Supplementary Materials for

Anti-Ceramide Single-chain Variable Fragmnet Mitigates Radiation GI Syndrome Mortality Independent of DNA Repair

Jimmy A. Rotolo, Chii Shyang Fong, Sahra Bodo, Prashanth Kumar, John Fuller, Thivashnee Sharma, Alessandra Piersigilli, Zhigang Zhang, Zvi Fuks, Vijay K. Singh, Richard Kolesnick*

*Correspondence: E-mail: <u>r-kolesnick@ski.mskcc.org</u>

This PDF file includes:

Methods Fig. S1 Fig. S2 Table S1

METHODS

Radiation source: Radiation was delivered to C57BL/6J mice (The Jackson Lab #000664) using a Shepherd Mark-I unit (Model 68, SN643) operating a ¹³⁷Cs source at a dose rate of 2.12 Gy/min. For experiments involving events occurring under 10 min radiation was delivered at 13.1 Gy/min. For protection studies, pre-treatment with anti-ceramide 6B5 scFv or 2A2 Ab was at 15 min prior to irradiation whereas for mitigation studies treatment was at 24h post irradiation.

Abs used for immunofluorescence DNA repair focus studies: Primary Abs used include: mouse monoclonal Ab against γH2AX-Ser139 (Millipore [clone JBW 301], #05-636, dilution 1:1000), mouse monoclonal anti-MDC1 (Millipore #05-1572 [clone P2B11], dilution 1:100), rabbit polyclonal anti-lysozyme Ab (Novus Biologicals #nbp2-61118, dilution 1:1,000). Secondary Abs: F(ab')2-goat anti-rabbit or anti-mouse IgG (H+L) cross-adsorbed secondary Ab, Alexa Fluor 488 (ThermoFisher #A-11070 #A-11017) 2 mg/ml were used at a dilution of 1:400.

Cell culture: Jurkat T lymphocytes (clone E6-1) were obtained from the ATCC (Rockville, MD). Cells were grown in a 5% CO2 incubator at 37 °C in RPMI 1640 medium supplemented with 10% heat-inactivated fetal bovine serum and 10 mM HEPES (pH 7.4), 2 mM L-glutamine, 1 mM sodium pyruvate, 100 μ M nonessential amino acids, 100 units/ml penicillin, and 100 μ g/ml streptomycin. Apoptosis was measured by morphologic examination following Hoechst 33258 *bis*-benzimide staining as published (1).

Survival of mice after whole body irradiation: Actuarial survival of animals was calculated by the product limit Kaplan-Meier method (2). Terminally sick animals

2

displaying an agonal breathing pattern were sacrificed by hypercapnia asphyxiation and evaluated by necropsy to determine cause of death. Intestinal specimens were fixed in formaldehyde, and stained with hematoxylin, as described (3). GI damage was diagnosed as cause of death when small intestines displayed denuded mucosa with nearly no villae or crypts apparent or when the mucosa displayed limited mucosal repair (3). Note that for every Kaplan Meier study the batch of commercial C57B/L6 mice (The Jackson Laboratory C#000664) used was first subjected to a control dose survival study to confirm the LD₉₀ dose as 15Gy. In one of six Kaplan Meier studies reported here however the batch of commercial C57B/L6 mice displayed a slightly lower LD₉₀ dose of 14.5Gy. For simplicity, data from this study are collated in Fig. 4B with the remaining studies and referred to generically as 15Gy.

Small intestinal endothelial apoptosis: Apoptosis in the small intestinal lamina propria was determined by double staining with TUNEL for apoptosis and immunostaining using a rat Ab against the endothelial cell surface marker MECA-32 (DSHB # MECA-32-s), as described (4).

DSB repair immunofluorescence focus studies: Investigations examining DNA repair using focus technology were performed as published by us (5). Briefly, paraffin-embedded tissue sections (3µm) were melted on a heat block, deparaffinized by 3x10 min in xylene, 2x3 min in 100% ethanol, 2x3 min in 95% ethanol, 2x3 min in 70% ethanol, then washed with distilled water and transferred to 1X Phosphate Buffered Saline (PBS). Antigen retrieval was performed in boiled 0.1 M citric acid buffer (pH 6.0) in a Decloaking Chamber (Biocare Medical) at

3

125°C for 5 min, cooled down for 20 min at room temperature, washed with distilled water, and transferred to washing buffer containing 0.1% Triton X-100 in 1X PBS for 20 min at room temperature. Blocking with 2% bovine serum albumin acetylated (Sigma Aldrich #B2518) and 10% normal goat serum (ThermoFisher Scientific #PCN5000) in 0.1% Triton X-100 in 1X PBS was for 1h at room temperature. DNA repair foci were probed using murine primary Abs against γH2AX-Ser139 (Millipore [clone JBW 301], #05-636, dilution 1:1000) and MDC1 (Millipore #05-1572 [clone P2B11], dilution 1:100) overnight at 4°C, followed by anti-mouse IgG (H+L) cross-adsorbed secondary Ab Alexa Fluor 488 (ThermoFisher #A-11070 #A-11017, dilution 1:400). Prolong gold and slow fade anti-fade reagent with DAPI (ThermoFisher Scientific #P36962) were used to protect from photobleaching and quenching of fluorescent signal, respectively.

Microscopy of DSB repair foci: Multi-channel fluorescence images were acquired using an upright wide-field Zeiss Axio2 Imaging Microscope with AxioCam MRm Camera (1360x1036 pixels image array) and 40X2 objective of Zeiss Plan-Neofluar 1.3NA oil dic (1083-997). Exposure time was set based on images of intermediate intensity, avoiding over-saturation from brightest foci. Once exposure time was set, it was kept constant within each set of experiments. Microscopy yields blue DAPI staining of nuclear areas, fluorescent focus staining, and overlay of co-localized images. 5 images containing 3-11 crypts/image were randomly selected from each tissue section for quantitation of focus numbers.

Crypt Microcolony Survival Assay: The Microcolony Survival Assay was performed as described by Withers and Elkind (6, 7).

4

β-galactosidase (lacZ) staining. 8-10 week old *Lgr5-lacZ* male reporter mice were euthanized after radiation and 2.5 cm segments of proximal jejunum obtained, as published by us (8). Specimens were fixed, stained for the presence of βgalactosidase (lacZ), blocked, sectioned, and counterstained with nuclear fast red as published (8, 9). Numbers of blue Lgr5+ intestinal stem cells were quantified and graphed using ImageJ and Prism9 software, respectively.

REFERENCES

- 1. Haimovitz-Friedman A, Kan CC, Ehleiter D, Persaud RS, McLoughlin M, Fuks Z, et al. Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis. *J Exp Med.* 1994;180(2):525-35.
- 2. Kaplan EL, and Meier P. Nonparametic estimation from incomplete observations. *J of the American Statistical Association.* 1958;53:457-48.
- 3. Rotolo JA, Maj JG, Feldman R, Ren D, Haimovitz-Friedman A, Cordon-Cardo C, et al. Bax and Bak do not exhibit functional redundancy in mediating radiation-induced endothelial apoptosis in the intestinal mucosa. *International Journal of Radiation Oncology, Biology, Physics.* 2008;70(3):804-15.
- 4. Paris F, Fuks Z, Kang A, Capodieci P, Juan G, Ehleiter D, et al. Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. *Science*. 2001;293(5528):293-7.
- 5. Bodo S, Campagne C, Thin TH, Higginson DS, Vargas HA, Hua G, et al. Single-dose radiotherapy disables tumor cell homologous recombination via ischemia/reperfusion injury. *J Clin Invest.* 2019;129(2):786-801.
- 6. Maj JG, Paris F, Haimovitz-Friedman A, Venkatraman E, Kolesnick R, and Fuks Z. Microvascular Function Regulates Intestinal Crypt Response to Radiation. *Cancer Res.* 2003;63(15):4338-41.
- 7. Withers HR, and Elkind MM. Microcolony survival assay for cells of mouse intestinal mucosa exposed to radiation. *Int J Radiat Biol Relat Stud Phys Chem Med.* 1970;17:261-7.
- 8. Hua G, Thin TH, Feldman R, Haimovitz-Friedman A, Clevers H, Fuks Z, et al. Crypt base columnar stem cells in small intestines of mice are radioresistant. *Gastroenterology*. 2012;143(5):1266-76.

9. Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. *Nature*. 2007;449(7165):1003-7.

DAPI Lysozyme MDC1

Fig. S1 Representative immunofluorescence images of MDC1 staining of small intestines from control and irradiated mice at the indicated times post 15Gy WBR. Scale 20 μ m. Several examples of MDC1 foci are indicated by arrows. Note that when 6B5 anti-ceramide scFv is delivered at 24h post radiation MDC1 foci are fully resolved.

Antioxidant Treatment

Fig. S2 Quantification of crypt survival following administration of the antioxidant amifostine (WR2721). Amifostine (400 mg/kg by intraperitoneal injection) was administered 15 min prior to or 24 hours following 15Gy whole body radiation. Crypt survival was assessed at 3.5 days post irradiation by the Microcolony Assay of Withers and Elkind. *** P<0.001 versus control, unpaired t test.

2A2 1 h2A2 2 h2/	h2A2 2 h2A2 3	h2A2 3	3 h2A2 4	Referenc
0.61 10.01 11	10.01 11.76	11.76	6 10	7.14-12.2
13.3 13.9 15.9 15.5 13.3 47.9 57	47.9 57.3	57.3	48.4	37.2-62.
50.2 47.9 48	47.9 48.7	48.7	48.4	42.6-56.
13.9 13.9 1	13.9 14	14	14.2	11.7-16.
27 0 21 0 21 0 21 0 21 0 21 0 21 0 21 0	29 28.0	2 80	0 ac 0	24.0-35.
24.1 24.6 22	24.6 24.8	24.8	22.4	15.9-21.
21.2 409.4 30	409.4 306.9	306.9	9 318	294-444
3.97 4.09 2.	4.09 2.61	2.61	3.18	2.56-4.5
844 701 9	701 912	912	897	565-215
7.2 7.6 7	7.6 7.7	7.7	7	1
6.1 6.5 6	6.5 6.3	6.3	6	4.3-6.1
chromasia. 3+ polychromasia. 2+ polyd	polychromasia. 2+ polychromasia	 2+ polychromasia. 	omasia. 2+ polychromasia.	asia.
2A2 1 h2A2 2 h2/	h2A2 2 h2A2 3	h2A2 3	3 h2A2 4	Reference
2.64 4.08 2.	4.08 2.84	2.84	2.15	0.42-3.0
0 0	0 0	0	0	
1.89 3.12 4. 0 0	0 1 2 0 3 2	4.55	3 3.8Z	2.88-11.
0 0	0.2	0.2	0.28	0.01-0.5
0 0	0 0	0	0	0.00-0.1
43 3	43 35	35	32	7.36-28.
	54 56	56		61 26-87
6	- 4	4	4	2.18-11.0
6 3	3 5	5	7	0.13-4.5
			-	0.01-1.2
2A2 1 h2A2 2 h2/	h2A2 2 h2A2 3	h2A2 3	3 h2A2 4	
rgrey discoloration of fur coat. BCS 2/5. Multificial brownigrey ang hemorrhages discoloration of fur coat. Enhanced BC:	5. Multifical brownigrey ation of fur coat. Enhanced BCS 3/5	Agrey BCS 3/5 BC	1/5 BCS 2/5. Multificcal brown/gn discoloration of fur coat	rown/grey ir coat
ivascular and randomiy scattered multifocal minima to mild multifocal minima casional hepatocellular pervises ular and randomiy scattered pervises ular pervises ular and randomiy scattered pervises ular to motocytic infart	I minimal to mild multifocal minimal to mild far and randomly scattered perivascular and randomly sc in infiltrates lymphocytic infiltrates	multifocal minimal to mild mui attered perivascular and randomly scattered rand lymphocytic infilitrates infili	s mild multifocal mild perivascular a domly scattered randomly scattered lymphocyl infiltrates	scular and nphocytic
diffuse oligo-azoospermia diffuse oligo-azoo	go-azoospermia diffuse oligo-azoospermia	diffuse digo-azoospermia diffu	rmia diffuse oligo-azoospermia	mia
to severe tubular degeneration bilateral, multifocal moderate to bilateral multifocal moderate to bilateral multifoca e ubular degeneration with severe tubular degeneration with severe tubular degeneration digozoospermia digozoospermia	multifocal, moderate to bilateral, multifocal, moderate bular degeneration with severe tubular degeneration w permia oligozoospermia	s to bilateral, multifical, moderate to bila vith severe tubular degeneration with sev digozoospermia dig	moderate to bilateral, multifocal, moderate eration with severe tubular degeneration w digozoospermia	oderate to ration with
· · · · · · · · · · · · · · · · · · ·	-	,	-	
unilateral tooth degeneration	tooth degeneration -	- unil	unilateral tooth degeneration	ration
control tubules regeneration with tubules regeneration with tubules regeneration with epithelial ine casts dysplasia. Rare hyaline casts	mutificcal, minimal contical generation with epithelial Rare hyaline casts	cortical -	,	
bilaterat, tocal alveolar histocytosis with interstitial mild fibrosis	focal alveolar histiocytosis stitial mild fibrosis	cytosis - bita	bilateral, focal, alveolar histiccytosis with fibrosis, mik	sis, mild
	minimal interstitial	diff.	diffuse interstitial fibrosis with acinar loss, moderate with	sis with with
acinar loss, mild to moderate and fittrosis, lymphocytic pancreatitis acinar atrophy, mi and acinar atrophy	i, minima intersitual multifocal intersitial fibrosis v ymphocytic pancreatitis acinar atrophy, minimal r atrophy	multifocal interstitial fibrosis with lym stifs acinar atrophy, minimal perioduci	fibrosis with acinar loss, moderate with nal peripancreatic steatitis and ductal hyperplasia	s with ts and : and
multifocal lymphocytic gastritis, multifocal lympho	Iymphocytic gastritis, multifocal lymphocytic gastriti	is, multifocal lymphocytic gastritis,	ic gastritis,	
s, munusa minimal minimal	minimal	minimal		
n the reference ranges in the majority of the animals. Elevation o	ajority of the animals. Elevation of the ret	mimals. Elevation of the reticulocyti	the reticulocytic counts in mouse	nouse 1 from grou
treatment related effect. All animals had similar macroscopic and d moderate chronic pancreatitis. Degeneration of the testicular wr/10 1000/00553000114550501. https://doi.org/10 1111/i 1365.	nals had similar macroscopic and histope Degeneration of the testicular germ ce	ar macroscopic and histopathologic on of the testicular germ cells was ii	histopathologic findings regardles yrm cells was induced by irradiati 184 1968 th00321 v) Chronic na	ardless of the anti- adiation and it is a
a moor de omone panoreans: Degeneration or ne testeration ma/10 1080/09553008114550501: https://doi.org/10 1111/i 1365.	 Degeneration of the concourt generic states with a state of the concourt generic states and the state of the states	vra/10 1111/i 1365-2184 1968 th00	184 1968 th00	1321 v) Chro

In eversion in particular in the initial of the second by the initial of the second and incident of the activation of th