@article{10.1172/jci.insight.146592, author = {Elizabeth S. McDonald AND Austin R. Pantel AND Payal D. Shah AND Michael D. Farwell AND Amy S. Clark AND Robert K. Doot AND Daniel A. Pryma AND Sean D. Carlin}, journal = {JCI Insight}, publisher = {The American Society for Clinical Investigation}, title = {In vivo visualization of PARP inhibitor pharmacodynamics}, year = {2021}, month = {4}, volume = {6}, url = {https://insight.jci.org/articles/view/146592}, abstract = {BACKGROUND [18F]FluorThanatrace ([18F]FTT) is a radiolabeled poly (adenosine diphosphate-ribose) polymerase inhibitor (PARPi) that enables noninvasive quantification of PARP with potential to serve as a biomarker for patient selection for PARPi therapy. Here we report for the first time to our knowledge noninvasive in vivo visualization of drug-target engagement during PARPi treatment.METHODS Two single-arm, prospective, nonrandomized clinical trials were conducted at the University of Pennsylvania from May 2017 to March 2020. PARP expression in breast cancer was assessed in vivo via [18F]FTT PET before and after initiation of PARPi treatment and in vitro via [125I]KX1 (an analog of [18F]FTT) binding to surgically removed breast cancer.RESULTS Thirteen patients had baseline [18F]FTT PET. Nine of these then had resection and in vitro evaluation of [18F]FTT uptake with an analog and uptake was blocked with PARPi. Of the other 4 patients, 3 had [18F]FTT PET uptake, and all had uptake blocked with treatment with a therapeutic PARPi. Initial in vivo [18F]FTT tumor uptake ranged from undetectable to robust. Following initiation of PARPi therapy, [18F]FTT uptake was not detectable above background in all cases. In vitro tumor treatment with a PARPi resulted in 82% reduction in [125I]KX1 binding.CONCLUSION [18F]FTT noninvasively quantifies PARP-1 expression. Early results indicate ability to visualize PARPi drug-target engagement in vivo and suggest the utility of further study to test [18F]FTT PET as a predictive and pharmacodynamic biomarker.TRIAL REGISTRATION ClinicalTrials.gov identifiers NCT03083288 and NCT03846167.FUNDING Metavivor Translational Research Award, Susan G. Komen for the Cure (CCR 16376362), Department of Defense BC190315, and Abramson Cancer Center Breakthrough Bike Challenge.}, number = {8}, doi = {10.1172/jci.insight.146592}, url = {https://doi.org/10.1172/jci.insight.146592}, }