Supplementary Figure Legends

Fig S1: Representative flow cytometry gating strategy for identification of CD45⁺ *subsets:* Neutrophils (CD45⁺CD11b⁺Ly6G⁺), macrophages (CD45⁺Ly6C⁺Ly6G⁻CD11b^{hi}F4/80^{hi}), monocytes (CD45⁺Ly6C⁺Ly6G⁻CD11b^{low}F4/80^{low}), B cells (CD45⁺B220⁺), CD4⁺ T cells (CD45⁺CD3⁺CD4⁺) and CD8⁺ T cells (CD45⁺CD3⁺CD8⁺) infiltration in the AGN kidneys were analyzed by flow cytometry on day 7 post-AGN induction. Representative dot plots showing gating strategy.

Fig S2: Reduced inflammatory cell infiltration in the nephritic kidney of RTEC-specific II17ra deficient mice. Il17ra^{n/n} and *Il17ra*^{Cdh16} mice (n=3-7) were subjected to AGN. At day 7 post anti-GBM serum injection, (**A**) B, CD4⁺ T and CD8⁺ T cells numbers, and (**B**) neutrophils, macrophages, monocytes, B, CD4⁺ T and CD8⁺ T cells percentages from CD45⁺ cells in the kidney were quantified by flow cytometry. The data is pooled from at least 2 independent experiments. Statistical analysis by Two-way ANOVA.

Fig S3: Increased inflammatory cell infiltration in the nephritic kidney of Zc3h12a^{+/-} mice. $Zc3h12a^{+/+}$ (WT) and $Zc3h12a^{+/-}$ mice (n=3-6) were subjected to AGN. At day 7 p.i., (A) monocytes, (B) B, CD4⁺ T, and CD8⁺ T cell numbers, and (C) neutrophils, macrophages, monocytes, B, CD4⁺ T and CD8⁺ T cells percentages from CD45⁺ cells in the kidney were quantified by flow cytometry. (D) Bone marrow (BM) cells from $Zc3h12a^{+/-}$ and wild WT mice

were adoptively transferred into sub-lethally irradiated $Zc3h12a^{+/-}$ or WT recipients (n=5-8). Eight weeks later, successfully reconstituted mice were subjected to AGN and assessed for serum creatinine level. The data is pooled from at least 2 independent experiments. Statistical analysis by Two-way ANOVA (A-C) or One-way ANOVA (D).

Fig S4: Increased inflammatory cell infiltration in the nephritic kidney of RTEC-specific Regnase-1 deficient mice. $Zc3h12a^{fl/fl}$ and $Zc3h12a^{Cdh16}$ mice (n=3-6) were subjected to AGN. At day 7 p.i., (A) CD45⁺ cell numbers and (B) neutrophils, macrophages, monocytes, B, CD4⁺ T and CD8⁺ T cells percentages from CD45⁺ cells in the kidney were quantified by flow cytometry. The data is pooled from at least 2 independent experiments. Statistical analysis by unpaired Student's t test (A) and Two-way ANOVA (B).

Fig S5: Deletion of ZC3H12A gene drives inflammatory mediator expression in the HK-2 cell

line. HK-2 and HK-2^{Δ ZC3H12A} cells were stimulated with IL-17 and/or TNF α for 8 h. (A) Gene expression of *CEBPB* and *CEBPD* was measured by qPCR, normalized to *GAPDH*. (B) Cell lysates were evaluated for C/EBP β and C/EBP δ protein expression by western blot. Protein relative abundance and representative image are shown. (C) *Lcn2* promoter activity was measured by luciferase assay in IL-17 Reporter HEK 293 cells after IL-17 stimulation. Data pooled from at least 3 independent experiments. Statistical analysis by Two-way ANOVA (A and B) and unpaired Student's t test (C).

Supplemental Figures

Figure S1

0

Control AĠN

Zc3h12a^{+/-} Recipient WT

Figure S3

Figure S4

Α