a dataset normalization. Of note is that, when diversity of a repertoire is very high
(i.e.in case of absence of expanded clonotypes and in presence of only non-expanded TCRs), very small
frequency clones (i.e. # templates=1) may be affected by this procedure and may be lost after the
resampling. This bias is relatively less important when the analytic plan consists in comparing diversity
metrics (the richness of the sample in question would be higher regardless the low frequency
clonotypes missing), however this issue becomes fundamental when the aim is to analyze the
specificity spectrum, since a variety of non-expanded CDR3 sequences cannot be captured anymore
for the qualitative analysis. Therefore, when appropriate we performed qualitative analyses (analysis

of spectrum) on non-downsampled datasets.

The downsampling procedure was performed with the aforementioned tool using the following
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parameters:

[Immunarch function: repSample, parameters: .method = "downsample", .prob = TRUE].

This choice allowed avoiding an important reduction of the sample size, while considering an adequate
depth for the downstream analyses. For reference see

https://github.com/immunomind/immunarch/blob/master/R/sampling.R.

Specifically, 105 samples were considered in the downsampled dataset (For distribution of samples

across groups and time-points see Fig.S2C).
Several metrics were used to investigate HC and donor/recipient TCR clonal distribution profiles:
Diversity was characterized computing:

e The number of all unique clonotypes (richness)
e The size of each clonotypes (evenness or relative abundance).
e The Inverse Simpson's index (a metrics derived from ecology and used to characterize the alpha

diversity),(5)(6) calculated according to the following formula:

1 1
A Z1—1 pl

where p; is the proportional abundance for each clonotype and R is the total number of
clonotypes in the sample.

Patterns of clonal expansion were defined as following:

e Non expanded: clonotypes present as singletons — 1 template — in the repertoire.
e Pathological expanded: clonotypes of size greater than the upper limit of the 95% confident
interval (Cl) of the clonal expansion distribution in HC and donors in the normalized dataset.

e Normal expanded: clonotypes of size ranging between >1 and the aforementioned threshold.
Similarity between repertoire was characterized as:

e direct number of shared clonotypes between sample pairs
e overlap coefficient which computes the proportion of overlap between two probability

distributions, and is defined as the size of the intersection divided by the smaller of the size of
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the two sets according to the following formula: (7)

|A N B
min (|A|, |B|)

oc(A,B) =

Donor and recipient TCR repertoire in samples in study were annotated through the integration of a
dataset aggregating all public databases supported by the Adaptive Immune Receptor Repertoire
Community project (8). Briefly, after filtering for human TRB data, we downloaded the following public

databasets: VDIDB (9) (https://vdidb.cdr3.net/search), MCcPAS-TCR (10) (http://friedmanlab.

weizmann.ac.il/McPAS-TCR/) and PIRD TBAdb (https://db.cngb.org/pird/tbadb/) (11). Immunarch

dbAnnotate and trackClonotypes functions were used respectively to annotate and track TCR immune
specificities. The comprehensive curated dataset of publicly known specificities is provided as

Supplemental material (Supp. Table 8).

HED computation
HLA genotypes were obtained by NGS or sequence-specific oligonucleotide (PCR-SSO) -based methods.

Donor and recipient HED scores were computed starting from HLA genotypes, using the algorithm
published by Pierini and Lenz, applying a customized perl script

(https://sourceforge.net/projects/granthamdist/) for the calculation of the amino acid sequence

divergence (12). Briefly, starting from a dictionary including all the protein sequences of exons 2 and 3
for class | alleles and exon 2 for class Il alleles, assembled from the IPD-IMGT/HLA database, v.3.40 (13)

we calculated HED for 6 class | (A, B, C) and Il HLA loci (DRB1, DQB1, DPB1).

Means of class | and |l were used as quantitative parameters for the univariable analysis of factors

impacting TCR diversity.
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Supplemental figures:

Figure S1: Study design. A: Description of the study design. B: Description of the immunosequencing
and bioanalytic platform used for the characterization of the TCRpB repertoire. HSC: Hematopoietic
stem cells; GvHD: Graft versus host disease; TCR: T cell receptor; CDR3: Complementary determining
region 3

Figure S2: Characterization of the non-normalized repertoire. A: Total number of templates (total depth)
across the sample groups. B: Total number of unique productive clonotypes. C: Clonotype size across
donors and post-transplant samples. D: Sample size before and after the downsampling. Each colored
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square indicates the presence of the sample at that given time-point. The number on the right represents
the sum of the samples for each group.

Figure S3: Repertoire diversity in donors and recipient pre-transplant.

A: Number of unique clonotypes in donors and recipient pre-transplants (PRE). Violin plots. Mean donors
(purple): 4748 (95%Cl: 4366 -5128); median PRE (yellow): 4260 (95%Cl:3928-4591). One dot per sample.
(Donors: N=14, PRE: N= 25). Wilcoxon rank sum test (p=0.035).

B: Number of unique expanded clonotypes in donors and PRE. Violin plots. Mean donors (purple): 216
(95%Cl: 135 -296); mean PRE (yellow): 255 (IQR:203-307). One dot per sample. (Donors: N=14, PRE: N=
25). Wilcoxon rank sum test (p=0.801)

C: Mean size of pathological expansion in donors and PRE. Violin plots. Mean size of expansion in donors:
14.6 (95%Cl: 12 -17.1), mean PRE: 21 (I195%Cl:18-25). One dot per sample.

D: Inverse Simpson index (ISI) distribution in donors (N=14) and PRE (N=25). Boxplots. Mean donors
(purple): 2826 (95%Cl 1726-3926); mean PRE (yellow): 1243 (95%Cl: 704-1782). Wilcoxon rank sum test
(p=0.005).

E: Average number per sample of pathologically expanded clonotypes according to clonal size category in
PRE, expressed as fold change compared to donor group (see Supp. table 4 a,b and c). Of note, pre-
transplant recipient samples have 5 times more hyperexpanded

specificities (clonal size >100 templates).

Figure S4: Clonal expansion of donor-recipient shared specificities. A: Linear correlation of clonal size of
shared clonotypes in donors (Y-axis) and recipients (X-axis) at day +30 (green), +100 (red), +180 (light
blue). Scatterplot in which each dot captures a clonotype. Overall, the expansion of the overlapping
specificities in recipients correlated with the extent of expansion in donors.

B: Distribution of donor-recipient overlap coefficients among the post-transplant groups. Overall, the
degree of overlap between recipients and donors remained constant across the time. For details of the
calculation of this metrics see methods.

Figure S5: Clonal expansion of all known specificities. A: Distribution of the clonal sizes (intended as
number of templates per clonotype) of clonotypes with known specificities in all the sample groups in
study. Wilcoxon rank test. Only significant comparisons are shown in the figure. B: Distribution of the
proportion of expanded clonotypes (# of templates >2) in all the sample groups in study. Analysis done
on downsampled dataset.

Figure S6: |: Distribution of VJ beta TCR families before and after GVHD in an index case. Distribution of
each V-J family in the total repertoire of pre-GVHD (upper panel) and GVHD (lower panel) samples from
patient CCF43. 3D histogram illustrating the frequencies (Y-axis) of each TCR BV (X axis) and J (z-axis and
histogram color) family. Top 15 clonotypes of most expanded families are reported as CDR3 aminoacidic
strings, with character size proportional to the clonotype size.

Here the analysis was performed on the non-downsampled dataset, with specificity frequency calculated
as the number of template of each unique clonotypes (clonal size)/total depth (total number of templates)
*100.

Figure S7: Distribution of anti-CMV specificities in recipients

A: Number of anti-CMV clonotypes according to recipient and donor CMV serological status (N as in A).
Violin plot. Recipient negative (pink dots): median 93 (IQR: 74-133); recipient positive (light blue dots):
median 69 (IQR 59-75). Wilcoxon rank sum test: p=0.823. Donor negative (pink dots): median 78 (IQR: 68-
109); donor positive: media 59 (35-89).
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B: Frequency of anti-CMV specificities according to recipient and donor CMV serological status. Each dot
represents a clonotype. Y-axis in log10 scale. Recipient negative: median 4.441e-05 (IQR: 3.262e-05 -
7.511e-05); recipient positive: median 3.995e-05 (IQR: 2.938e-05 - 7.969e-05 ). Wilcoxon rank sum test,
p=0.124. Donor negative: median 6.091e-05 (IQR: 3.455e-05 - 8.191e-05); donor positive: median 3.262e-
05 (IQR: 1.833e-05 - 6.030e-05). Wilcoxon rank sum test, p= <2e-16.

C: Number of anti-CMV specificities at day +100 according to incidence of CMV reactivation (Blood CMV
DNAemia > 200 Ul/ml) before day 100. Violin plot. Absence of CMV reactivation (Pink dots, N=20): median
71 (1QR: 60-91); presence of CMV reactivation (light blue dots, N= 9): median 79 (IQR 54-131). Wilcoxon
rank sum test: p=0.721

D: Longitudinal analysis of impact of CMV reactivation on diversity metrics and dynamics of anti-CMV
specificities in one index case (patient CCF33). After the viral reactivation the global diversity of the
repertoire diminished in line with the post-transplant kinetics with a reduction of the total number of
unique specificities, and an increase of the pathological expansion, along with the reduction in number
and frequency (clonal size) of the anti-CMV specific clonotypes.

All the analyses including the study of anti-CMV CDR3 sequences were performed on the non-
downsampled dataset in order to capture all the specificities (Supp. Table 7c). All the p here reported
were two sided.

All the figures were created with or assembled on BioRender.com.

10
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Figure S1
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Figure S2
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Figure S4
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Figure S5
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Figure S6
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Figure S7
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Supplemental Table 1a: Terminology and metrics definition

Nucleotide sequence resulting from the recombination process and
encoding for a given V (D) J chain. It includes the CDR3 sequence. It is

Rearrangement R . .
& productive if it is in frame and does not contain stop codons, encoding for a

fully functional aminoacidic sequence

Template Each productive rearrangement contained in the repertoire
A TCR with a given specificity. It is identified through the unique nucleotide
rearrangements and CDR3 sequences. A variable number of identical

Clonotype o
templates may be present (as product of the T-cell activation and
proliferation), defining its clonal expansion
Defined either as number of templates in a given clonotype, or as frequency

Clonal size (number of templates/total depth). Characterizes the relative abundance of
each clonotype.

Depth Total number of rearrangements in a repertoire (productive and non-

productive)

Downsampling

Statistical strategy used to model unbalanced data (TCR repertoires with
different depths). It subsets all the classes (samples' depths) in the dataset
(repertoires from different samples) so that their class frequencies match
the least prevalent class (repertoire with lower depth).

Clonal expansion

Defines all the clonotypes of size greater than 1 template

Pathological clonal expansion

Arbitrarily defined in this study as an expansion greater than the upper limit
of the 95% Cl found in healthy subjects. This threshold may variate with the
downsampling strategy used to model the dataset. It is proposed as internal
criteria to be used to describe the characteristics of repertoires with
different sample depths.

Number of unique clonotypes

Defines the richness, one of the components of the diversity

Number of unique expanded
clonotypes

Number of all clonotypes of size >1 template

Number of pathologically expanded
clonotypes

Number of all clonotypes of size >the 95%Cl upper limit found in controls

Diversity of the repertoire

Defined as number of all the constituents (clonotypes) of the repertoire
(richness) and their relative abundance (clonal size or frequency, also known
as evenness).
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Sample tags for use on Adaptive Biotechnologies ImmuneACCESS platform

Patient ID | Pre-HCT | Day +30 | Day +100 | Day +180 | Donors | GVHD

CCF1 14913 15218 |15431 15710 15023
CCF3 15216 |15480 |15670 15943 15226
CCF5 15243 | 15463 15250
CCF6 15323 15691 15275
CCF9 15472 15622 |15844 16113 15503
CCF10 15598 | 15757 15611
CCF12 15801 16181 16506 15828
CCF13 15825 |15970 |16175 16470

CCF14 15847 | 15987 16503 15853

CCF15 15888 |16023 |16309 16546 15878
CCF16 15924 16093 |16439 16608 15925

CCF21 16144 16536 16160 | 16654
CCF23 16168 |16411 |16687

CCF24 16348 |16444 16636 16460
CCF25 16358 |16458 |16662 16393

CCF26 16143 |16436 |16652 16174

CCF27 16423 |16544 16773 17046 16445
CCF28 16446 |16547 |16768 17041 16454

CCF29 15240 |15433 15718

CCF30 15363 |15719 |15913 16162

CCF31 15519 |15646 16097

CCF32 15597 |15754 15969 16158

CCF33 15865 |16068 16415

CCF34 15807 |15928 |16135 16447

CCF35 15910 |16062 16551

CCF36 16081 |16364 16588 15971 | 16679
CCF37 16079 |16350 15967

CCF38 15990 |16127 |16422 16626

CCF39 16311 |16469 16744

CCF40 16410 |16575 16410
CCF41 16394 |16502 |16726 16999

CCF42 16441 |16578 |16797 17059 16769
CCF43 16525 | 16655 17186 17017
CCF47 16710 17058

CCF48 16709 17092 16741
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