Supplementary Materials for

Direct targeting of wild-type glucocerebrosidase by antipsychotic quetiapine

improves pathogenic phenotypes in models of Parkinson's disease

Lena F. Burbulla^{1*}, Jianbin Zheng^{1,2*}, Pingping Song¹, Weilan Jiang¹, Michaela E. Johnson³, Patrik Brundin³ and Dimitri Krainc^{1#}

Correspondence to: <u>dkrainc@nm.org</u>

This PDF file includes:

Table S1

Fig. S1 – S5

Supplementary Table 1

Drugs	Structure	JZ-3165 FP (μM)	4-MU-β-Gly enzyme activity (μM)	Disease
Dasatinib		7.1	NA	Cancer
Cabozantinib		4.46	NA	Cancer
Vortioxetine		14.1	NA	CNS
Perphenazine		12.6	NA	CNS
Quetiapine		5.0	NA	CNS
Fluphenazine	F F F F C N N OH	11.2	NA	CNS
Tegaserod		2	12.5, inhibitor	bowel syndrome

Figure S1. Quetiapine increases wild-type glucocerebrosidase and lowers pathogenic phenotypes in *GBA1*-linked iPSC-derived dopaminergic neurons. Heterozygous 84GG *GBA1* mutant dopaminergic neurons (84GG GBA-PD) and isogenic control neurons with *GBA1* mutation corrected by CRISPR-Cas9 gene editing (CORR) were treated with DMSO (vehicle) or quetiapine (5, 15, and 25μ M) for 10 days. All samples were collected at day 130 of differentiation. (A) Triton-soluble lysates were analyzed for intracellular glucosylsphingosine (GluSph) by mass spectrometry normalized to internal phosphate (Pi) (N=3 independent experiments). (B) Immunoblot analysis of α -synuclein in Triton-insoluble lysates (N=3 independent experiments). Error bars, mean \pm SEM. Q = Quetiapine. n.s. = not significant.

Figure S2. Quetiapine increases wild-type glucocerebrosidase and lowers pathogenic phenotypes in N370S *GBA1*-linked iPSC-derived dopaminergic neurons. Heterozygous N370S *GBA1* mutant dopaminergic neurons were treated with DMSO (vehicle) or quetiapine (5, 15, and 25μ M) for 10 days. All samples were collected at day 70 of differentiation. Triton-soluble lysates were analyzed for (A) GCase protein by immunoblotting (N=4 independent experiments) and (B) GCase activity by *in vitro* enzyme activity assay (N=5-8 independent experiments). (C)

Quantification of intracellular total glucosylceramide (GluCer) species by mass spectrometry normalized to internal phosphate (Pi) (N=3 independent experiments). (**D**) Quantification of intracellular glucosylsphingosine (GluSph) by mass spectrometry normalized to internal phosphate (Pi) (N=3 independent experiments). (**E**) Immunoblot analysis of α -synuclein in Triton-soluble lysates (N=3 independent experiments). (**F**) Immunoblot analysis of α -synuclein in Triton-insoluble lysates (N=3 independent experiments) (**G**) Detection and quantification of oxidized dopamine (DA) performed by near-infrared fluorescence assay (N=3-4 independent experiments). Standard of oxidized DA ranging from 0 to 500µM shown. Error bars, mean ± SEM. **P*<0.05 and ***P*<0.01, one-way ANOVA with Tukey post hoc test. Q = Quetiapine. n.s. = not significant.

Figure S3

Figure S3. Quetiapine treatment leads to reduction of Triton-insoluble α -synuclein in LRRK2-linked PD iPSC-derived dopaminergic neurons. LRRK2 G2019S mutant dopaminergic neurons (LRRK2-PD1) were treated with DMSO (vehicle) or quetiapine (1, 5, 15, and 25µM) for 10 days. All samples were collected at day 100 of differentiation. Triton-insoluble lysates were analyzed for levels of α -synuclein (N=3 independent experiments). Error bars, mean \pm SEM. ***P*<0.01, one-way ANOVA with Tukey post hoc test. CBB = Coomassie Brilliant Blue. Q = Quetiapine.

Figure S4. Quetiapine treatment leads to wild-type glucocerebrosidase activation and partial rescue of oxidized dopamine accumulation in LRRK2-linked PD iPSC-derived dopaminergic neurons. LRRK2 G2019S mutant dopaminergic neurons (LRRK2-PD2) were treated with DMSO (vehicle) or quetiapine (5, 15, and 25 μ M) for 10 days. All samples were collected at day 100 of differentiation. (A) Triton-soluble lysates were analyzed for GCase activity by *in vitro* enzyme activity assay (N=4 independent experiments). (B) Cell lysates were analyzed for oxidized dopamine (DA) by near-infrared fluorescence assay (N=5-6 independent experiments). Standard of oxidized DA ranging from 0 to 1000 μ M shown. Error bars, mean ± SEM. **P*<0.05 and ***P*<0.01, one-way ANOVA with Tukey post hoc test.

Figure S5

Figure S5. Wild-type glucocerebrosidase (GCase) activation by quetiapine treatment in mice does not affect Triton-soluble α -synuclein levels. Gba1^{D409V/+} mutant mice were treated with saline (vehicle) or quetiapine (5mg/kg) intraperitoneally twice daily for 15 days. Immunoblot analysis of α -synuclein in Triton-soluble lysates of hippocampal tissue (n=7 saline and n=6 quetiapine-treated mice). Actin was used as loading control. n.s. = not significant.