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ABSTRACT: 

 

Key molecular regulators of acquired radiation resistance in recurrent glioblastoma (GBM) are 

largely unknown with a dearth of accurate pre-clinical models. To address this, we generated 8 

GBM patient-derived xenograft (PDX) models of acquired radiation therapy-selected (RTS) 

resistance compared with same-patient, treatment naïve (RTU) PDX. These unique models 

mimic the longitudinal evolution of patient recurrent tumors following serial radiation therapy. 

Indeed, while whole exome sequencing confirmed retention of major genomic alterations in the 

RTS lines, we did detect a chromosome 12q14 amplification that is associated with clinical 

GBM recurrence in two RTS models. A novel bioinformatics pipeline was applied to analyze 

phenotypic, transcriptomic and kinomic alterations, which identified long non-coding RNAs 

(lncRNAs) and targetable, PDX-specific kinases. We observed differential transcriptional 

enrichment of DNA damage repair (DDR) pathways in our RTS models which correlated with 

several lncRNAs. Global kinomic profiling separated RTU and RTS models, but pairwise 

analyses indicated that there are multiple molecular routes to acquired radiation-resistance. RTS 

model-specific kinases were identified and targeted with clinically relevant small molecule 

inhibitors (SMIs). This unique cohort of in vivo radiation therapy-selected patient-derived 

models will enable future preclinical therapeutic testing to help overcome the treatment 

resistance seen in GBM patients. 

 

Brief Summary: This study describes a panel of acquired radiation resistant GBM PDX and 

identifies potentially targetable transcriptomic (including lncRNA) and kinomic alterations. 
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INTRODUCTION 

Glioblastoma (GBM) is the most common and devastating form of primary brain cancer. Median 

survival remains around 15 months despite decades of research (1). Standard adjuvant therapy 

for GBM includes 6-weeks of fractionated radiotherapy (RT) (typical total dose around 60 Gy) 

with concomitant systemic therapy using the alkylating agent temozolomide (TMZ) (75 mg/m2 

daily), followed by 6-12 months of adjuvant TMZ (150-200 mg/m2 for 5 days every 28 days) (2). 

While O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation is a known 

predictive marker for GBM response to TMZ (3), there are no validated predictive or prognostic 

molecular indicators for radiotherapy response in GBM (4). GBM almost invariably recurs, and 

recurrent tumors frequently acquire resistance to conventional therapies. In recent years, several 

potential radiation resistance mechanisms have been postulated including transcriptional 

reprogramming (5), epigenetics (6), and cell state plasticity (7), irradiation changes to normal 

brain tissue (8, 9),  metabolic alterations (10), and epithelial-mesenchymal transition (11) to 

name a few. Still, there is a dearth of accurate preclinical models, especially of recurrent, 

therapy-resistant tumors which are in most cases responsible for patient mortality (12). 

Here we have generated 8 pairs of GBM patient-derived xenografts (PDXs) in which the 

radiation sensitive, unselected (RTU) tumors were irradiated for in vivo serial selection to create 

recurrent, radiation therapy-selected (RTS) variant PDXs. This models a common therapeutic 

strategy whose outcomes unfortunately lead to acquired therapy-resistance in patients (13). 

These patient-matched, paired PDXs allow the comparison of primary and recurrent tumors to 

better understand the trajectories of molecular mechanisms in tumor recurrence.  

Two recent longitudinal studies in glioma have reported that selective pressures and driver 

mutations tend to occur early in glioma development with little change at the genomic level 
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following recurrence (14, 15). This may suggest that phenotypic changes such as acquired 

therapy resistance are not driven at the genomic level, but instead at the epigenetic, 

transcriptomic and post-translational levels. To this end, we have conducted whole exome 

sequencing (WES) as well as deep RNA sequencing (RNA-Seq) of total RNA in order to study 

transcripts including long non-coding RNAs (lncRNAs). LncRNAs can act as molecular sponges 

for microRNAs or transcription factors, scaffolds for enhancer or repressive complexes, guides 

for chromatin remodeling enzymes, or as signals for gene activation (16, 17). The Pan-Cancer 

Analysis of Whole Genomes (PCAWG) consortium has recently identified 122 lncRNAs with 

causal roles in cancer tumorigenesis, a number of which overlap with our results (18). 

In order to identify lncRNAs and their potential targets, we have devised a novel in silico 

approach utilizing quasi-mapping of long, paired end reads (19) combined with nucleic acid 

binding prediction software using thermodynamics-based algorithms to detect RNA:RNA duplex 

or RNA:DNA triplex formation (20, 21) (see Methods section). We also combine traditional 

differential gene expression analysis (DE) with differential gene correlation analysis (DGCA) 

(22), machine learning (23, 24), and semantic network construction (25, 26) to further elucidate 

transcriptional mechanisms of therapy resistance. These approaches have revealed differential 

regulation of DNA damage response (DDR) pathways as well as stemness, cell cycle, and 

chromatin remodeling signatures. We have noted differential enrichment of canonical DDR 

pathways at the transcriptomic level in vivo post selection. A number of lncRNAs are associated 

with the differential expression of transcripts in these pathways. 

We evaluated our RTS models by integrating global kinase (kinomic) activity and transcriptomic 

data to identify radiation-induced changes in baseline signaling and expression. Kinase signaling 

is highly therapeutically targetable in neoplasms (27) and radiation therapy has been 
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demonstrated to induce malignant phenotypes through modulation of Src and Trk family kinase 

signaling among others (28, 29). Our results confirmed that radiation therapy selection induced 

targetable kinase activity alterations.  Clinically used small molecule inhibitors (SMI) 

sitravatinib and brigatinib (30, 31), with known brain penetrance were effective RTS GBM 

models. The application of our integrated informatics approach using these clinically relevant 

models, provides a method for selecting preclinical therapies for intractable, therapy resistant 

tumors. 
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RESULTS 

Serial in vivo radiation of GBM PDX generates radiation therapy-selected (RTS) 

derivatives  

A cohort of 20 heterotopic (subcutaneous) GBM PDX were screened for sensitivity to radiation. 

Tumor growth was measured externally using calipers and radiation response was defined as 

‘resistant’ (n=8) if the median-doubling time of the initial tumor volume was significantly less 

than 20 days, or ‘sensitive’ (n=10) for doubling times greater than 20 days, or ‘intermediate’ 

(n=2) if not significantly different from 20 days (Figure 1A). Of these, existing Affymetrix 

transcriptomic microarray data were available for 13 PDX lines (n=7 sensitive, n=6 resistant). 

We found that 18 genes were significantly up regulated, and 8 genes were significantly down 

regulated in the inherent resistant group (Supplementary Figure S1A). Over representation 

analysis of these 26 genes revealed no significant enrichment at an FDR of <0.05, therefore we 

took the top 10 results (Supplementary Figure S1B). CXCR3 receptor binding was the top 

result driven by the significant down regulation of ligands CXCL10 and CXCL11 in inherent 

resistant PDX. Protein binding was the most enriched molecular function GO term followed by 

ion binding (Supplementary Figure S1C). The top enriched gene set from GSEA using the 

MSigDB H and C6 sets was hallmark coagulation, but the BCAT.100_UP.V1_DN set was also 

significantly enriched (Supplementary Figure S1D). This was primarily driven by high SNAI2 

expression in resistant PDX (one of the top overexpressed genes in DE analysis). Enrichment of 

this set indicates enhanced beta-catenin expression/activity in inherently resistant PDX.  While 

inherent radiation resistance has importance, acquired (or adaptive) radiation resistance is the 

more pressing clinical problem for GBM. Therefore, we sought to develop adaptive radiation 

resistant models.  Eleven PDXs (Radiation Therapy Unselected or RTU) underwent serial in vivo 
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selection (6-8 serial passages) against radiation therapy (Figure 1B). Three of these lines were 

consistently “cured” by radiation therapy and were thus unable to complete the radiation 

selection process. However, Figure 1C shows the difference in doubling time as combined 

endpoint probabilities of the remaining sensitive, RTU lines (solid, blue line) and their paired 

resistant (Radiation Therapy Selected or RTS) lines (dashed red line). The median endpoint 

probability for the doubling time of the combined RTU lines was reduced by 85% compared to 

the median of the RTS lines from 35 to  5 days (p <0.001).  Eight PDXs were successfully 

selected for resistance to radiation with parent and selected tumor doubling times as indicated 

(Figure 1D).  Basic clinical demographic information for these lines (Figure 1E) and a GBM 

hallmark driver gene panel (Figure 1F) are shown. Of note, CDKN2A/B were deeply deleted in 

most samples and JX39P and JX39P-RTS harbor the EGFRVIII variant.  

Chromosome 12q14 amplification identified in some RTS PDX 

Single Nucleotide Polymorphism (SNP) analyses indicated that RTS PDX lines correlated highly 

with their parent RTU line (Figure 2A).  Like the GBM hallmark driver gene panel data, these 

results suggest that RTS PDX lines mirror clinical datasets (14) by generally maintaining their 

classic genomic alterations. However, two of the eight RTS lines, X1153-RTS and JX14P-RTS, 

were found to have a copy-number amplification on chromosome 12q14, (Figure 2B and C) a 

locus previously identified in recurrent GBM patients.  While 12q amplification could suggest a 

possible mechanism for the acquired radiation resistance in the RTS lines, we anticipated that 

transcriptome and kinome assessment may be more revealing.   

Transcriptomic analysis identifies differentially regulated lncRNAs that may have 

functional roles 
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Intracranial orthotopic xenografts were established and tumors were harvested in biological 

triplicate for ‘omics’ analysis (32). Each orthotopic tumor was divided in half for matched 

kinomic and transcriptomic evaluation. Globally, at the transcriptome level, PDX pairs primarily 

separated based on patient of origin with some smaller separation based on radiation sensitivity 

on principal component analysis (Figure 3A). Global differential expression (DE) including 

patient tumor of origin and selection status (~PDX_ID + RTS) revealed 482 significantly 

differentially expressed genes (DEGs) (Figure 3B) including 69 lncRNAs and 24 pseudogenes. 

Global DE between the combined RTU vs RTS (~RTS), without patient tumor of origin as a 

covariate, revealed 27 significantly DEGs (Figure 3C) including 5 lncRNAs and 1 pseudogene. 

One of these lncRNAs, CASC19/PCAT2 (ENSG00000254166.3), is globally upregulated in 

selected PDX (p.adjust = 0.02) (Supplementary Fig S2A), particularly in JX39P, and has 

predicted DNA binding at several genomic sites (method described in Supplementary Figure 

S2B), including sites proximal to mitogen-activated protein kinase 6 (MAP2K6); another 

globally DEG,  and sites on the FES proto-oncogene. In the JX39P pair, CASC19 expression is 

positively correlated with expression of MAP2K6 and FES (Supplementary Figure S2C). 

Additional differential expression analytic approaches were performed including two machine 

learning (ML) methods (FastEMC and WGCNA) and differential gene correlation analysis 

(DGCA) that both identified several lncRNA and pseudogenes being differentially expressed in 

RTS models that were used for lncRNA correlations (Supplementary Figure S3).  

To elucidate potential regulatory roles of the differentially expressed lncRNAs, a novel pipeline 

incorporated RNA:RNA (ASSA) and RNA:DNA (Triplexator) binding prediction software (20, 

21) with bedtools to identify proximal genes to lncRNA:DNA binding sites (Supplementary 

Figure S2B).  Presumptive cis-regulatory targets for the significantly altered  lncRNAs were 
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identified as genes that were common to both the lncRNA:DNA proximal gene list and the 

pairwise differentially expressed gene list. Nine lncRNAs were predicted to bind directly to a 

combined 28 differentially regulated genes identified in upstream analyses (Figure 3D). DNA 

binding potential was discovered for 45 lncRNA at several thousand sites across regulatory 

regions of the human genome (Figure 3D). Some lncRNAs (CASC19/PCAT2, SOX2-OT, 

ZFAS1, PAQR9-AS1, and USP2-AS1) possessed both RNA:RNA and RNA:DNA binding 

potential. Searching a 20kb window upstream and downstream from these predicted DNA 

binding sites, 4,268 proximal genes were discovered (Figure 3D). Correlative analysis revealed 

both strong positive and negative correlations between the expression of lncRNAs and proximal 

genes (Supplementary Figure S3 and Supplementary File S1). The highest correlated genes 

were associated with several cancers or cancer related pathways including glioblastoma, 

astrocytoma, neuroblastoma, leukemia, lymphoma, hepatocellular carcinoma, gastric cancer, 

stemness, angiogenesis, invasion, proliferation, and DDR (Supplementary File S1). Specific 

pairwise correlations are detailed in the Supplementary Figure S4 and gene interaction 

networks (WIPER) are shown in Supplementary File S2.  

 

Acquired radiation-resistant tumors display distinct DNA damage repair pathway 

alterations 

One of the hallmarks of radiation resistance is increased or altered DDR activity. Figs. 4A-F 

show the normalized enrichment scores of RTS vs RTU PDX for 12 DDR transcriptional 

signatures. It was not possible to generate normalized enrichment scores for JX12P, X1465, or 

X1066 due to the imbalanced number of replicates. Globally, as well as in the JX39P pair, 

Fanconi anemia (FA), mismatch repair (MMR), nucleotide excision repair (NER), non-



   
 

   
 

11 

homologous end joining (NHEJ), homologous recombination (HR), and chromatin modification 

signatures were enriched in RTS PDX (Figure 4A, 4E). X1516 also shows similar DDR 

enrichment to global, except that BER is enriched in RTS PDX with NER conversely decreased 

(Figure 4B). The JX14T pair has similar enrichment to global and JX39P, except that NER and 

MMR are significantly decreased in the RTS lines (Figure 4D). In the X1153 pair, BER, NER, 

MMR, and FA are enriched in RTS PDX, while HR, NHEJ, and chromatin modification were 

decreased in RTS PDX (Figure 4F). The JX12T pair is the most divergent from the other RTS 

PDX with all 12 DDR signature normalized enrichment scores decreased for RTS over RTU 

PDX (Figure 4C). 

Several lncRNAs showed strong associations with significantly DE DDR genes. In the X1153 

pair, AC008764.8 showed a negative correlation with FA-related gene FANCC (Figure 4F and 

Supplementary Figure S3). Also, AC124290.1 and AUXG01000058.1 showed strong positive 

correlations with the HR-related gene SEM1 (Figure 4F and Supplementary Figure S3). 

SOX2-OT was positively correlated with NHEJ-related XRCC4 and to a lesser extent with 

RAD9A (Supplementary Figure S3). In the JX39P pair, AC002456.1 was negatively correlated 

with HR-related RBBP8 (Figure 4E) and positively correlated with NER-related MNAT1 and 

NHEJ-related XRCC5 (Supplementary Figure S3). 

Kinome profiling identifies PDX-specific actionable targets in RTS PDX  

Global kinomic profiling of RTU and RTS pairs revealed common and PDX-specific alterations 

in kinase signaling. As opposed to global transcriptomic analysis, the kinomic profiles separated 

PDX primarily by resistance status (RTU or RTS) (Figure 5A, B). Globally, kinase signaling 

was decreased in RTS compared to RTU, when the samples were analyzed together. However, 

this appeared to be driven by a small subset of samples, such as X1066 and X1516, that had 
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relatively large kinase activity decreases in RTS compared to RTU (Supplementary File S3). 

Across PDX pairs there was large variation in altered kinase signaling, with some RTS having 

globally decreased activity in Src family kinase and growth factor pathways (X1066, 

Supplementary File S3), as well as PKC centric decreases (X1516).  

Next, upstream kinases alone, and integrated with differentially regulated lncRNA:DNA binding 

proximal genes, were analyzed at the pathway level (Supplementary File S4). Src family kinase 

activity was upregulated in RTS in the integrated analysis of JX14P and JX39P, while being 

decreased in X1153 and X1465 RTS. Ephrin receptor activity was increased in RTS variants of 

JX14P and X1465. We observed increased activity of EGFR and VEGFR signaling in X1153. As 

we are interested in evaluating pharmaceutical targets, we focus here on those actionable kinases 

that exhibited increased activity in the RTS PDX. 

To test the druggable potential of the kinases increased in Figure 5C-E and Supplementary File 

S4, in vitro SMI screening was conducted using sitravatinib and brigatinib in PDX-derived 

neurosphere cultures. Sitravatinib targets TRKA/B (JX14P-RTS, JX39P-RTS), ROS1 (JX14T-

RTS), Src (JX14P-RTS, JX39P-RTS), as well as multiple Ephrin isoforms.  Brigatinib targets 

ROS1 (JX14T-RTS) and the canonical GBM target EGFR (JX39P-RTS). We observed that 

JX14T-RTS, JX39P-RTS and JX14P -RTS were significantly sensitive to both sitravatinib and 

brigatinib (Figure 5F). 

Confirmatory Western blot array analyses were performed using the R&D Systems Proteome 

Profiler Human Phospho-Kinase Arrays on paired RTU and RTS from JX14P, JX14T, JX39P, 

and X1465.  As shown in Figure 6A and B, the RTS lines for JX14P, JX14T, and JX39P 

exhibited increased phosphorylation of multiple kinases and/or kinase targets, including Src 

family kinases (SFKs) (Figure 5). However, X1465-RTS showed phosphorylation decreases or 
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no appreciable changes compared to its RTU line except for STAT2(Y689) and AKT(S473) 

which were modestly elevated. These results supported the PamStation Kinomic profiling of 

X1465-RTS which showed decreased SFK activity relative to its RTU parent (Supplementary 

File S4).  Additionally, an upstream kinase comparison was performed to integrate the 

PamStation kinomic profiles and the R&D Systems based on the Phosphonet database (See 

Supplementary Information). Top increased kinases, validated from the previous kinomic 

screen, included increased Hck, Yes1, and Src (JX14P-RTS); increased Lyn and Src (JX39P-

RTS); and increased JNK2 (X1465-RTS). Across three of the four RTS lines, there were 

increases in activity of Src-family, PIM-family, MSK1, PYK2, and JNK kinases. Additionally, 

BRK was activated as the top kinase in JX39P-RTS and scored highly in JX14P-RTS and 

JX14T-RTS as compared to parental RTU lines (Supplementary Figure S5).     
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Discussion  

We generated, characterized, and validated several GBM PDX models of radiation-resistance 

(RTS) from their radiation sensitive parental (RTU) PDX and identified levels of transcriptomic 

and phenotypic heterogeneity and mechanisms of acquired resistance. We qualitatively observed 

a general increase in the invasive potential of orthotopic RTS PDX when dissecting intracranial 

tumors and quantitatively showed that RTS tumors were more aggressive with significantly 

reduced overall survival in vivo. We performed genomic, transcriptomic, and functional 

proteomic (kinomic) testing on these models with results supporting our contention that these 

models are clinically relevant.  Indeed, we found that mutational drivers were generally retained 

upon radiation selection, a finding previously observed in GBM patients with longitudinal 

molecular testing (14, 15). When we did detect new amplifications, they tended to be supported 

by the clinical literature (33), such as the chromosome 12q14 amplification seen in 2 of the 8 

RTS pairs.  Transcriptomically, the tumor models tended to group based on the tumor of origin 

rather than RTS status suggesting that acquired radiation resistance may be context dependent.  

Within individual GBM PDX pairs, however, our transcriptomic analyses suggested several 

potential pathways to acquired radiation resistance. Additionally, there are RTS mediated 

differences in the enrichment of a number of GBM-related gene signatures including stemness, 

cell cycle, chromatin remodeling, IFN-STAT1 signaling, and molecular subtypes.  

We observed a contrast in the type of changes from RTU to RTS between global transcriptomic 

and global kinomic profiling. At the kinome level, samples separated clearly based on radiation 

selection status and not by patient tumor of origin. This speaks to the downstream, functional-

level effects of radiation selection with relatively fewer changes at the transcriptional level. 

Gross transcription appears to be driven by the inherent genetic background of the original 
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patient tumor, while the acquired resistance phenotype is functionally distinct at the kinome 

level. This could suggest that small differences at the transcriptomic level, possibly in lncRNA 

expression, could have large downstream functional impacts. This is consistent with our 

knowledge that lncRNAs can have diverse, often concurrent, molecular roles despite their 

relatively low abundance (17). 

We detected both common and PDX-specific differential enrichment of upstream kinases 

between RTU and RTS PDX. In X1066 and X1516, kinase activity was mostly repressed in RTS 

PDX, potentially indicating a more homeostatic condition, characteristic of senescent or stem-

like cells. In some cases, activities of Src family kinases (JX14P/T, JX39P) and EGFR (X1465, 

JX39P, JX12T) are increased in RTS PDX. Brigatinib, an anaplastic lymphoma kinase (ALK) 

and epidermal growth factor receptor (EGFR) inhibitor was effective at killing radiation resistant 

cells in three selected RTS PDX lines (Figure 5F). Sitravatinib, targeting Trk, Src, and Ephrins 

among others, was also efficacious in these three PDX lines (Figure 5F). Of note, brigatinib has 

demonstrated clinical intracranial efficacy for lung cancer brain metastases, suggesting potential 

application in recurrent GBM (34). Sitravatinib has been identified as potential therapy for 

overcoming immune checkpoint blockade resistance (35). As targeting the immune checkpoint 

blockade has had limited clinical benefit in GBM, it is possible that combining it with drugs such 

as sitravatinib would be more beneficial. Src and Trk family kinases are induced by radiation 

treatment in breast cancer cells and in human umbilical vein endothelial cells (HUVEC) (28, 29), 

while Src has long been considered a therapeutic target in GBM (36). Recently published 

collaborative work has shown that in vitro radiation-selection of human and murine-derived 

glioma stem cells (GSCs) can induce IGF1R-mediated resistance pathway via N-cadherin (N-

cad) upregulation. IGF1R inhibition could reverse this radiation resistance, which was validated 
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in two of our RTS lines, JX14P-RTS and JX39P-RTS (11).   Together, these suggest that 

resistance models can be used to identify druggable targets for recurrent, therapy-selected 

tumors. 

RTS PDX models displayed increased in vivo resistance to RT, although there is diversity in the 

enrichment of DDR signatures (Figure 4), indicating potentially different routes to acquired 

radiation-resistance. Given the high degrees of intra- and intertumoral heterogeneity observed in 

GBM, it is expected that each individual tumor could adapt differently under therapeutic 

pressures. Our cohort of selected tumor pairs provides a wide range of molecularly diverse 

phenotypes for interrogation. Almost universally (excepting JX12T), FA-related DDR was 

enriched in RTS PDX. The FA core complex of 8 proteins is located in the nucleus and 

responsible for surveillance for DNA double stranded-breaks (DSB) (37). This complex 

ubiquitinates FANCD2, which is also phosphorylated by ATM prompting its interaction with the 

BRCA1/2 complex that also contains RAD51 (38, 39). In this way, FA genes promote DDR 

primarily through the high fidelity HR pathway (40). The enrichment of the FA-related gene 

signature may therefore indicate a preferential reliance on this surveillance mechanism in 

acquired radiation resistance.  HR and NHEJ were also frequently enriched in RTS PDX, the 

exceptions being JX12T and X1153.  X1153-RTS PDX appears to rely more on BER, NER, and 

MMR mechanisms. Interestingly, GSEA using our DDR gene sets revealed an enrichment of 10 

out of 12 signatures in inherently resistant tumors, but only NER passed the FDR significance 

threshold of <0.25. On the whole, differential basal expression, perhaps due to distinct 

genetic/epigenetic backgrounds, described most of the variance in the model. Radiation 

resistance status captured a small amount of the variance supporting our thinking that radiation 

resistance is mediated at a post-transcriptomic/epigenetic level. 



   
 

   
 

17 

Many DDR genes are located proximal to significantly differentially regulated lncRNAs with 

DNA binding sites in the regulatory genome. Some of these lncRNA:DDR gene associations 

show positive and/or negative correlations in expression, especially in FA and HR (Figure 4E, 

4F, Supplementary Figure S3). Our data suggest a relationship between lncRNAs and DDR 

pathway modulation. It is possible that this is accomplished through epigenetic regulation caused 

by the direct binding of lncRNAs to regulatory regions of DNA proximal to DDR gene loci. 

Our in silico pipeline identified 184 lncRNAs differentially regulated between radiation sensitive 

RTU and RTS PDX. Some of these; SOX2-OT, ZFAS1, SAMMSON, CASC19/PCAT2, and 

PVT1 have already been associated with various cancers including gliomas (18, 41, 42). The 

majority of the lncRNAs identified in this study represent novel transcripts with limited to no 

known information available about their associations or mechanisms. We evaluated the RNA 

binding potential of these lncRNA transcripts. Nine lncRNAs had predicted RNA binding 

capacities with such targets as ZNF154, a putative tumor suppressor in nasopharyngeal 

carcinoma and prostate cancer (43, 44); JAK3, a tyrosine kinase implicated in leukemias and 

lymphomas (45, 46); and SOX11, which may act as a tumor promoter or suppressor in various 

cancers including glioma (47). Forty-five lncRNAs are predicted to bind DNA in regulatory 

regions of the human genome and have strong correlations with DEGs proximal to those binding 

sites. We have observed that associations with lncRNA and their potential targets can be either 

negative or positive, similar to the DDR relationship.  

The lncRNA AF106564.1 demonstrated positive correlations with the FIP1L1-PDGFRA fusion 

transcript and with NTRK3 (Supplementary File S1). Fluorescent in situ hybridization using the 

Vysis LSI 4q12 Tri-Color rearrangement probe was not able to confirm the presence of a 

canonical deletion in the 4q12 region that leads to the FIP1L1-PDGFRA fusion product in 
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heterotopic PDX. This is a limitation as the transcript level detection was performed with 

orthotopic and not with heterotopic PDX, highlighting the differences in molecular signaling 

dependent on locations of tumor implantation. Amplification of this region may lead to poorer 

outcomes as PDGFRA is a putative oncogene in glioma and FIP1L1 is constitutively expressed 

in oligodendrocyte precursor cells (48). The association of AF106564.1 with NTRK3 

(ENSG00000140538) is also intriguing as NTRK genes code for tyrosine-kinase receptors for 

growth factors in the CNS and activating fusions such as ETV6-NTRK3 or BTBD1-NTRK3 

have oncogenic potential in some subsets of high-grade glioma (49). Co-expression of these pairs 

of genes is observed in some of our RTS PDX models. This suggests that lncRNAs may regulate 

gene fusions, that are a hallmark of many neoplasms.  

There are several potential limitations for our study that should be noted. First, radiation therapy 

selection occurred in a heterotopic tumor location and within immunocompromised (athymic) 

mice. While prior data suggest that implanting tumors in subcutaneous sites or even culturing in 

serum-free neural stem cell media and later re-implanting in orthotopic sites does not 

compromise model fidelity (50, 51), there is concern that subcutaneous selection might impact 

tumor evolution or restrict tumor diversity. While our RNA-Seq data mapped highly to human 

suggesting a limited number of murine cells in the bulk sample, we did perform differential gene 

expression for mouse transcripts and found that mitochondrial genes were significantly 

decreased in RTS lines compared to the RTU lines (Supplementary Figure S6) suggesting that 

the radiation selection of GBM tumors alters the recruitment of non-tumor stromal cells and that 

these non-tumor stromal cells are functionally unique from the cells recruited by the parental 

tumor. Another potential limitation is the lack of detailed patient clinical characteristics for the 

original tumors used to generate the PDX.  Our molecular data, however, suggest that our models 
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retain diversity and display features that mirror recurrent clinical specimens. Future work will 

confirm the master regulatory potential of the numerous lncRNA targets that were identified, 

particularly in their connection with DDR and kinase activation. Moreover, most small molecule 

inhibitors effectively target multiple kinases. As such, it is unclear the relative contribution of 

individual kinases identified to the RTS phenotype based on drug treatment alone. Additional 

studies are needed to pinpoint the key kinase regulators in the RTS tumors, including in vivo 

experimentation.   

To our knowledge, our in vivo RTS GBM PDX models are unique in the field. The differential 

enrichment in vivo of GBM kinase signaling is recapitulated in vitro, allowing for this model 

system’s versatility in the study of GBM tumor recurrence. Our in silico lncRNA analysis 

pipeline has identified known and novel lncRNAs associated with therapy resistance. We have 

presented evidence which links several lncRNAs to DEGs in a variety of differentially regulated, 

key GBM molecular pathways. Our results are consistent with the known regulatory roles of 

lncRNAs and may suggest this class of molecules as potential therapeutic targets in the treatment 

of recurrent, intractable GBM as well as in other cancers. We have also shown that our integrated 

workflow is able to reveal actionable lncRNA-related pathway targets using SMIs that have 

efficacy in recurrent, therapy-selected tumors. The combination of these RTS models with 

matched global kinomic and transcriptomic analysis represents a novel preclinical method for 

identifying druggable targets in intractable, recurrent GBM tumors. 
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Methods  

PDX generation 

PDXs were established from either primary or recurrent GBM surgical specimens, obtained from 

the Brain Tumor Tissue Core under IRB (X050415007) and IACUC (21435) approval. These 

PDXs were established by injecting tumor chunks from patient tumors into the flank of athymic 

nude mice. These tumors were then serially passaged in mice with periodic cryopreservation of 

tumor chunks at various passages for future cultivation and study. Additional PDXs were 

acquired from Drs. C.D. James (Northwestern University, Chicago, IL, USA) and J.N. Sarkaria 

(Mayo Clinic, Rochester, MN, USA) including 4 tumors that are isogenic to 4 of these parental 

PDXs from Dr. Sarkaria based on selection of temozolomide-resistant tumors from previously 

temozolomide-sensitive PDXs (52). A total of 20 GBM PDX were initially included in our 

screenings for this study. 

PDX in vivo radiation screening and selection 

Radiation screening and selection were performed in heterotopic PDX cultivated in athymic nude 

mice. Ionizing radiation was delivered using an X-Rad 320 (Precision X-Ray Irradiation, North 

Branford, CT) and measured using a dosimeter placed in the treatment field. Heterotopically 

tumor-implanted mice (n=5 per group) were anesthetized and administered 6 fractions of 2 Gy 

each over a period of two weeks with doses delivered on Monday, Wednesday, and Friday. 

Radiation administration was initiated when the average tumor volume of the 5 mice was 

measured to be approximately 200cc. Tumor volume was measured using tissue calipers a 

minimum of three times per week during and following the treatment period. Tumor volume was 

calculated using the modified ellipsoid formula ½ (length x width2) (53, 54). The endpoint of the 

assay was defined by the time in days it took for the tumor to double in volume from its initial 
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volume on the first day of irradiation. Tumor doubling time less than 20 days was defined as 

resistant to therapy and longer than 20 days was sensitive. Tumors which were found to be 

initially radiation sensitive then underwent serial selection for 6-8 rounds of radiation therapy. 

The fastest growing tumor from each previous round was harvested and implanted 

heterotopically into nude mice (n=2) for the subsequent radiation round. Highly sensitive tumors 

that were “cured” by the standard 12Gy treatment received only 3 X 2Gy fractions for the initial 

2 rounds of selection, after which the dosage was returned to the standard course. After the 

selection rounds were completed, repeat screening with 5 mice per group was performed to 

confirm the resistant, RTS phenotype.   

Orthotopic PDX 

Orthotopic PDX were established by stereotactic intracranial injection of 300,000 tumor cells, 

dissociated from flank tumors, suspended in 5μL of 5% methylcellulose in Dulbecco’s MEM 

(32). Tumors from control mice were resected and snap frozen in liquid nitrogen for later 

molecular analysis. 

Whole exome sequencing 

Genomic DNA was extracted from flash frozen tumors using the Qiagen (Germantown, MD) 

DNeasy Blood & Tissue Kit (69504).  Sequencing libraries were prepared using the Illumina 

TruSeq DNA Exome kit (20020615), prior to pooling in groups of 12 and sequencing using a 

Nextseq 550 (Illumina, San Diego, CA) with a NextSeq 500/550 High Output Kit v2.5 (150 

Cycles) (20024907) using paired-end settings (2x75).   

SNP calls. Raw paired-end exome reads were mapped to a human (hg38) and mouse (mm10) 

combined reference genome using tophat (version 2.1) which uses bowtie2 (version 2.3.3) as its 
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underlying short read mapper. Next, an mpileup file was created using bcftools (version 1.6). 

bcftools was then used to call variants. Vcftools.pl varFilter was then used to filter the calls by 

sequence read depth (minimum depth 500 nucleotides across all samples). The called SNPs that 

passed this quality thresholding were then used as input to SNPRelate (version 1.26.0) within R 

(version 4.1.2). The first 10 principal components were extracted from SNPRelate and were then 

used to perform multi-dimensional scaling (MDS). A distance matrix was calculated between 

each sample and a plot was made (using corrplot package version 0.92) with 1-(Euclidean 

distance) of the MDS plot.  

Copy number alteration calls. Raw paired-end exome reads were mapped to a human (hg38) and 

mouse (mm10) combined reference genome using bowtie2 (version 2.3.3). Next, raw reads were 

aggregated using patternCNV script bam2wig.sh. PatternCNV pipeline was run per manual with 

default parameters. Log-2-fold change calls data was extracted from PatternCNV workflow. 

Data was concatenated and imported into R for data visualization. Exon-level data was 

summarized by gene using “dplyr” package. “pheatmap” package was used to create a heatmap. 

In addition, genome-wide plots were visually examined for recurrent large copy-number 

alterations in the individual RT pairs. Two RTS lines had large chromosome segment 

amplifications in copy number at chromosome 12q. A zoomed in view of this locus is shown in 

the parental line and the RTS lines for the two affected PDXs (Figure 2B). 

 

RNA Sequencing 

Orthotopic tumors were resected from mouse brains, divided into two halves that were placed in 

sterile screw-cap vials (Sarstedt, Newton , NC), and snap frozen in liquid nitrogen. Samples were 

stored at -70oC until used. One half of the tumor was used for RNA isolation and the other for 
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protein lysate. RNA extraction was performed using the Norgen Animal Tissue RNA extraction 

kit (Norgen, Thorold, ON) following the kit instructions. Snap frozen tissue was first ground into 

a powder using a mortar and pestle then processed according to the Norgen kit. RNA was 

quantified using a NanoDrop™ (Thermo Fisher Scientific, Waltham, MA) and 50μg of RNA was 

sub-aliquoted for RNA sequencing. RNA sequencing was performed by GeneWiz (South 

Plainfield, NJ). RNA integrity and fragment size were tested using RNA ScreenTape® with 

average RIN numbers of 8.5 and average fragment length around 4500nt. The samples were then 

depleted of rRNA before conducting stranded library preparation. Sequencing using biological 

triplicates for each sample was performed on an Illumina HiSeq 2000 using 150bp PE reads with 

a median of around 72 million reads per sample. FastQC reports were generated pre-trimming 

and post-trimming of low-quality bases (Phred score <20) and Illumina adapter sequences using 

trim-galore-0.4.5. Quasi-mapping and quantification were performed using Salmon-0.12.0 (with 

--gencode and -k 31 flags for index generation and -l ISR, --gcBias and --validateMappings flags 

for quantification) against the Gencode GRCh38.p12 release 31 reference transcriptome. A 

multiQC report was then generated including the use of FastQ Screen (v0.11.2 with 

dependencies to Bowtie2 v2.3.3 and SAMtools v1.6) to identify the proportions of mouse to 

human transcripts detected. Three replicates were excluded from further analysis due to high 

mouse transcript contamination. We retrospectively determined from resection notes that these 

high mouse content tumors were highly infiltrative and hemorrhagic upon resection. A tx2gene 

table was then generated from a TxDB object using Bioconductor-genomicfeatures-1.32.3. This 

table and the quant.sf files from Salmon were then read using tximport (v1.16.1), biomaRt 
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(v2.44.4), and DESeq2 (v1.28.1) to generate normalized expression tables used in further in 

silico analysis.  

Kinomic analysis 

Kinome profiling was performed in the UAB Kinome Core as done previously (55, 56). Another 

portion of the same snap frozen orthotopic tumor was lysed with pestle grinding for 30min in M-

PER™ lysis buffer (Pierce, Rockford, IL) at 4C to extract protein (Bradford assay quantified) for 

kinomic analysis. Samples (15μg PTK, 2μg STK per array), in biological triplicate, were 

processed and run on the tyrosine (PTK; 86402 PamChips) or serine/threonine (STK; 97102 

PamChips) arrays, testing phosphorylation kinetically against 196 (PTK) or 144 (STK) 12-15 

amino-acid substrate targets on the PamStation12 (PamGene, s-Hertogenbosch, The 

Netherlands). Phosphorylation of peptides was measured over 154 (PTK) or 164 (STK) cycles, 

with exposures from 10-200ms that were integrated into slopes, multiplied by 100, and Log2 

transformed in BioNavigator (v6.3) (PamGene). Mean peptide phosphorylation per PDX (i.e., 

mean of replicates) were used for heatmap clustering (unsupervised geometric means-distance), 

and change per-PDX pair, per-barcode were used for upstream kinase prediction (UpKin 

PamApp; PTK v6.0, STK v6.0) and for PCA analysis (Shiny PamApp). Kinases with a mean 

final score (MFS) >2.0 or mean kinases ktatistic (MKS) >5.0 were retained. 

In vitro drug response viability assay 

PDXs were propagated as neurospheres, cultured in PDX media (DMEM/F12 (50/50 with 2% 

B27, 20ng/ml EGF, 20ng/ml bFGF, 1% sodium pyruvate, 1% penicillin and streptomycin) 

similar to our prior reports (57). Neurospheres were dissociated for 20 minutes with Accutase 

(Innovative Cell Technologies, San Diego, CA)  at 37C°, viability-quantified with trypan blue 
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utilizing the Countess II (ThermoScientific, Waltham, MA), and plated at 500-1500 viable cells 

per 100 µL for 24h prior to treatment with indicated doses of brigatinib and sitravatinib 

(Selleckchem, Houston, TX). After 7 days, CellTiter-Glo® (CTG) reagent was added at 20 µl 

per well for 30 minutes at 37C, prior to reading luminescence on the BioTek Synergy H1 

(Winooski, VT). Raw values were corrected to untreated (DMSO) control. 

 

Antibody based phospho-kinase array analysis 

PDX cells were maintained in neurobasal media as described previously (57). Cells were lifted 

from Geltrex with Accutase (Innovative Cell Technologies, San Diego, CA) lysates were 

collected with supplied reagents and. of phospho-specific protein abundance using R&D 

Phospho-Kinase Arrays (#ARY003B, R&D Systems, Minneapolis, MN). Cells were collected 

according to the manufacturers protocol, with protease and phosphatase inhibitors and protein 

quantified as in the kinomics methods. 300 micrograms of protein were loaded per array, and 

probed overnight, prior to secondary application for 4h and chemiluminescent development and 

film scanning. Image analysis was conducted in Image J (v1.53p, NIH) with background removal 

(rolling ball, 150 pixels, 1200dpi image) prior to image inversion and manual spot selection and 

intensity quantitation on identical sized regions of interest. All spots were quantified in duplicate. 

Spots with a mean intensity change of greater than 25% between groups were heatmapped by % 

change using GraphPad Prism 9.  

In silico analysis 

The DESeq2 R package was used for normalization, clustering, and DEG. PCAs were performed 

using the R stats and factoextra packages. DGCA was performed using the DGCA R package 
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(v1.0.2) with pre-filtering of zero counts and a filter based on empirical Bayes statistics for DEG 

between RTU and RTS replicates for each sample. The combined normalized expression table 

and expression table based on pairwise DEG results for each sample were used as an input to 

FastEMC (v0.0.6) which selected and sorted the genes which best discriminated between the 

sensitive and resistant phenotype. Normalized expression was in parallel used as the input for the 

WGCNA R package (v1.69) which selected gene modules that distinguished between and within 

samples. The modules within samples were analyzed with BEERE to generate interaction 

networks which were then input in Gene Terrain to visualize the differential utilization of genes 

within the modules between RTU and RTS PDX. A table of cDNA was converted into FASTA 

format for lncRNAs and coding genes identified by DEG, DGCA, and FastEMC using the 

biomaRt package. FASTAs for lncRNAs and coding genes were input into ASSA (v1.00) to 

identify RNA:RNA predicted interactions. FASTAs for the lncRNA and the Ensembl Regulatory 

Build (58) were input into Triplexator in order to identify lncRNA:DNA triple helix sites. 

Triplexator flags –m R,Y,M,P,A; –v -of 0; and –rm 2 were used. Results were filtered to remove 

any results which contained errors. LncRNA:RNA and lncRNA:DNA binding results were 

visualized using Circos. BedTools (v2.29.2) was then used to search 20kb upstream and 

downstream from triple helix sites to identify genes proximal to these potential binding sites. 

Genes that were both proximal to the lncRNA binding sites and identified as DEGs were 

considered as purported lncRNA cis-regulatory targets. The R corrr (v0.4.2) package was used to 

find correlations between the expression of lncRNAs and the proximal genes. Correlations were 

also calculated for pairwise and global differentially regulated genes that intersected curated 

gene sets for DDR, stemness, chromatin remodeling, cell cycle progression, among others. 

Genes of interest from DEG, DGCA, FastEMC, ASSA, and Triplexator/BedTools were then 
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input into PAGER and GSEA (59, 60) for gene set enrichment analysis. Key terms from PAGER 

were then combined with the lists of differentially regulated genes as input for BEERE which 

constructed gene:semantic interaction networks. The intersection of DEGs from each PDX pair 

with lncRNAs and their proximal genes was used as input to WIPER which identified key gene 

pair relationships and generated lncRNA:mRNA transcript interaction networks. In parallel, 

upstream kinomics data was combined with lncRNA proximal genes of interest using 

MetaCore/GeneGo (Clarivate Analytics, Philadelphia, PA) for integrated pathway analysis. 

Inherent radiation resistance analysis 

To assess the transcriptomic differences between inherently resistant and sensitive tumors, we 

performed differential expression analysis between these two groups (n=7 sensitive, n=6 

resistant) using Affymetrix array data (Whole Transcript Human Exon 1.0 ST). Data were 

quantile-normalized together with the downloaded Affymetrix Human Exon 1.0 ST data of the 

core TCGA samples (61).  Data were then summarized into expression levels for each gene using 

the pipeline described by Lockstone (62).  PDX samples were run in triplicate and collapsed 

using the average expression. The EdgeR and limma R packages were used to perform the 

differential expression analysis. Samples were grouped into a DGEList object and then 

normalization factors were calculated. The model used for analysis was ~0+PDX_ID+RT_Status 

to account for differences in radiation status as well as tumor specific baseline differences. The 

dispersion was then estimated using the estimateDisp() function. We then tested the differences 

between inherent resistant and sensitive tumors using the exactTest() function. A Benjamini-

Hochberg (BH)-adjusted p-value of 0.05 was used as the significance threshold. Over 

representation analysis was then performed in WebGestAlt using available GO and pathway 
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databases. Enrichment analysis was also performed using the Broad GSEA program using the 

default settings and a combination of MsigDB sets as well as our custom gene sets. 

Statistics 

P-values for differential expression were calculated using Fisher’s exact test and then adjusted 

using the Benjamini-Hochberg procedure. False discovery rates (FDR) were used for all GSEA, 

ORA, and PAGER results. In vitro growth assays including comparisons of tumor median 

doubling times were evaluated for significance using a standard two-tailed student’s T-test. 

Comparisons of Kaplan Meier endpoint-probability traces were made using log-rank tests. P-

values <0.05 were considered significant. 

Figure preparation 

Several figures (1-4, and 6), including the graphical abstract, were created with BioRender.com 

under their academic license terms. 

Data and resource sharing 

 Data, resources/reagents, software and further information requests should be directed to the 

Corresponding Author. Whole exome sequencing data can be downloaded using accession 

number PRJNA847439 (https://www.ncbi.nlm.nih.gov/sra/PRJNA847439). The RNA-Seq data 

have been deposited in NCBI's Gene Expression Omnibus and are accessible through GEO 

Series accession number GSE206225 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE206225). Detailed in silico methods 

are included in the Supplementary Information.  

Study and research approval 
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PDXs were established from either primary or recurrent GBM surgical specimens, obtained from 

the Brain Tumor Tissue Core under IRB (X050415007) and IACUC (21435) approval. 
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Figure 1. GBM PDX RT-selected models exhibit differences in survival and molecular 
diversity. (A) Initial RT sensitivity status and median doubling times for tumors post RT. (B) 
serial in vivo RT selection methodology. (C) RTS (red, dashed line) and RTU (blue, solid line) 
combined endpoint probabilities following initiation of radiation treatment. P-value calculated 
from log-rank test. (D) changes in median doubling time pre- and post-RT selection. P-values 
calculated by two-sided student’s t-test. E, Basic characteristics of PDX used for RTS with 
gender (M=male, F=Female), patient age, and original source. F, Log-2-fold change copy 
number calls from PatternCNV for GBM hallmark genes. Median survival IC (n=6). Median 
doubling time (n=5). 
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Figure 2. Identification of chromosome 12q14 amplification in select GBM PDX-RT 
models. (A) Multi-dimensional scaling (MDS) of SNP correlations from whole exome 
sequencing data. A distance matrix was calculated between each sample and a corrplot was made 
with 1-(Euclidean distance) of the MDS plot. (B) PatternCNV output zoomed in view for 
amplification locus in chromosome 12q for JX14P and JX14P-RT (left panel) and X1153 and 
X1153-RT (right panel). 
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Figure 3. GBM PDX grossly separate according to patient tumor of origin with a small 
number of significantly DEGs between RTU and RTS. (A) PCA of global transcriptomic 
differences. (B) Heatmap of globally DEGs when modeled as ~ PDX_ID + RTS. (C) Volcano 
plot of globally DEGs when modeled by ~ RTS alone (Red text meet cutoffs of log2 fold change 
>2, <-2, adjusted p-value <0.05). (D) Circos plot of differentially regulated lncRNAs (red) with 
their direct DNA-binding targets (black) and differentially regulated lncRNAs (blue) with their 
DNA binding sites. 
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Figure 4. Differential enrichment of DDR pathways and response to DNA damage in PDX 
pairs. Enrichment of DDR pathways in RTS globally (A), in X1516 (B), in JX12T (C), in 
JX14T (D), in JX39P (E), and in X1153 (F). The outside edge of the radar plot is labeled and 
color coded by DDR pathway. Lines and bars within the plot indicate the normalized enrichment 
score (-2 to 2) for each DDR signature. Red bars indicate enrichment in the RTS PDX and blue 
bars indicate enrichment in the RTU PDX. Significantly DEGs within each pathway along with 
their significance level and log2 fold change (FC) are listed in the boxes color coded to match 
the DDR pathways in the radar plot. P-values for differential expression are from Fisher’s exact 
test. Underlines genes are correlated with the expression of lncRNAs which are labeled next to 
the DDR gene. (+) indicates a positive correlation with expression and (-) indicates a negative 
correlation. HR: homologous recombination, NHEJ: non-homologous end-joining, BER: base 
excision repair, NER: nucleotide excision repair, MMR: mismatch repair. 
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Figure 5. Kinase signaling alterations in RTS targeted with SMIs. Principal component 
analysis demonstrates separation of kinomic signal signatures across 3 components (A), colored 
by RTS (red) and RTU (blue) with the 1st 2 components plotted in (B).  Kinases altered in RTS 
compared to RTU for JX14P (C), JX14T (D), and JX39P(E) were modeled with GeneGo 
MetaCore™ direct-interaction or auto-expand < 20 node networks. Uploaded kinases are 
indicated with circles as RTS increased (red) or decreased (blue). Lines between nodes indicate 
interactions with color indicating type (green; positive, red; negative; grey; other). PDX tumor 
cells were grown as neurospheres and viability was measured after 7-day treatment (500nM 
sitravatinib or brigatinib) with CellTiter-Glo® in (F) and displayed as percentage of vehicle 
control with bars for SEM, with *** indicating p<0.0001 calculated using two-way ANOVA. 

 

 
 

 

Figure 6. Phosphokinase Western blot array shows differential phosphorylated proteins in 
GBM PDX-RTS pairs. (A) R&D Systems Proteome Profiler Human Phospho-Kinase Arrays 
for RTU and RTS pairs for JX14P, JX14T, JX39P and X1465 shown with equal protein loading. 
(B) Heatmap showing relative change in phospho-antibody spot intensity with at least 25% 
difference as compared to parent tumor signal. 
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