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Figure S1. The benefit of DC subtypes within breast cancer is dependent on the immune
context. (A) Kaplan Meyer curves for the overall survival of patients with breast cancers within
the top or bottom quartile for the indicated gene signatures. 1101 primary breast tumors from the
TCGA dataset were used for analysis. (B) Correlation of the proliferation gene signature with the
signature for DC2s from the TCGA dataset. (C) Kaplan Meyer curves for the overall survival for
the top or bottom quartile of the indicated gene signatures for breast cancer patients from the
METABRIC dataset. Patients are divided into the top or bottom quartile for the immune response
signature. (D) Heat map reflecting correlation of DC1 and DC2 gene signatures with the indicated
immune populations. R values are listed in each cell. From METABRIC dataset. (A and C were
analyzed by a log-rank test, B was analyzed using Persons correlation).
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Figure S2
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Figure $2. Defining DC populations in tumor and draining lymph node. (A) Flow dating
scheme for tiDC (top) and migratory dLN (bottom) DC subtypes. (B) Top: Representative
histograms of surface markers on total DCs (CD45'B220°CD11¢c*MHCII"). Bottom: Quantification

of expression levels of indicated markers on DC1 (Xcr1®) and DC2 (CD172%) relative to their
expression on total DCs. Results shown are from one of three experiments, n=12. (C) DCA1

frequencies from TIL and dLN migratory DC compartments in PyMT tumor-bearing mice at the

endpoint. n=8 per group one of four representative experiments shown. Data are shown as mean

+ SEM. *p<0.05, **p<0.01, ***p<0.001. (2-way unpaired t-test).
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Figure S3
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Figure S3. Loss of DC1 induces tumor-specific changes to DCs. (A) Representative flow plot
of the frequency of DC1s in PyMT tumor-bearing WT and Batf3” mice. (B) Representative
histograms displaying expression of surface receptors on Splenic DCs, MFI inset. (C)

Quantification of (b), n=4 mice per group. Data are represented as mean + SEM. * p<0.05. (2-
way unpaired t-test).
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Figure S4
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Figure S4. Batf3 KO does not reduce frequency of suppressive immune cell populations.
(A) Representative flow plot of Foxp3® CD4" regulatory T cells within different tissues of PyMT
tumor-bearing mice at the endpoint. n= 4-8 mice per group, one of four representative
experiments shown. (B) Quantification of the frequency of Foxp3* CD4" regulatory T cells within
different tissues of PyMT tumor-bearing mice at the endpoint. (C) Representative flow plot of
immature myeloid cells (CD45* MHCII*®" CD11b") in tumor and spleen of PyMT tumor-bearing
mice. n=4-5 Mice /group. (D) Quantification of the frequency of (c). Data are shown as mean +
SEM. *p<0.05, **p<0.01, ***p<0.001. (2-way unpaired t-test).
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Figure S5
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Figure S5. DC1 depletion improves DC2 migration and enhanced T cell priming. (A) CCR7
surface expression on tiDC2 at the endpoint, MFI from each group normalized to WT. n=3-5 per
group. (B) Frequency of migratory DC populations in the dLN of PyMT tumor-bearing mice. n=3-
8 per group. (C) Representative plots of Irf8 and CCR7 expression on DCs from tumor, spleen,
dLN migratory DCs (CD45" B220" CD11c* MHCII™), and dLN resident DCs (CD45* B220 CD11c"
MHCII™). Quantification of CCR7'Irf8™ and CCR71rf8" population frequencies. n=4-5
mice/group. (D) Expression of ICOS and CD69 on dLN (top) and tumor (bottom) DCs. n=4-5 mice
per group. (E) Quantification of populations in (d) on dLN (left) and tumor (right). n= 4-5
mice/group. Data are shown as mean + SEM. * p<0.05, **p<0.01, ***p<0.001. (2-way unpaired t-
test).
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Figure S6
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Figure S6. DC1 depletion causes the M1-Like polarization of TAMs in breast cancer. (A)
Representative flow plots of iNOS and F4/80 on CD11c” CD11b" cells from the dLN (left) and the
tumor (right) of mice with subcutaneous PyMT tumors at the endpoint. (B) Quantification of (a).
n=4. Data are shown as mean £ SEM. ***p<0.001. (2-way unpaired t-test).
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Figure S7
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Figure S7. GP96 KODC display enhanced T cell priming and maintenance. (A)
Representative flow plots of the frequency of tumor-infiltrating DCs gated on CD45" B220" cells
from 18-week-old mice (left). Quantification of tiDCs (right). n=6. (B) Representative flow plots of
the frequency of DC1 (Xcr1*) and DC2 (CD172") within the indicated population from (a) (left).
Quantification of tiDC1 (right). (C) Representative flow plots of CD44 and Ly6a/e expression on
tumor-infiltrating CD4 and CD8 T cells from MMTV-PyMT mice at the endpoint. (D) Quantification
of the frequency of Ly6a/e” T cells from (c). n=3-6 mice per group. Data are shown as mean *
SEM. **p<0.01. (2-way unpaired t-test).
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