
Supplementary Information: 

Overview 

The pipeline begins with deep sequencing of total RNA from orthotopic xenograft tumors with a 
confirmed phenotype. The raw sequencing files are then processed using the Salmon pseudo-
aligner which multiple benchmarks have revealed has better performance at calling lncRNAs 
than other methods such as STAR (1, 2). Next, a machine learning algorithm we developed (3) to 
call features significantly related to a given phenotype is employed in parallel with differential 
expression analysis using DESeq2 (4) and differential correlation analysis using DGCA (5). The 
sequences of all isoforms of the differentially regulated lncRNAs associated with the observed 
phenotype are then tested with two thermodynamics-based programs, Triplexator (6) and ASSA 
(7) to evaluate the nucleic acid binding potential of these transcripts. Triplexator identifies both 
the regions on the transcript of interest which possess DNA hybridization potential and the 
genomic loci in the human regulatory genome reference that these sites can form triple helices 
with. We then obtain lists of genes proximal to these lncRNA:DNA hybrid sites and correlate the 
expression of proximal genes with the lncRNAs. We then construct semantic networks and 
perform gene set enrichment analysis (GSEA) (8) to reveal the relationships between lncRNA 
expression and cancer-relevant networks.  

In silico analysis 

Feature Selection: 

The DESeq2 R package was used for normalization, clustering, and DEG. A Benjamini-
Hochberg (BH)-adjusted p-value of 0.05 was used as the significance threshold. PCAs were 
performed using the R base stats and factoextra (v1.0.7) packages. DGCA was performed using 
the DGCA R package (v1.0.2) with pre-filtering of zero counts and a filter based on empirical 
Bayes statistics for DEG between RTU and RTS replicates for each sample. The normalized 
expression table was filtered using the combined list of DEG and DGCA results for each sample 
(filtered normalized counts table). This table was used as an input to FastEMC (v0.0.6) which 
selected and sorted the genes which best discriminated between the sensitive and resistant 
phenotype (3). The top 100 predictive features (genes) were retained for downstream analysis. 
The FastEMC algorithm has since been updated utilizing the scikit-learn ML package in python 
(https://rowland-208.github.io/ivygap/).  

Gene-module selection and visualization: 

The unfiltered normalized expression table was in parallel used as the input for the WGCNA R 
package (v1.69) which selected gene modules that distinguished between and within samples. 
The modules within samples were analyzed with BEERE to generate interaction networks which 
were then input in Gene Terrain to visualize the differential utilization of genes within the 
modules between RTU and RTS PDX(9, 10).  

Nucleic acid binding prediction: 



A table of cDNA was converted into FASTA format for lncRNAs and coding genes identified by 
DEG, DGCA, and FastEMC using the biomaRt package. FASTAs for lncRNAs and coding 
genes were input into ASSA (v1.00) to identify RNA:RNA predicted interactions. ASSA results 
were filtered to remove duplicates and using an adjusted p-value cutoff of 0.0001 or less. 
FASTAs for the lncRNA and the Ensembl Regulatory Build (11) were also input into Triplexator 
in order to identify lncRNA:DNA triple helix sites. Triplexator flags –m R,Y,M,P,A; –v -of 0; 
and –rm 2 were used. Results were filtered manually in Excel to remove any results which 
contained errors and duplicates were removed. Chromosomal coordinates were then extracted 
into a new BED file (https://m.ensembl.org/info/website/upload/bed.html). This file was used to 
visualize lncRNA:RNA and lncRNA:DNA binding results using Circos.  

Identification of purported lncRNA cis-regulatory elements: 

The BED file was used as input to BedTools (v2.29.2) to search 20kb upstream and downstream 
(40kb window) from each triple helix site to identify genes proximal to these potential binding 
sites. The lists of lncRNA binding site proximal genes were compared against the global and 
pairwise DEG lists in R to find the union of significantly DEGs proximal to lncRNA binding 
sites. Genes that were both proximal to the lncRNA binding sites and identified as DEGs were 
considered as purported lncRNA cis-regulatory targets. The R corrr (v0.4.2) package was used to 
find correlations between the expression of lncRNAs and the proximal genes. Correlations were 
also calculated for pairwise and global differentially regulated genes that intersected curated 
gene sets for DDR, stemness, chromatin remodeling, cell cycle progression, among others. 
Genes of interest from DEG, DGCA, FastEMC, ASSA, and Triplexator/BedTools were then 
input into PAGER (12) for enrichment analysis. Key terms from PAGER were then combined 
with the lists of differentially regulated genes as input for BEERE which constructed 
gene:semantic interaction networks. The intersection of DEGs from each PDX pair with 
lncRNAs and their proximal genes were used as input to WIPER (13) which identified key gene 
pair relationships and generated lncRNA:mRNA transcript interaction networks.  

Potential lncRNA regulation of DDR gene sets: 

The unfiltered normalized expression table was input to GSEA (8) with custom gene sets (.gmt 
files) including the curated gene signatures of interest. The fmsb (v0.7.3) R package radarchart() 
function was used to generate radar plots for each pairwise comparison and global RTU vs RTS 
plotting the normalized enrichment scores (NES) from GSEA. Significantly DEGs that were 
proximal to lncRNA-binding sites of differentially regulated lncRNAs in each comparison were 
compared to the DDR gene-set lists. The genes which overlapped were added to the radar plots 
with the log-fold change and the sign of the correlation (corrr package) of that gene’s expression 
with the expression of the lncRNA which binds proximal to that gene’s locus.  

Integration of lncRNA-regulated DEGs with differential kinase activity: 

Upstream kinomics data was combined with lncRNA proximal genes of interest using 
MetaCore/GeneGo (Clarivate Analytics, Philadelphia, PA) for integrated pathway analysis. 
These integrated pathways are constructed for each PDX pair including the significant kinases 



differentially regulated between RTU and RTS along with related pathway enrichment based on 
lncRNA binding proximal genes selected by above mentioned methods. 

Additional Differential Expression Approaches: Several approaches were employed to 
complement the standard DE analysis by identifying combinations of features which are highly 
predictive, in the case of machine learning (ML) or which are differentially regulated between 
phenotypes in the case of differential gene correlation analysis (DGCA). Transcriptomic features 
which discriminated RTU from RTS samples were selected globally and pairwise using Fast 
Exponential Monte Carlo or FastEMC (3). This unbiased, ML approach ranks combinations of 
transcriptomic features in order of their predictive power in distinguishing between RTU and 
RTS PDX. The top 250 predictive features from FastEMC, including 29 lncRNAs and 10 
pseudogenes, exhibited overlap with global DEGs, pairwise DEGs, and gene signatures for 
DDR, stemness, chromatin remodeling, and cell cycle progression. Several of the lncRNAs 
identified by FastEMC have predicted DNA binding sites proximal to significantly DEGs 
(Figure 3 and Supplementary Figure S3). DGCA (5) was employed to identify the top 
differentially correlated gene pairs between RTU and RTS PDX. The top 1000 differentially 
correlated gene pairs along with significantly DEGs and the top 250 predictive genes from 
FastEMC were combined for further downstream analysis.  

Correlations of lncRNA and significantly altered DEGs: After confirming the non-coding 
potential of the lncRNA targets using two inspection strategies (Coding Potential Calculator 2.0 
found at http://cpc2.gao-lab.org/ and AnnoLnc 2.0 found at http://annolnc.gao-lab.org/), we 
performed correlation studies with the significantly altered DEG’s.  The X1516 pair, DUXAP9 
and DUXAP10 were positively correlated with chromatin remodeling gene RBBP7 while 
negatively correlated with HDAC9 and RERE (Supplementary Figure S3). In the X1153 pair, 
ZFAS1, SAMMSON, and SOX2-OT showed a mixture of positive and negative correlations 
with stemness-related COVL, PTPRZ1, and MAPRE2 genes (Supplementary Figure S3). In the 
JX12T pair, ZFAS1 also showed a positive regulation with MAPRE2 while simultaneously 
having a negative correlation with cell-cycle gene RFC3 (Supplementary Figure S3).  Across 
multiple lncRNAs, the forkhead box P1 (FOXP1) transcription factor is targeted both directly 
and indirectly. Correlation with proximal targets of FOXP1 reveals overlap with predictive 
features from FastEMC as well as with stemness, chromatin remodeling, and homologous 
recombination signatures. Additionally, the lncRNA AF106564.1 showed a strong positive 
correlation with the expression of AC058822.1 (ENSG00000282278), the novel FIP1L1-
PDGFRA fusion transcript as well as with NTRK3 (ENSG00000140538) which is a putative 
growth factor for CNS tumors and is also a component of multiple oncogenic fusion products 
(14). 

Network Analysis Reveals Differential Pathway Enrichment in RTS PDX: Pathway, gene set, 
gene module, and gene network level analyses were completed using GSEA (8), WebGestalt 
(15), Pathway, Annotated-list, and Gene-signature Electronic Repository (PAGER) (12), 
Weighted Gene Correlation Network Analysis (WGCNA) (16), Gene Terrain (10), Biomedical 
Entity Expansion, Ranking, and Exploration (BEERE) (9), and Weighted In-Path Edge Ranking 
for biomolecular association networks (WIPER) (13). The WGCNA ML approach identified 7 
clusters of gene modules which distinctly identify the PDX samples by patient tumor of origin 
(Figure S4A). Gene interaction networks were formed for each of these gene module clusters 



using BEERE. Differential regulation of these networks is observed between RTU and RTS PDX 
within each pair using Gene Terrain to overlay average gene expression on the gene network 
coordinates (Figure S4B).  There are 160 significantly DEGs within the JX12T WGCNA gene 
modules with the majority of genes, including cell cycle related genes, upregulated in the RTU 
line (Figure S4A, B). Over-representation analysis (ORA) identifies chromosome localization 
and cell cycle processes as being enriched in the JX12T-related gene modules (Figure S4C). 
Actively dividing cells, such as those enriched in JX12T RTU tumors, would be expected to be 
more susceptible to radiation-induced DNA damage. The top GSEA result for the JX12T-related 
gene modules were a signature of genes under-expressed in stem cell-like cholangiocarcinoma, 
enriched (over-expressed) in the JX12T RTU line (Figure S4D). This represents an enrichment 
of genes in stem-like cells, which are thought to confer therapy resistance, in the JX12T RTS 
PDX.  

WIPER Networks: In order to identify the potential regulatory impact of lncRNAs on gene 
networks at the epigenetic level, we compared RTU/RTS DEGs to the genes proximal (within 
40kb window) to predicted lncRNA DNA binding sites Supplementary Figure S2B. WIPER 
analysis (Supplementary File S2) of combined global DEGs intersecting with lncRNA DNA 
binding site proximal gene targets revealed a SMAD3 centric network, indicating potential 
enrichment of TGFR-beta signaling. Gene networks were constructed for each PDX pair using 
pairwise differentially regulated lncRNAs and significantly differentially expressed genes. The 
lncRNA-DNA binding potential and proximal gene list were constructed for each PDX pair. This 
list was then compared to the list of pairwise significantly differentially expressed genes to find 
the union of the two sets. In the JX12T, JX14P, X1465, and X1516 pairs, WIPER identified 
several collagen-related genes as central to these networks. This aligns with PAGER, GSEA, and 
ORA results highlighting changes in focal adhesion and extracellular matrix remodeling. In 
JX14T, networks were centered on lncRNAs ZFAS1, DUXAP10, AUXG01000058.1, and 
SOX2-OT as well as centers around EGFR, PIK3R1, and SRC. JX39P networks were centered 
on SAMMSON, DUXAP10, ZFAS1, AUXG01000058.1, ERBB2, STAT1, and proto-oncogene 
MYC. X1465 and X1516 pairs had proto-oncogene FOS centric networks. EGFR, EGF, and 
ACTB were also central nodes in the X1465 network.  
 
Mouse transcriptome analysis: Raw paired-end RNA-seq reads were mapped to a human (hg38) 
and mouse (mm10) combined reference genome using tophat2 which uses bowtie2 (version 
2.3.3) as its short read mapper. HTSeq was used to quantify read counts for each gene locus for 
both the human and mouse genes. Separately, the human and mouse gene sets were imported 
into R. Library size normalization and differential gene expression analysis were performed 
DESeq package per user manual. Cell line was fit in the model to reduce variation due to 
individual level differences in gene expression and each gene was tested for changes as a 
function of RT selection, RTS versus RTU. Log-fold change for each gene was extracted from R 
in a rank list format and served as input for Gene Set Enrichment Analysis (GSEA) software 
(version 4.1.0). The pre-ranked gene set workflow of GSEA was performed for hallmark curated 
gene sets and positional gene sets. A false-discovery rate of 10% was used as a threshold for 
identifying altered gene sets. See Supplementary Figure S6. 

Software List 



Software (Versions) 

• ASSA (v1.00) 

• BedTools (v2.29.2) 

• BEERE (http://discovery.informatics.uab.edu/BEERE/) 

• BioNavigator (v6.3) 

• Bowtie2 (v2.3.3) 

• FastQC (v1.8.0) 

• FastQ Screen (v0.11.2) 

• GeneTerrain 

• multiQC (v1.4) 

• MetaCore/GeneGo 

• PAGER (v2.0, http://discovery.informatics.uab.edu/PAGER/) 

• Python (v2.7) 

• WebGestAlt (http://www.webgestalt.org/) 

Python Packages 

o FastEMC (v0.0.6) 

o Numpy (v1.19.4) 
o Pandas (v1.1.4) 

o Scikit-learn (v0.23.2) 
o Tqdm (v4.54.0) 

• R (v4.0.2) 

R Packages 

o Affy (v1.66.0) 

o BiocManager (v1.30.10) 

o biomaRt (v2.44.4) 
o Caret (v6.0-86) 

o clanC  
o Corrr (v0.4.2) 

o DESeq2 (v1.28.1) 
o DGCA (v1.0.2) 



o Dplyr (v1.0.2) 
o edgeR (v3.30.3) 

o Factoextra (v1.0.7) 
o FactoMineR (v2.3) 

o Fmsb (v0.7.3) 
o Genefilter (v1.70.0) 

o Genomicfeatures (v1.32.3) 
o Ggplot2 (v3.3.2) 

o Limma (v3.52.1) 
o pdfCluster (v1.0-3) 

o pheatmap (v1.0.12) 
o PoiClaClu (v1.0.2.1) 

o RColorBrewer (v1.1-2) 
o readR (v1.3.1) 

o Tximport (v1.16.1) 
o WGCNA (v1.69) 

• Reference Genome: Ensembl GRCh37 version 97 

• SAMtools (v1.6) 

• Triplexator (v1.3.2) 

• WIPER (http://discovery.informatics.uab.edu/WIPER/) 
  



 
Supplementary Figure S1: Inherent radiation resistance differentially expressed gene analysis. A, 
Significantly altered genes within the inherently radiation resistant group are shown as log fold 
change with volcano plot. B, Over representation analysis of these 26 genes revealed no 
significant enrichment at an FDR of <.05, Top 10 results are shown. C, Enriched molecular 
function GO terms are shown for inherently resistant tumors. D, The top 2 enriched gene sets 
from GSEA using the MSigDB H and C6 sets are shown for inherently resistant PDX. Created 
with BioRender. 



 

 
Supplementary Figure S2: lncRNA Examination. A, CASC19 transcript expression (log10 
scaled) in RTU (sensitive) versus RTS (resistant) pairs. B, z-score of expression of CASC19 
along with associated DEGs in the JX39P pair. C, Workflow for determining potential cis-
regulatory action of lncRNAs. lncRNAs of interest are identified in pairwise analysis from 
machine learning, differential expression, and differential correlation analysis. The sequences of 
these lncRNAs are compared to a double stranded DNA library to predict triple helix binding 
sites using the program Triplexator. Then bedtools is used to look 20kb up and down stream of 



each triplex site to identify proximal genes to the lncRNA:DNA binding sites. The proximal 
genes list are then compared to the pairwise differential expression results to find genes common 
to both sets. These genes are purported cis-regulatory targets of the significant lncRNAs. Created 
with BioRender. 
 

 
Supplementary Figure S3: lncRNA correlations with lncRNA:DNA binding site significantly 
differentially expressed proximal genes. (A) Positive correlation of expression of ZFAS1 with 
stemness related gene MAPRE2. (B) Negative correlation of expression of ZFAS1 with cell 
cycle related gene RFC3. (C) Correlations of expression of SOX2-OT with non-homologous end 
joining DNA repair genes XRCC4 and RAD9A. (D) Negative correlation of AC008764.8 with 
Fanconi anemia-related gene FANCC. (E) Positive correlation of AUXG01000058.1 with 
homologous recombination gene SEM1. (F) Correlations of expression of AC002456.1 with 
DNA damage response genes XRCC5 and MNAT1. (G) Patterns of expression of multiple 
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lncRNAs with multiple chromatin remodeling genes in X1153. (H) Patterns of expression of 
multiple lncRNAs with multiple stemness related genes. 
 

 
Supplementary Figure S4: Distinct gene modules define PDX by patient of origin while 
differential regulation within modules define RTU verses RTS. A, gene module Pearson 
correlations across PDX samples. Colored boxes along y-axis indicate gene modules. B, Gene 



Terrain maps of gene module regulation in RTS and RTU averaged across replicates (x,y- gene 
module coordinates; z- module expression fold-change). C, Over representation analysis 
significantly enriched terms of genes within the JX12T modules. False discovery rate (FDR) was 
calculated for gene set enrichment. D, enrichment of genes downregulated in stem cell-like 
cholangiocarcinoma (Oishi) in JX12T-related modules. 
 

 
Supplementary Figure S5: Upstream kinase scores for R&D Systems Proteome Profiler 
PhosphoKinase Array. Upstream kinase scoring from Kinexus Phosphonet was manually entered 



for each available residue of >25% (mean of 2) altered array spots (See Figure 6). Kinases were 
pulled from available Kinexus Phosphonet database, and a sum of the top 10 kinases Phosphonet 
scores were compiled per each kinase and ranked. The top 20 kinases are shown, with 
overlapping kinases from PamStation kinomics screen mean final score >2.0 are highlighted in 
green. A residue correction factor (i.e., multilply Kinexus score by 1, 0.5, 0.25, depending on 
number of residues per phospho-target on the array) was applied. A, JX14P-RT; B, JX14T-RT; 
C, JX39P-RT; D, X1465-RT. Created with BioRender. 
 

 
Supplementary Figure S6: Gene set enrichment analysis for mouse-specific transcriptome.  For 
the positional gene sets in the mouse-specific transcriptome, only the mitochondrial genes were 
significantly altered with mitochondrial genes having decreased expression in the mouse cells 
that infiltrate tumors that have been radiation-selected. The GSEA plot is shown.  
 
Descriptions of Supplementary Files: 
 
Supplementary File S1: Pearson correlations of lncRNA expression with lncRNA:DNA binding 
site proximal genes. Top positive and negative correlations for lncRNA:proximal gene pairs. 
Genes highlighted yellow are directly related to cancer pathways. Green highlighted genes 
indicate genes common to both DGCA and FastEMC/DEG analysis. Blue highlighted gene is a 
cancer-related fusion product of interest. 
 
Supplementary File S2: WIPER gene interaction networks using lncRNAs and lncRNA:DNA 
binding site proximal genes. Diamonds indicate lncRNAs. Circles indicate proximal genes. 
 



Supplementary File S3: Pairwise upstream kinase predictions. Kinases ranked by mean final 
kinase score. Mean kinase statistic indicates direction of kinase activity enrichment (red positive 
enrichment in RTS, blue positive enrichment in RTU.) 
 
Supplementary File S4: GeneGo pathway analysis based on pairwise differentially expressed 
lncRNA:DNA proximal genes alone (DEG (40kb)) or based on transcriptomics integrated with 
pairwise kinomics (DEG + Kinomics). Shaped are standard GeneGo Symbols. Smaller circle 
offset in upper-right corner color indicates enrichment in RTS (red) or in RTU (blue). Arrows 
indicate a neutral relationship (grey), positive relationship (green), or negative relationship (red). 
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