Common variable immunodeficiency (CVID) is characterized by profound primary antibody defects and frequent infections, yet autoimmune/inflammatory complications of unclear origin occur in 50% of individuals and lead to increased mortality. Here, we show that circulating bacterial 16S rDNA belonging to gut commensals was significantly increased in CVID serum (P < 0.0001), especially in patients with inflammatory manifestations (P = 0.0007). Levels of serum bacterial DNA were associated with parameters of systemic immune activation, increased serum IFN-γ, and the lowest numbers of isotype-switched memory B cells. Bacterial DNA was bioactive in vitro and induced robust host IFN-γ responses, especially among patients with CVID with inflammatory manifestations. Patients with X-linked agammaglobulinemia (Bruton tyrosine kinase [BTK] deficiency) also had increased circulating bacterial 16S rDNA but did not exhibit prominent immune activation, suggesting that BTK may be a host modifier, dampening immune responses to microbial translocation. These data reveal a mechanism for chronic immune activation in CVID and potential therapeutic strategies to modify the clinical outcomes of this disease.
Hsi-en Ho, Lin Radigan, Gerold Bongers, Ahmed El-Shamy, Charlotte Cunningham-Rundles
16S profiling of circulating bacterial DNA in CVID identified genetic materials belonging to gut-associated commensals and an abundance of bacterial families that are normally highly coated by secretory IgA/IgM.