1	Supplementary Materials
2	Type II Alveolar Epithelial Cell–Specific Loss of RhoA Exacerbates Allergic Airway
3	Inflammation through SLC26A4
4	Danh C Do ^{1*} , Yan Zhang ^{1,2*} , Wei Tu ^{1,3} , Xinyue Hu ^{1,2} , Xiaojun Xiao ⁴ , Jingsi Chen ⁵ , Haiping
5	Hao ⁶ , Zhigang Liu ^{3,4} , Jing Li ⁷ , Shau-Ku Huang ^{1,8} , Mei Wan ⁹ , Peisong Gao ^{1*}
6	¹ Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine,
7	Baltimore, MD 21224, USA
8	² Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha,
9	Hunan 410008, China
10	³ Department of Respirology & Allergy, Third Affiliated Hospital of Shenzhen University,
11	Shenzhen 518020, China.
12	⁴ Institute of Allergy and Immunology, School of Medicine, Shenzhen University, Shenzhen, China.
13	⁵ Children's Hospital, Chongqing Medical University, Chongqing 400014, China.
14	⁶ JHMI Deep Sequencing and Microarray Core Facility, Johns Hopkins University School of Medicine,
15	Baltimore, MD 21224, USA.
16	⁷ Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key
17	Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University,
18	Guangzhou, China.
19	⁸ National Institute of Environmental Health Sciences, National Health Research Institutes, Taiwan
20	⁹ Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore,
21	Maryland, USA

22 *These authors contributed equally to this work.

23 Materials and Methods

24 Measurement of airway hyper-responsiveness

Mice were anesthetized with a ketamine (90 mg/kg)/xylazine (18 mg/kg) mixture, and a tracheotomy
tube was inserted. Ventilation was initiated with a volume-cycled ventilator (Flexivent; SCIREQ
Scientific) with a positive-end expiratory pressure of 2 cmH2O). Airway responsiveness was monitored
by challenging mice with a dose-dependent aerosolized methacholine (0-30 mg/ml). The airway
resistance was measured with the Flexivent software and exported to Pulmodyn data-acquisition
software (Hugo Sachs Electronic) for data analysis (1).

31 Human subjects

The healthy subjects had normal lung function and did not suffer from respiratory or other diseases. 32 Asthma was diagnosed according to the Global Initiative for Asthma (GINA). The degree of severity 33 was based on an individual's medication use, recommended by GINA (2). This study included 55 34 35 asthma patients and classified as mild-to-moderate for 31 patients (steps1-3) and severe for 24 patients (step 4-5). During the week before the study, all subjects did not take any drugs with steroid and some of 36 them only take short-acting inhaled beta-2 agonists as needed. All participants were lifetime non-37 38 smokers, and had no evidence of COPD. We collected blood samples from patients when they came to 39 the clinic, and collected the information on their socio-demographic status. Lung function and 40 eosinophils and basophils in peripheral blood were evaluated. In all the 3 sets of human samples, both age and sex showed similar distribution in all the 3 sets of human samples. 41

42

43 Detection of Human serum SLC26A4 (Pendrin) by ELISA

44 This assay employs a two-site sandwich ELISA (orb562738, Biorbyt) to quantitate SLC26A4 in samples

45 according to the manufacturer's instructions. An antibody specific forSLC26A4 has been pre-coated

46	onto a microplate. Standards and samples are pipetted into the wells and anySLC26A4 present is bound
47	by the immobilized antibody. After removing any unbound substances, a biotin-conjugated antibody
48	specific for SLC26A4 is added to the wells. After washing, Streptavidin conjugated Horseradish
49	Peroxidase (HRP) is added to the wells. Following a wash to remove any unbound avidin-enzyme
50	reagent, a substrate solution is added to the wells and color develops in proportion to the amount of
51	SLC26A4 bound in the initial step. The color development is stopped and the intensity of the color is
52	measured.
53	
54	
55	
56	
57	
57	
58	
59	
60	
61	
62	
63	
64 65	
66	
67	

68	Refere	ences
69	1.	Zhang Y, Do DC, Hu X, Wang J, Zhao Y, Mishra S, et al. CaMKII oxidation regulates
70		cockroach allergen-induced mitophagy in asthma. The Journal of allergy and clinical
71		<i>immunology</i> . 2021;147(4):1464-77 e11.
72	2.	Boulet LP, Reddel HK, Bateman E, Pedersen S, FitzGerald JM, and O'Byrne PM. The Global
73		Initiative for Asthma (GINA): 25 years later. The European respiratory journal. 2019;54(2).
74		
75		
76		
77		
78		
79		
80		
81		
82		
83		
84		
85		
86		
87		
88		
89		
90		
91		
92		
93		
94		

95 Figure legends

104

Fig. S1. Generation of type II alveolar epithelial RhoA deficient mice. (A) Schematic representation 96 of the crossbreeding of a floxed RhoA mouse (RhoA^{f/f}) with a Sftpc-cre mouse. (B-C) Confirmation of 97 Sftpc-cre:RhoA^{f/f} mice by genotyping (**B**) and co-immunostaining with Sftpc and RhoA in the lung 98 99 tissues (C). (D) Representative immunofluorescence images of Sftpc expression in AT1, central airways, and basal cells of Sftpc-cre; RhoAf/f mice by co-immunostaining Sftpc with Pdpn, cc10, and 100 101 Krt5, respectively. (E) Representative immunofluorescence images of RhoA expression in AT1, central airways, and basal cells of RhoA^{f/f} and Sftpc-cre; RhoAf/f mice by co-immunostaining RhoA with Pdpn, 102 cc10, and Krt5, respectively. 103

responsiveness. Lung resistance in response to increasing concentrations of methacholine using the forced oscillation technique (FlexiVent, SCIREQ). (n=8). Data represent mean \pm SEM of two independent experiments. ***P* <0.01, ****P* <0.001.

Fig. S2. Deletion of RhoA in AT2 cells leads to the exacerbation of CRE-induced airway hyper-

Fig. S3. Number of neutrophils in the BAL fluids of mouse model of asthma. (A-D) Number of
neutrophils in the BAL fluids of cockroach allergen (CRE, n=8, A), house dust mite (HDM, n=7, B),
rTgf-β1-treated (n=7, C), and NPPB-treated (n=10, D) mouse models of asthma. Data represent mean ±
SEM of two independent experiments. Group comparisons were made using 2-way ANOVA. **P* <0.05,
****P* <0.001.

113 Fig. S4. Deletion of RhoA in AT2 cells leads to the exacerbation of house dust mite (HDM)-

114 induced airway inflammation. (A) Protocol for HDM-induced mouse model of asthma. (B)

115 Histological examination of mouse paraffin lung sections stained with hematoxylin and eosin (H&E,

116 upper panel) and Periodic acid–Schiff (PAS, lower panel). (C) Quantification of mononuclear cell

117 infiltrates in H&E stained lung sections (n=7). (**D**) Goblet cells quantification in PAS-stained lung

118 sections (n=7). (E) Bronchoalveolar lavage (BAL) fluid total and eosinophil cell counts as determined

119	by flow cytometry (n=7). (F) Serum levels of cockroach allergen-specific IgE and IgG1 (n=7). (G)
120	BAL fluid levels of cytokines (n=7). Data represent mean \pm SEM of two independent experiments.
121	Group comparisons were made using 2-way ANOVA. * $P < 0.05$, ** $P < 0.01$, and *** $P < 0.001$.
122	Fig. S5. Detection of Th1, Th2, and Th17 cells in lung tissues as assessed by flow cytometry. (A)
123	Gate strategies for Th1, Th2, and Th17 detection. (B) Numbers of Th1, Th2, and Th17 (n=6-8). Data
124	represent mean \pm SEM of two independent experiments. Group comparisons were made using 2-way
125	ANOVA. * <i>P</i> <0.05, ** <i>P</i> <0.01, and *** <i>P</i> <0.001.
126	Fig. S6. SLC26A4 knockdown in HBECs. Western blot confirmation of SLC26A4 knockdown in
127	HBECs by SLC26A4 siRNA.
128	
129	
130	
131	
132	
133	
134	
135	
136	
137	
138	
139	
140	
141	
142	
143	
144	

Table S1.	Characteristics	of human	subjects

n=18)	Mild Asthma (n=31)	Severe Asthma (n=24)	p- value
8 (28-48)	39 (32-52)	49 (36-54)	0.236
0 (55.56)	17 (54.84)	16 (66.66)	0.569
8.63 (15.46-23.91)	18.32 (15.27-27.04)	18.11 (14.41-23.81)	0.508
JA	33 (19-48)	32 (26-43)	0.823
JA	20 (18-23)	17 (12-22)	0.034
JA	63.0 (37.5-126.0)	58.0 (25.0-69.0)	0.317
NA	83.43 (71.42-93.15)	48.30 (37.05-58.32)	< 0.001
NA	43.40 (31.12-55.97)	14.50 (11.70-20.86)	< 0.001
NA	102.55 (86.92-114.92)	77.80 (72.40-86.75)	< 0.001
NA	77.89 (71.99-86.12)	52.20 (47.07-68.85)	< 0.001
0.36 (0.24-0.49)	0.32 (0.21-0.44)	0.45 (0.35-0.71)	0.022
NA	23.00 (71.88)	10.00 (47.61)	< 0.001
NA	260.0 (107.0-378.0)	225.5 (82.10-490.0)	0.950
	0 (55.56) 8.63 (15.46-23.91) IA IA IA IA NA NA NA NA NA 0.36 (0.24-0.49) NA	0 (55.56) 17 (54.84) 8.63 (15.46-23.91) 18.32 (15.27-27.04) IA 33 (19-48) IA 20 (18-23) IA 63.0 (37.5-126.0) NA 83.43 (71.42-93.15) NA 43.40 (31.12-55.97) NA 102.55 (86.92-114.92) NA 77.89 (71.99-86.12) 0.36 (0.24-0.49) 0.32 (0.21-0.44) NA 23.00 (71.88)	0 (55.56) 17 (54.84) 16 (66.66) 8.63 (15.46-23.91) 18.32 (15.27-27.04) 18.11 (14.41-23.81) 1A 33 (19-48) 32 (26-43) 1A 20 (18-23) 17 (12-22) 1A 63.0 (37.5-126.0) 58.0 (25.0-69.0) NA 83.43 (71.42-93.15) 48.30 (37.05-58.32) NA 43.40 (31.12-55.97) 14.50 (11.70-20.86) NA 102.55 (86.92-114.92) 77.80 (72.40-86.75) NA 77.89 (71.99-86.12) 52.20 (47.07-68.85) 0.36 (0.24-0.49) 0.32 (0.21-0.44) 0.45 (0.35-0.71) NA 23.00 (71.88) 10.00 (47.61)

154 Table S2. Correlations between serum levels of pendrin and pulmonary function

155 parameters among asthmatic patients

MMA AND SA (N=53)		R (95% CI)	P VAL
	$\cdot \text{FEV}_1$ (% predicted)	-0.2734	0.0476*
	·FEF ₂₅₋₇₅ (% predicted)	-0.1966	0.1582
	·FVC(% predicted)	-0.2224	0.1095
	·FEV ₁ /FVC	-0.1991	0.1529
MMA (N=30)			
	$\cdot \text{FEV}_1$ (% predicted)	-0.4674	0.0092*
	·FEF ₂₅₋₇₅ (% predicted)	-0.3352	0.0701
	·FVC (% predicted)	-0.3474	0.0600
	·FEV ₁ /FVC	-0.2648	0.1573
SA (N=23)			
	$\cdot \text{FEV}_1$ (% predicted)	-0.1989	0.3628
	·FEV ₁ /FVC	-0.1256	0.5679
MMA, Mild or Mod	lerate Asthma; SA, Severe	Asthma. *P<0.05,	**P<0.01

Table S3: Antibodies used for flow cytometry, western blot, and immunofluorescence

Target	Specie	Clone	Assay	Company
CD25	anti-Ms	PC61.5	FC (0.5 µg/mL)	BioLengend
CD4	anti-Ms	RM4-5	FC (0.5 µg/mL)	BioLengend
CD45	anti-Ms	30-F11	FC (0.5 µg/mL)	BioLengend
CD127	anti-Ms	A7R34	FC (0.5 µg/mL)	BioLengend
FoxP3	anti-Ms	150D	FC (1.0 µg/mL)	BioLengend
Lineage (CD3, CD4, CD11b, CD11c, B220, NK1.1, FcεRIα, TER- 119, and Gr-1)	anti-Ms	145-2C11, RM4-4, M1/70, N148, RA3- 6B2, PK136, MAR-1, TER-119, RB6-8C5	FC (1:50)	BioLengend
RhoA	anti-Hu, Ms	10749-1-AP	IF (1:250) WB (1:1000)	PTGLAB
RhoA-GTP	anti-Hu	26904	WB (1:200)	NewEast
SFTPC	anti-Hu	4A10	IF (1:50)	Abnova
SLC26A4	anti-Hu, Ms	NBP1-60106	IF (20 µg/mL)	Novus
CC10	anti-Hu, Ms	10490-AP	IF (1:250)	Proteintech
Krt5	anti-Hu, Ms	Bs-5352R	IF (1:100)	Bioss Antibodies
Pdpn	anti-Ms	8.1.1	IF (1:200)	BioLegend
ST2	anti-Ms	D1H9	FC (0.5 µg/mL)	BioLengend
Tgf-β1	anti-Ms	NBP1-45891	IF (1:100)	Novus
β-actin	anti-Ms	C-2	WB (1:5000)	SCBT
Rb IgG1 isotype	-	DA1E	IF (1:100)	Cell Signaling
Ms IgG1 isotype	-	G3A1	IF (1:50)	Cell Signaling

Rb: rabbit, Ms: mouse, Hu: human, FC: Flow cytometry, WB: Western Blot, and IF:

Immunofluorescence

Gene	NCBI Gene ID	Primer Bank ID	Amplicon Size	Sequence
Slc26a4	23985	6755022a1	147	F: 5'AAGAGAGCCTTTGGTGTGGTA R: 5'CAGGGCATAAGCCATCCCTTG
Retnla	57262	10048446a1	108	F: 5'CCAATCCAGCTAACTATCCCTCC R: 5'ACCCAGTAGCAGTCATCCCA
Slc34a2	20531	6755556a1	130	F: 5'CCTTGGCCCGAGTTGGAAAAT R: 5'CTACAGGAGTCCCGTTGTCAT
Egfl8	81701	23463330a1	104	F: 5'TGGGCTGAGCTGTGCATTT R: 5'CACACTCCCAAACTCTCTTTGAA
Actb	11461	6671509a1	154	F: 5'GGCTGTATTCCCCTCCATCG R: 5'CCAGTTGGTAACAATGCCATGT
SLC26A4	5172	4505696c1	211	F: 5'GCTCCCCAAATACCGAGTCAA R: 5'CACCACTGGAAAAGGTCCAAC
GAPDH	2597	378404907c1	197	F: 5'GGAGCGAGATCCCTCCAAAAT R: 5'GGCTGTTGTCATACTTCTCATGG

RhoA	Pdpn	Merge
RhoA	Cc10	Merge
	a have	A CONTRACTOR
RhoA	Krt5	Merge
Althon of	ALL ADDITION	An ison of
		and the second second

Е

Fig. S2

Fig. S3

Fig. S5

А

