Supplementary Information:
Overview

The pipeline begins with deep sequencing of total RNA from orthotopic xenograft tumors with a
confirmed phenotype. The raw sequencing files are then processed using the Salmon pseudo-
aligner which multiple benchmarks have revealed has better performance at calling IncRNAs
than other methods such as STAR (1, 2). Next, a machine learning algorithm we developed (3) to
call features significantly related to a given phenotype is employed in parallel with differential
expression analysis using DESeq?2 (4) and differential correlation analysis using DGCA (5). The
sequences of all isoforms of the differentially regulated IncRNAs associated with the observed
phenotype are then tested with two thermodynamics-based programs, Triplexator (6) and ASSA
(7) to evaluate the nucleic acid binding potential of these transcripts. Triplexator identifies both
the regions on the transcript of interest which possess DNA hybridization potential and the
genomic loci in the human regulatory genome reference that these sites can form triple helices
with. We then obtain lists of genes proximal to these IncRNA:DNA hybrid sites and correlate the
expression of proximal genes with the IncRNAs. We then construct semantic networks and
perform gene set enrichment analysis (GSEA) (8) to reveal the relationships between IncRNA
expression and cancer-relevant networks.

In silico analysis
Feature Selection:

The DESeq?2 R package was used for normalization, clustering, and DEG. A Benjamini-
Hochberg (BH)-adjusted p-value of 0.05 was used as the significance threshold. PCAs were
performed using the R base stats and factoextra (v1.0.7) packages. DGCA was performed using
the DGCA R package (v1.0.2) with pre-filtering of zero counts and a filter based on empirical
Bayes statistics for DEG between RTU and RTS replicates for each sample. The normalized
expression table was filtered using the combined list of DEG and DGCA results for each sample
(filtered normalized counts table). This table was used as an input to FastEMC (v0.0.6) which
selected and sorted the genes which best discriminated between the sensitive and resistant
phenotype (3). The top 100 predictive features (genes) were retained for downstream analysis.
The FastEMC algorithm has since been updated utilizing the scikit-learn ML package in python
(https://rowland-208.github.io/ivygap/).

Gene-module selection and visualization:

The unfiltered normalized expression table was in parallel used as the input for the WGCNA R
package (v1.69) which selected gene modules that distinguished between and within samples.
The modules within samples were analyzed with BEERE to generate interaction networks which
were then input in Gene Terrain to visualize the differential utilization of genes within the
modules between RTU and RTS PDX(9, 10).

Nucleic acid binding prediction:



A table of cDNA was converted into FASTA format for IncRNAs and coding genes identified by
DEG, DGCA, and FastEMC using the biomaRt package. FASTAs for IncRNAs and coding
genes were input into ASSA (v1.00) to identify RNA:RNA predicted interactions. ASSA results
were filtered to remove duplicates and using an adjusted p-value cutoff of 0.0001 or less.
FASTAs for the IncRNA and the Ensembl Regulatory Build (11) were also input into Triplexator
in order to identify IncRNA:DNA triple helix sites. Triplexator flags —-m R,Y,M,P,A; —v -of 0;
and —rm 2 were used. Results were filtered manually in Excel to remove any results which
contained errors and duplicates were removed. Chromosomal coordinates were then extracted
into a new BED file (https://m.ensembl.org/info/website/upload/bed.html). This file was used to
visualize IncRNA:RNA and IncRNA:DNA binding results using Circos.

Identification of purported IncRNA cis-regulatory elements:

The BED file was used as input to BedTools (v2.29.2) to search 20kb upstream and downstream
(40kb window) from each triple helix site to identify genes proximal to these potential binding
sites. The lists of IncRNA binding site proximal genes were compared against the global and
pairwise DEG lists in R to find the union of significantly DEGs proximal to IncRNA binding
sites. Genes that were both proximal to the IncRNA binding sites and identified as DEGs were
considered as purported IncRNA cis-regulatory targets. The R corrr (v0.4.2) package was used to
find correlations between the expression of IncRNAs and the proximal genes. Correlations were
also calculated for pairwise and global differentially regulated genes that intersected curated
gene sets for DDR, stemness, chromatin remodeling, cell cycle progression, among others.
Genes of interest from DEG, DGCA, FastEMC, ASSA, and Triplexator/BedTools were then
input into PAGER (12) for enrichment analysis. Key terms from PAGER were then combined
with the lists of differentially regulated genes as input for BEERE which constructed
gene:semantic interaction networks. The intersection of DEGs from each PDX pair with
IncRNAs and their proximal genes were used as input to WIPER (13) which identified key gene
pair relationships and generated IncRNA:mRNA transcript interaction networks.

Potential IncRNA regulation of DDR gene sets:

The unfiltered normalized expression table was input to GSEA (8) with custom gene sets (.gmt
files) including the curated gene signatures of interest. The fmsb (v0.7.3) R package radarchart()
function was used to generate radar plots for each pairwise comparison and global RTU vs RTS
plotting the normalized enrichment scores (NES) from GSEA. Significantly DEGs that were
proximal to IncRNA-binding sites of differentially regulated IncRNAs in each comparison were
compared to the DDR gene-set lists. The genes which overlapped were added to the radar plots
with the log-fold change and the sign of the correlation (corrr package) of that gene’s expression
with the expression of the IncRNA which binds proximal to that gene’s locus.

Integration of IncRNA-regulated DEGs with differential kinase activity:
Upstream kinomics data was combined with IncRNA proximal genes of interest using

MetaCore/GeneGo (Clarivate Analytics, Philadelphia, PA) for integrated pathway analysis.
These integrated pathways are constructed for each PDX pair including the significant kinases



differentially regulated between RTU and RTS along with related pathway enrichment based on
IncRNA binding proximal genes selected by above mentioned methods.

Additional Differential Expression Approaches: Several approaches were employed to
complement the standard DE analysis by identifying combinations of features which are highly
predictive, in the case of machine learning (ML) or which are differentially regulated between
phenotypes in the case of differential gene correlation analysis (DGCA). Transcriptomic features
which discriminated RTU from RTS samples were selected globally and pairwise using Fast
Exponential Monte Carlo or FastEMC (3). This unbiased, ML approach ranks combinations of
transcriptomic features in order of their predictive power in distinguishing between RTU and
RTS PDX. The top 250 predictive features from FastEMC, including 29 IncRNAs and 10
pseudogenes, exhibited overlap with global DEGs, pairwise DEGs, and gene signatures for
DDR, stemness, chromatin remodeling, and cell cycle progression. Several of the IncRNAs
identified by FastEMC have predicted DNA binding sites proximal to significantly DEGs
(Figure 3 and Supplementary Figure S3). DGCA (5) was employed to identify the top
differentially correlated gene pairs between RTU and RTS PDX. The top 1000 differentially
correlated gene pairs along with significantly DEGs and the top 250 predictive genes from
FastEMC were combined for further downstream analysis.

Correlations of IncRNA and significantly altered DEGs: After confirming the non-coding
potential of the IncRNA targets using two inspection strategies (Coding Potential Calculator 2.0
found at http://cpc2.gao-lab.org/ and AnnoLnc 2.0 found at http://annolnc.gao-lab.org/), we
performed correlation studies with the significantly altered DEG’s. The X1516 pair, DUXAP9
and DUXAP10 were positively correlated with chromatin remodeling gene RBBP7 while
negatively correlated with HDAC9 and RERE (Supplementary Figure S3). In the X1153 pair,
ZFAS1, SAMMSON, and SOX2-OT showed a mixture of positive and negative correlations
with stemness-related COVL, PTPRZ1, and MAPRE2 genes (Supplementary Figure S3). In the
JX12T pair, ZFAS1 also showed a positive regulation with MAPRE2 while simultaneously
having a negative correlation with cell-cycle gene RFC3 (Supplementary Figure S3). Across
multiple IncRNAs, the forkhead box P1 (FOXP1) transcription factor is targeted both directly
and indirectly. Correlation with proximal targets of FOXP1 reveals overlap with predictive
features from FastEMC as well as with stemness, chromatin remodeling, and homologous
recombination signatures. Additionally, the IncRNA AF106564.1 showed a strong positive
correlation with the expression of AC058822.1 (ENSG00000282278), the novel FIP1L1-
PDGFRA fusion transcript as well as with NTRK3 (ENSG00000140538) which is a putative
growth factor for CNS tumors and is also a component of multiple oncogenic fusion products
(14).

Network Analysis Reveals Differential Pathway Enrichment in RTS PDX: Pathway, gene set,
gene module, and gene network level analyses were completed using GSEA (8), WebGestalt
(15), Pathway, Annotated-list, and Gene-signature Electronic Repository (PAGER) (12),
Weighted Gene Correlation Network Analysis (WGCNA) (16), Gene Terrain (10), Biomedical
Entity Expansion, Ranking, and Exploration (BEERE) (9), and Weighted In-Path Edge Ranking
for biomolecular association networks (WIPER) (13). The WGCNA ML approach identified 7
clusters of gene modules which distinctly identify the PDX samples by patient tumor of origin
(Figure S4A). Gene interaction networks were formed for each of these gene module clusters




using BEERE. Differential regulation of these networks is observed between RTU and RTS PDX
within each pair using Gene Terrain to overlay average gene expression on the gene network
coordinates (Figure S4B). There are 160 significantly DEGs within the JX12T WGCNA gene
modules with the majority of genes, including cell cycle related genes, upregulated in the RTU
line (Figure S4A, B). Over-representation analysis (ORA) identifies chromosome localization
and cell cycle processes as being enriched in the JX12T-related gene modules (Figure S4C).
Actively dividing cells, such as those enriched in JX12T RTU tumors, would be expected to be
more susceptible to radiation-induced DNA damage. The top GSEA result for the JX12T-related
gene modules were a signature of genes under-expressed in stem cell-like cholangiocarcinoma,
enriched (over-expressed) in the JX12T RTU line (Figure S4D). This represents an enrichment
of genes in stem-like cells, which are thought to confer therapy resistance, in the JX12T RTS
PDX.

WIPER Networks: In order to identify the potential regulatory impact of IncRNAs on gene
networks at the epigenetic level, we compared RTU/RTS DEGs to the genes proximal (within
40kb window) to predicted IncRNA DNA binding sites Supplementary Figure S2B. WIPER
analysis (Supplementary File S2) of combined global DEGs intersecting with IncRNA DNA
binding site proximal gene targets revealed a SMAD?3 centric network, indicating potential
enrichment of TGFR-beta signaling. Gene networks were constructed for each PDX pair using
pairwise differentially regulated IncRNAs and significantly differentially expressed genes. The
IncRNA-DNA binding potential and proximal gene list were constructed for each PDX pair. This
list was then compared to the list of pairwise significantly differentially expressed genes to find
the union of the two sets. In the JX12T, JX14P, X1465, and X1516 pairs, WIPER identified
several collagen-related genes as central to these networks. This aligns with PAGER, GSEA, and
ORA results highlighting changes in focal adhesion and extracellular matrix remodeling. In
JX14T, networks were centered on IncRNAs ZFAS1, DUXAP10, AUXG01000058.1, and
SOX2-0T as well as centers around EGFR, PIK3R 1, and SRC. JX39P networks were centered
on SAMMSON, DUXAP10, ZFAS1, AUXG01000058.1, ERBB2, STATI, and proto-oncogene
MYC. X1465 and X1516 pairs had proto-oncogene FOS centric networks. EGFR, EGF, and
ACTB were also central nodes in the X1465 network.

Mouse transcriptome analysis: Raw paired-end RNA-seq reads were mapped to a human (hg38)
and mouse (mm10) combined reference genome using tophat2 which uses bowtie2 (version
2.3.3) as its short read mapper. HTSeq was used to quantify read counts for each gene locus for
both the human and mouse genes. Separately, the human and mouse gene sets were imported
into R. Library size normalization and differential gene expression analysis were performed
DESeq package per user manual. Cell line was fit in the model to reduce variation due to
individual level differences in gene expression and each gene was tested for changes as a
function of RT selection, RTS versus RTU. Log-fold change for each gene was extracted from R
in a rank list format and served as input for Gene Set Enrichment Analysis (GSEA) software
(version 4.1.0). The pre-ranked gene set workflow of GSEA was performed for hallmark curated
gene sets and positional gene sets. A false-discovery rate of 10% was used as a threshold for
identifying altered gene sets. See Supplementary Figure S6.

Software List



Software (Versions)

e ASSA (v1.00)

e BedTools (v2.29.2)

e BEERE (http://discovery.informatics.uab.edu/BEERE/)
e BioNavigator (v6.3)

e Bowtie2 (v2.3.3)

e FastQC (v1.8.0)

e FastQ Screen (v0.11.2)

e GeneTerrain

e multiQC (vl1.4)

e MetaCore/GeneGo

e PAGER (v2.0, http://discovery.informatics.uab.edu/PAGER/)
e Python (v2.7)

o  WebGestAlt (http://www.webgestalt.org/)

Python Packages

o FastEMC (v0.0.6)
o Numpy (v1.19.4)
o Pandas (v1.1.4)
o Scikit-learn (v0.23.2)
o Tqdm (v4.54.0)
e R (v4.0.2)

R Packages

o Affy (v1.66.0)

o BiocManager (v1.30.10)
o biomaRt (v2.44.4)

o Caret (v6.0-86)

o clanC

o Corrr (v0.4.2)

o DESeq2 (v1.28.1)

o DGCA (v1.0.2)



o Dplyr (v1.0.2)
o edgeR (v3.30.3)
o Factoextra (v1.0.7)
o FactoMineR (v2.3)
o Fmsb (v0.7.3)
o Genefilter (v1.70.0)
o Genomicfeatures (v1.32.3)
o Ggplot2 (v3.3.2)
o Limma (v3.52.1)
o pdfCluster (v1.0-3)
o pheatmap (v1.0.12)
o PoiClaClu (v1.0.2.1)
o RColorBrewer (v1.1-2)
o readR (v1.3.1)
o Tximport (v1.16.1)
o WGCNA (v1.69)
Reference Genome: Ensembl GRCh37 version 97
SAMtools (v1.6)
Triplexator (v1.3.2)
WIPER (http://discovery.informatics.uab.edu/WIPER/)
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Supplementary Figure S1: Inherent radiation resistance differentially expressed gene analysis. A,
Significantly altered genes within the inherently radiation resistant group are shown as log fold
change with volcano plot. B, Over representation analysis of these 26 genes revealed no
significant enrichment at an FDR of <.05, Top 10 results are shown. C, Enriched molecular
function GO terms are shown for inherently resistant tumors. D, The top 2 enriched gene sets
from GSEA using the MSigDB H and C6 sets are shown for inherently resistant PDX. Created
with BioRender.



JX39P CASC19 and DEG Targets
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Supplementary Figure S2: IncRNA Examination. A, CASC19 transcript expression (log10
scaled) in RTU (sensitive) versus RTS (resistant) pairs. B, z-score of expression of CASC19
along with associated DEGs in the JX39P pair. C, Workflow for determining potential cis-
regulatory action of IncRNAs. IncRNAs of interest are identified in pairwise analysis from
machine learning, differential expression, and differential correlation analysis. The sequences of
these IncRNAs are compared to a double stranded DNA library to predict triple helix binding
sites using the program Triplexator. Then bedtools is used to look 20kb up and down stream of



each triplex site to identify proximal genes to the IncRNA:DNA binding sites. The proximal
genes list are then compared to the pairwise differential expression results to find genes common
to both sets. These genes are purported cis-regulatory targets of the significant IncRNAs. Created

with BioRender.
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Supplementary Figure S3: IncRNA correlations with IncRNA:DNA binding site significantly
differentially expressed proximal genes. (A) Positive correlation of expression of ZFAS1 with
stemness related gene MAPRE2. (B) Negative correlation of expression of ZFAS1 with cell
cycle related gene RFC3. (C) Correlations of expression of SOX2-OT with non-homologous end
joining DNA repair genes XRCC4 and RADOYA. (D) Negative correlation of AC008764.8 with
Fanconi anemia-related gene FANCC. (E) Positive correlation of AUXG01000058.1 with
homologous recombination gene SEM1. (F) Correlations of expression of AC002456.1 with
DNA damage response genes XRCCS5 and MNATI. (G) Patterns of expression of multiple



IncRNAs with multiple chromatin remodeling genes in X1153. (H) Patterns of expression of
multiple IncRNAs with multiple stemness related genes.
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Supplementary Figure S4: Distinct gene modules define PDX by patient of origin while
differential regulation within modules define RTU verses RTS. A, gene module Pearson
correlations across PDX samples. Colored boxes along y-axis indicate gene modules. B, Gene



Terrain maps of gene module regulation in RTS and RTU averaged across replicates (x,y- gene
module coordinates; z- module expression fold-change). C, Over representation analysis
significantly enriched terms of genes within the JX12T modules. False discovery rate (FDR) was
calculated for gene set enrichment. D, enrichment of genes downregulated in stem cell-like
cholangiocarcinoma (Oishi) in JX12T-related modules.
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Supplementary Figure S5: Upstream kinase scores for R&D Systems Proteome Profiler
PhosphoKinase Array. Upstream kinase scoring from Kinexus Phosphonet was manually entered



for each available residue of >25% (mean of 2) altered array spots (See Figure 6). Kinases were
pulled from available Kinexus Phosphonet database, and a sum of the top 10 kinases Phosphonet
scores were compiled per each kinase and ranked. The top 20 kinases are shown, with
overlapping kinases from PamStation kinomics screen mean final score >2.0 are highlighted in
green. A residue correction factor (i.e., multilply Kinexus score by 1, 0.5, 0.25, depending on
number of residues per phospho-target on the array) was applied. A, JX14P-RT; B, JX14T-RT;
C, JX39P-RT; D, X1465-RT. Created with BioRender.
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Supplementary Figure S6: Gene set enrichment analysis for mouse-specific transcriptome. For
the positional gene sets in the mouse-specific transcriptome, only the mitochondrial genes were
significantly altered with mitochondrial genes having decreased expression in the mouse cells
that infiltrate tumors that have been radiation-selected. The GSEA plot is shown.

Descriptions of Supplementary Files:

Supplementary File S1: Pearson correlations of IncRNA expression with IncRNA:DNA binding
site proximal genes. Top positive and negative correlations for IncRNA:proximal gene pairs.
Genes highlighted yellow are directly related to cancer pathways. Green highlighted genes
indicate genes common to both DGCA and FastEMC/DEG analysis. Blue highlighted gene is a
cancer-related fusion product of interest.

Supplementary File S2: WIPER gene interaction networks using IncRNAs and IncRNA:DNA
binding site proximal genes. Diamonds indicate IncRNAs. Circles indicate proximal genes.



Supplementary File S3: Pairwise upstream kinase predictions. Kinases ranked by mean final
kinase score. Mean kinase statistic indicates direction of kinase activity enrichment (red positive
enrichment in RTS, blue positive enrichment in RTU.)

Supplementary File S4: GeneGo pathway analysis based on pairwise differentially expressed
IncRNA:DNA proximal genes alone (DEG (40kb)) or based on transcriptomics integrated with
pairwise kinomics (DEG + Kinomics). Shaped are standard GeneGo Symbols. Smaller circle
offset in upper-right corner color indicates enrichment in RTS (red) or in RTU (blue). Arrows
indicate a neutral relationship (grey), positive relationship (green), or negative relationship (red).
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