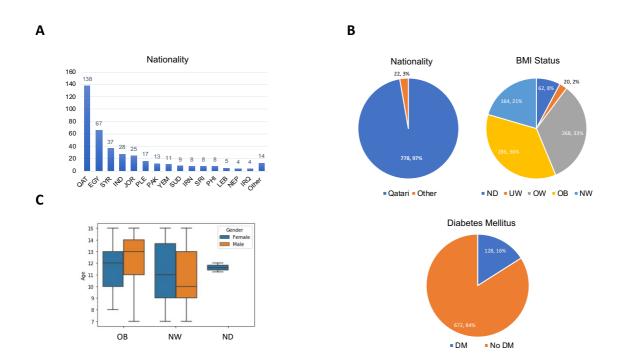
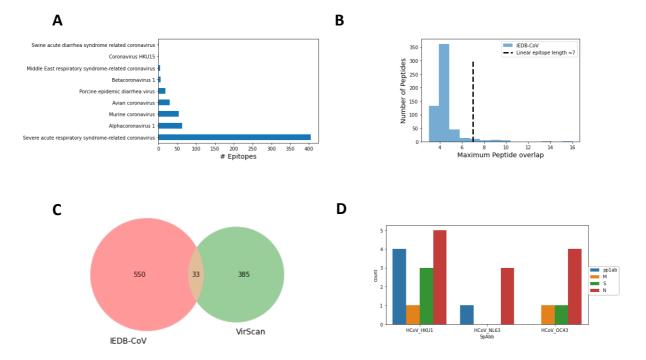
Supplemental Materials for

Distinct antibody repertoires against endemic human coronaviruses in children and adults

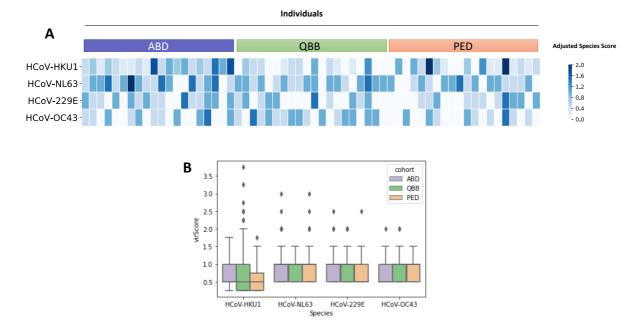
Taushif Khan, Mahbuba Rahman, Fatima Al Ali, Susie S. Y. Huang, Manar Ata, Qian Zhang, Paul Bastard, Zhiyong Liu, Emmanuelle Jouanguy Vivien Béziat, Aurélie Cobat, Gheyath K. Nasrallah, Hadi M. Yassine, Maria K. Smatti, Amira Saeed, Isabelle Vandernoot, Jean-Christophe Goffard, Guillaume Smits, Isabelle Migeotte, Filomeen Haerynck, Isabelle Meyts, Laurent Abel, Jean-Laurent Casanova, Mohammad R. Hasan, Nico Marr*

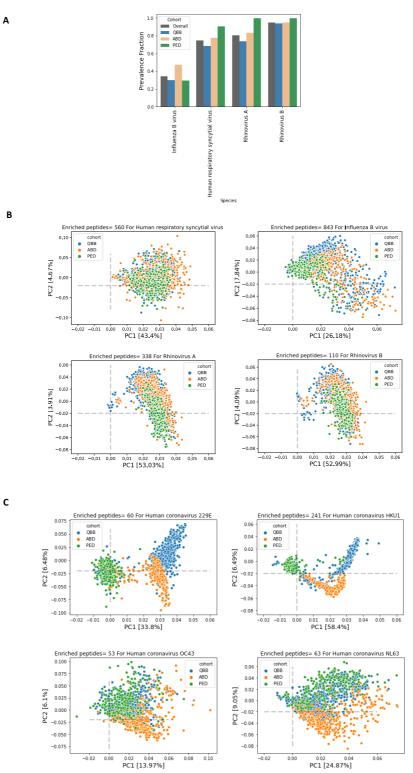

JCI Insight (February 3, 2021) version

*Corresponding author: Nico Marr, Sidra Medicine, Research Branch, Al Gharrafa Street, Ar-Rayyan, PO BOX 26999, Doha, Qatar, E-mail: nmarr@sidra.org

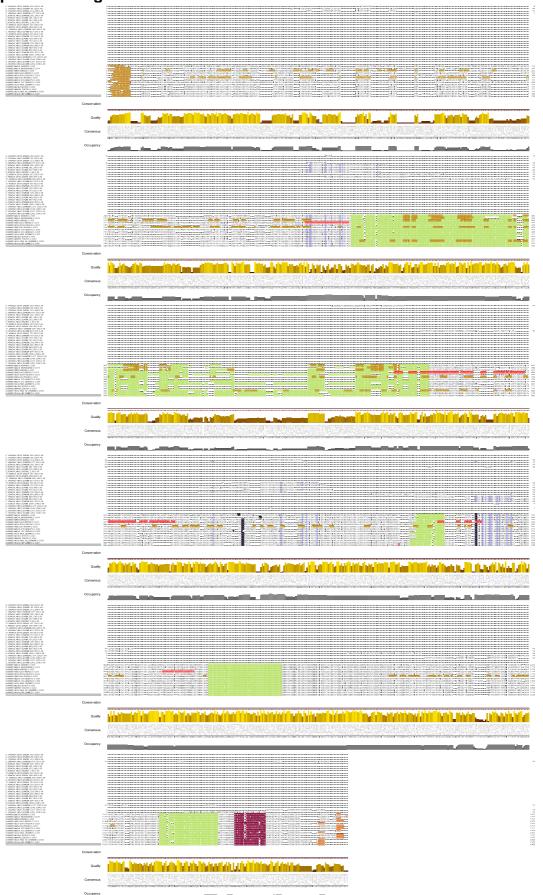

Content[#] Supplemental Figures 1-9 Supplemental Tables 1, 2, 5-8

[#]Supplemental Tables 3 and 4 are provided as spreadsheets in a separate file.

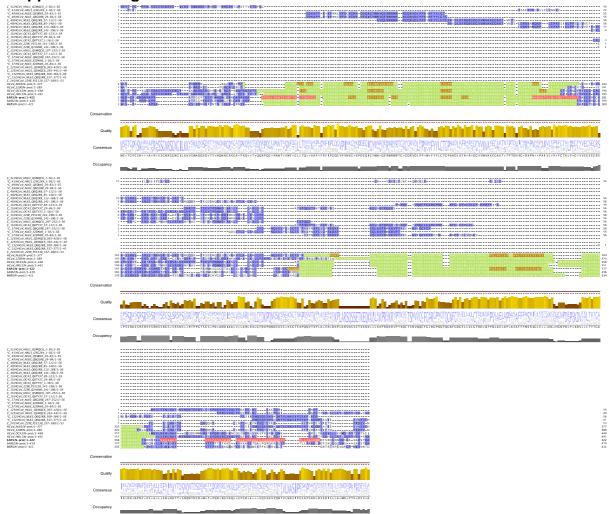

Supplemental Figures


Supplemental Figure 1. Demographic and clinical features of the different human cohorts. A, Nationalities among the healthy blood bank donors. B, Number and fraction of Qatari nationals and long-term residents with other nationality comprising the 800 assayed individuals of the Qatar Biobank cohort, stratified by body mass index (BMI) and proportion of subjects with diabetes mellitus (DM). UW, underweight (BMI < 18); NW, normal weight (BMI \geq 18 and < 25); OW, overweight (BMI \geq 25 and <30); OB, obese (BMI \geq 30). C, Number and fraction of male and female pediatric study subjects with normal weight (NW) or who were obese (OB). ND, not determined; QAR, Qatar; EGY, Egypt; SYR, Syria; IND, India; JOR, Jordan; PAK, Pakistan; YEM, Yemen; SUD, Sudan; IRN, Iran; SRI, Sri Lanka; PHI, Philippines; LEB, Lebanon; NEP, Nepal; IRQ, Iraq; Other, residents with other nationality; PLE, non-residents.

Supplemental Figure 2. Comparison analysis of enriched HCoV peptides identified by PhIP-Seq with B cell epitopes in the Immune Epitope Database (IEDB). A, Number of B cell epitopes for different CoV species available in IEDB (accessed and downloaded from www.iedb.org on 17 May 2020). B, Number of peptides from endemic HCoVs which we found to be significantly enriched in at least three of all samples (N = 1399) with homology in the linear amino acid sequence to 583 known CoV B cell epitopes in IEDB. We considered an epitope as a match if there was \geq 7 linear sequence identity between query (IEDB epitope) and the amino acid sequence of the enriched HCoV peptide. C, Venn diagram depicting overlap between enriched peptides (i.e. matches) detected by VirScan and B cell epitopes from CoVs in IEDB. D, Number of matching peptides that share sequence homology with known B cell epitopes, stratified by species and viral protein.

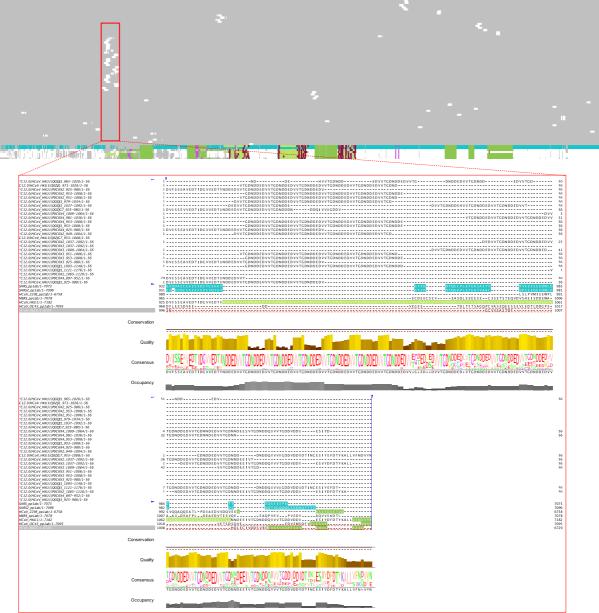


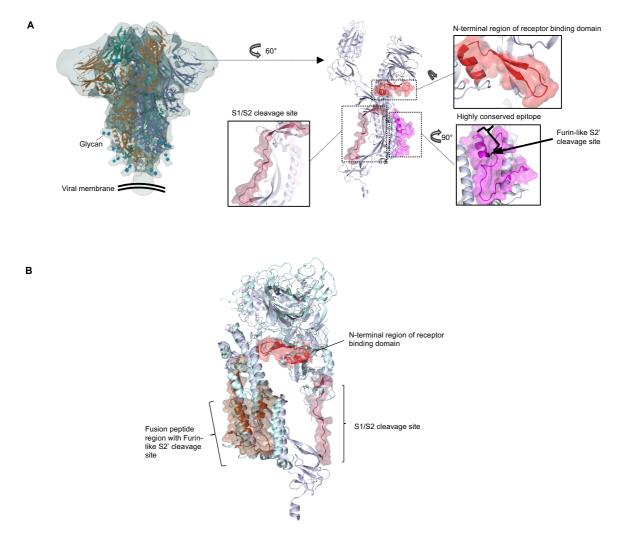
Supplemental Figure 3: Similar antibody repertoire breadth among seropositive individuals of the different cohorts. A, Heatmap plot depicting adjusted species score values for HCoV-HKU1, -NL63, -229E and -OC43 in randomly selected seropositive individuals (n = 20) of each cohort. Each individual is represented as a column. Values ≥ 1 indicate that the individual was seropositive for a given species. **B**, Species-wise variation in adjusted species score values among seropositive individuals of each cohort.


Supplemental Figure 4. Seroprevalence of respiratory viruses and variance in the antibody repertoires among individuals of the analyzed cohorts. A, Bar plot depicting the fraction of individuals found seropositive for human respiratory syncytial virus, rhinovirus A, rhinovirus B and influenza B virus among the tested subjects or by cohort. B and C, Principal component analysis of the antigenic peptides of human respiratory syncytial virus, rhinovirus A, rhinovirus B and influenza B virus (B), as well as of human coronaviruses 229E, NL63, OC43 and HKU1 (C), that we found to be enriched in at least 3 samples.

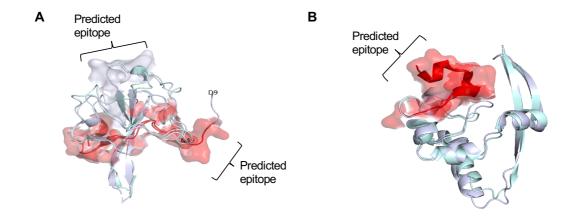
Supplemental Figure 5A

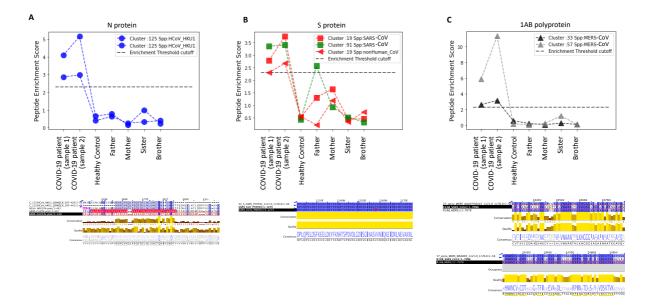
6

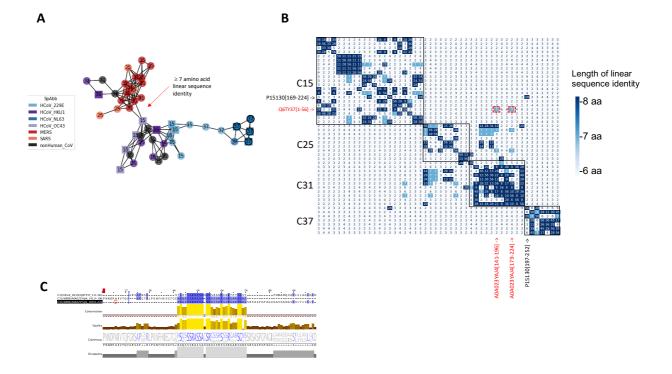

Supplemental Figure 5B


Supplemental Figure 5C

C [141HC01 JWU], QDMC7 [360]-36 C [141HC01 JWU], QDMC7 [360]-36 C [44BC01 QC (261) QDT138, B 340]-36 C [44BC01 QC (261) QDT138, B 340]-36 C [31BC01 QC (261) QDT38, B 340]-36 C [31BC01 ACR (20138, B 32), 2131]-30 C [31BC01 ACR (20148, B 32), 213		NRKSFLPQFTSDQAVTFLKKNMESLCVLLUFTLIGTENTSKMEVYLLINULUKANNUKENUKENUKENUKENUKENUKENUKENUKENUKENUK
	Conservation	
	Quality	
	Consensus	
	Occupancy	
C 3496,27 WHI 2496,27 3.67,38 C 3496,27 WHI 2596,27 32 34,37 56 C 3496,27 WHI 2506,27 35 34,340,36 C 3496,27 WHI 2506,27 34 34,340,36 C 3496,27 4,360,21 1,33 C 3496,27 4,360,27 4,360,27 4,37 C 3496,27 4,360,27 4,37 C 3496,27 4,37 C 3496,27 C 3496,27		AP CIDMAGTMYWRFIIE Status St
	Conservation	
	Quality	
	Consensus	NIPWKTTWRPILEDIETSTATUECHI WACHSLICTOVED DYVTILKESTI ETVIKVERITORVOTICONVERICEATT VICKOVERISSESSESSESSELLEHLI Societuesvyn uszanisty usztatuesku karakteri usztatu szere a szere karakteri
	Occupancy	


Supplemental Figure 5D


Supplemental Figure 5. Mapping of enriched, immunodominant peptides of endemic HCoVs to the full-length protein sequences. A-D, Multiple sequence alignments of the enriched, immunodominant peptides with the full-length sequences of the spike protein (A), nucleocapsid protein (B), matrix glycoprotein (C) and the Orf1ab replicase polyprotein (D) of selected coronaviruses. Amino acids with a high percentage of sequence identity are shown in violet. Reference sequence features are color-coded in accordance with the annotation and features available in UniProtKB and visualized using JalView. Green indicates regions of interest, red indicates transmembrane regions, orange indicates beta strands and pink indicates residues annotated as epitopes in IEDB. The cleavage sites (S1/S2 and S2') of the SARS-CoV S protein are shaded in black. For pp1ab, the sequence alignment is shown as an overview with gaps are shaded in grey and sequences are in white. Only part of the sequence alignment is shown, which depicts the PL1-PRO cleavage product containing a tandem repeat of N-[DN]-D-E-D-V-V-T-G-DA in HCoV-HKU1 (isolate N1) (UniProtKB entry and position P0C6X2[945-1084]).


Supplemental Figure 6. Antigenic regions of the spike protein. A, Ribbon diagram of the SARS-CoV-2 S trimer with carbohydrate residues shown (left) and monomer without carbohydrate residues (middle) in the prefusion conformation (PDB id: 6VXX, chain A); regions for which multiple sequence alignments are shown in Figures 3C-E are depicted enlarged. **B**, Superimposition of the spike proteins of SARS-CoV-2 (6VXX) and HCoV-HKU1 (5108) in the prefusion state. Root-mean-square deviation [rmsd] = 3.328 Ångström.

Supplemental Figure 7. Structurally conserved immunodominant regions of the nucleocapsid protein. A, Super-imposed ribbon structure of the N-terminal RNA-binding domain from HCoV-NL63 (PDB: 5N4k, chain A) and that from SARS-CoV-2 (PDB: 6M3M, chain A) (root-mean-square deviation [rmsd] = 0.7 Ångström). **B**, Super-imposed ribbon structure of the C-terminal self assembly domain of proteins from HCoV-NL63 (pdbld: 5EPW, chain A) and that of SARS-CoV-2 (pdblD: 6WJI, chain A) (rmsd = 0.91 Ångström).

Supplemental Figure 8. Cross-reactive antibody responses in a COVID-19 patient with proteins of other coronaviruses. A-C, Plasma samples of an adult COVID-19 patient, unexposed family members (father, mother, sister and brother) as well as an unrelated healthy, age- and gender-matched control were subjected to PhIP-Seg analysis. Samples from the COVID-19 patient were obtained at two time points: during acute infection (sample 1) and during the convalescent phase, one week after hospital discharge (sample 2). Shown is a comparison of enrichment scores of peptides derived from the N protein (A), S protein (B) and 1AB polyprotein (C) of various coronaviruses. HCoV-HKU1 peptides are depicted as circles, SARS-CoV peptides are depicted as squared symbols and MERS-CoV as well as nonhuman CoV peptides are shown as triangles. SARS-CoV-2 peptides were not included in the VirScan phage library used in our study. The dashed line indicates the significance cut-off for the peptide enrichment $[-\log_10(P) \ge 2.3]$. The cluster numbers indicate linear epitopes as listed in Table S3. The multiple sequence alignments (bottom) of the enriched peptides with the reference sequences of SARS-CoV-2 and the respective CoV species show the degree of sequence identity across species. Known epitopes in the Immune Epitope Database (IEDB) are shown in pink. Sequences were colored to indicate percent sequence identity and visualized using Jalview.

Supplemental Figure 9. Clustering of peptides for shared linear B cell epitopes. A, Network representation of peptides built from a pairwise distance matrix as shown in Figure 5B. Each node represents an enriched peptide and the color indicates the species. Edges indicate \geq 7 amino acids linear sequence identity between two nodes (i.e. peptides), the estimated size of a linear B cell epitope. **B**, Pairwise distance matrix of peptides targeted by cross-reactive antibodies, including enriched peptides of clusters 15, 25, 31 and 37. The cluster assignment has been indicated as a black box. Distance pairs with \geq 7 amino acid linear sequence identity are shown in dark blue. Distance pairs marked with a red box represent a 7 amino acid linear sequence identity between enriched peptides of more distantly related CoVs, namely HCoV-OC43 (Q6TY37[1-56]) and MERS-CoV (A0A023YAJ4[141-196] and A0A023YAJ4[179-224]). **C**, Multiple sequence alignment of enriched HCoV-OC43- and MERS-CoV-derived peptides Q6TY37[1-56], A0A023YAJ4[141-196] and A0A023YAJ4[179-224] encoding part of the N-terminal intrinsically disordered region (IDR) of the N protein. The alignment shows the 7 amino acid linear sequence identity in a low-complexity sequence motive (SSRASSA) which likely represents a broadly cross-reactive antibody binding site.

Supplemental Tables

Species^A Alphacoronavirus 1	Organism Feline coronavirus (strain FIPV WSU-79/1146) (FCoV)	<i>Protein</i> NS	No. of Peptides 239
Bat coronavirus 1B	Bat coronavirus 1B	Rep1a	249
Betacoronavirus 1	Bovine coronavirus Bovine coronavirus (strain 98TXSF-110-ENT) (BCoV-ENT) (BCV)	N E NS S	4 2 7 12 48
	Equine coronavirus Human coronavirus OC43 (HCoV-OC43)	Rep1a HE M N NS	254 15 11 4 253
		S N	37
Human coronavirus 229E	Porcine hemagglutinating encephalomyelitis virus (strain 67N) (HEV-67N) Human coronavirus 229E (HCoV-229E)	E M NS ORF4 Rep1b S	16 2 8 23 248 10 2 63
Human coronavirus HKU1	Human coronavirus HKU1 (HCoV-HKU1)	N Rep1ab S	13 510 15
	Human coronavirus HKU1 (isolate N1) (HCoV-HKU1)	E HE M N NS S	2 13 7 22 259 48
	Human coronavirus HKU1 (isolate N2) (HCoV-HKU1)	E HE N NS S	2 13 7 258 48
Human coronavirus NL63	Human coronavirus HKU1 (isolate N5) (HCoV-HKU1) Human coronavirus NL63 (HCoV-NL63)	NS E	254 2
		M N NS ORF3 Rep1a S	- 10 18 248 1 1 71
Middle East respiratory syndrome coronavirus	BtVs-BetaCoV/SC2013	E M ORF3 ORF4 ORF5 ORF8 Rep1a S	2 7 15 3 11 8 6 256 47
	Coronavirus Neoromicia/PML-PHE1/RSA/2011	E ORF3 ORF4 ORF5 ORF8 Rep1a S	2 3 12 7 7 156 47
	Human coronavirus EMC (isolate United Kingdom/H123990006/2012) (HCoV-EMC)	E M N NS ORF3	2 7 14 408
		ORF4 ORF5	3 11 7
	Middle East respiratory syndrome coronavirus	ORF4 ORF5 S N ORF4 ORF5 ORF8 Rep1a Rep1ab Rep1b	11 7 48 8 11 11 3 1018 95 63
Severe acute respiratory syndrome-related coronavirus	Middle East respiratory syndrome coronavirus Bat coronavirus 279/2005 (BtCoV) (BtCoV/279/2005)	ORF4 ORF5 S N ORF4 ORF5 ORF5 Rep1a Rep1ab	11 7 48 8 11 11 3 1018 95
		ORF4 ORF5 S N ORF4 ORF5 ORF8 Rep1a Rep1ab Rep1b S E M M NS	11 7 48 8 11 11 3 1018 95 63 108 2 7 254

Supplemental Table 1. Proteins of CoVs represented in the VirScan phage library

Cohort	Gender	No. of subjects	cts Age (years)				
		-	Mean	Std	Min	Max	
ABD	Male	370	40.1	10.1	19	66	
PED	Female	117	11.4	2.2	7	15	
	Male	114	11.8	2.3	7	15	
QBB	Female	511	40.4	12.9	19	81	
	Male	287	41.0	12.9	19	81	

Supplemental Table 2. Number of individuals included in the downstream analysis

QBB, Qatar Biobank cohort; ABD, adult blood bank donors; PED, pediatric subjects.

Species	Age group	Gender	Prevalence (%)	Mean prevalence per age group (%)
HCoV-229E	adults	female	4.3	11.7
		male	19.0	
	children	female	10.3	8.2
		male	6.1	
HCoV-HKU1	adults	female	4.1	6.5
		male	8.8	
	children	female	7.7	6.5
		male	5.3	
HCoV-NL63	adults	female	9.2	13.0
		male	16.7	
	children	female	21.4	23.8
		male	26.3	
HCoV-OC43	adults	female	4.1	5.8
		male	7.5	
	children	female	14.5	12.5
		male	10.5	

Supplemental Table 5. Seroprevalence of endemic HCoVs stratified by gender and age group

The adult group (n = 1168) includes adult blood bank donors and individuals of the Qatar Biobank cohort.

UniProtKB entry	Start ^A	End ^A	Protein symbol	Species	lod	Log₁₀ <i>P</i> value	Cluster no.	Cluster annotation ^B / peptide location
P0C6X6	1401	1456	pp1ab	HCoV-OC43	6.4	4.7	136	Papain-like proteinase
QOZJJ1	813	868	pp1ab	HCoV-HKU1	6.3	3.9	102	Papain-like proteinase
20ZJJ1	225	280	pp1ab	HCoV-HKU1	6.0	3.1	38	3C-like proteinase
					6.0			
P0C6X2	7029	7084	pp1ab	HCoV-HKU1		3.1	117	2'-O-methyltransferase
25MQD0	365	420	S	HCoV-HKU1	6.0	3.1	189	S1 chain region
QOZJJ1	5825	5880	pp1ab	HCoV-HKU1	5.7	2.4	9	RNA virus helicase
P0C6X5	3753	3808	pp1ab	HCoV-NL63	5.7	2.4	10	Non-structural protein 8
QOQJI4	337	392	S	HCoV-OC43	5.7	2.4	98	S1/S2 cleavage site
P0C6X3	5489	5544	pp1ab	HCoV-HKU1	4.5	12.3	8	Helicase
26Q1R9	197	226	M	HCoV-NL63	3.2	3.2	185	Interaction with N protein region
P0C6X6	2381	2436	pp1ab	HCoV-OC43	3.2	3.2	253	Non-structural protein 3
06Q1S2	421	476	S	HCoV-NL63	3.0	2.5	131	S1 chain region
26Q1S2	449	504	S	HCoV-NL63	3.0	2.5	131	S1 chain region
P0C6X1	1373	1428	pp1ab	HCoV-229E	3.0	2.5	235	Non-Structural protein 3
	3305							
P0C6X2		3360	pp1ab	HCoV-HKU1	2.7	5.0	13	Region of 3C-like proteinase
26Q1R8	29	84	N	HCoV-NL63	2.5	6.0	49	N-terminal RNA binding domain
2DNV6	1	56	N	HCoV-NL63	2.2	7.3	37	N-terminal RNA binding domain
26Q1R8	169	224	N	HCoV-NL63	1.8	2.4	37	N-terminal RNA binding domain
25SBN5	1	56	N	HCoV-NL63	1.8	2.4	49	N-terminal RNA binding domain
26Q1R8	197	252	N	HCoV-NL63	1.8	7.8	37	N-terminal RNA binding domain
25MQC5	1	56	ORF8	HCoV-HKU1	1.7	5.9	41	N-terminal RNA binding domain
Q6Q1R8	337	377	N	HCoV-NL63	1.6	24.6	132	C-terminal of dimerization domain
P0C6X2	5461	5516	pp1ab	HCoV-HKU1	1.5	2.8	34	RNA virus helicase C-terminal
P0C6X5	4285	4340	pp1ab	HCoV-NL63	1.5	2.5	78	RNA-directed RNA polymerase
E2DNV6	29	84	N	HCoV-NL63	1.5	8.5	37	N-terminal RNA binding domain
25SBN5	29	83	N	HCoV-NL63	1.5	3.2	49	N-terminal RNA binding domain
QOZJJ1	1121	1176	pp1ab	HCoV-HKU1	1.4	4.6	12	Asp-rich region, Papain-like proteinase
P15423	645	700	S	HCoV-229E	1.3	2.8	16	Furin-like S2' cleavage site
G9G2X4	1	56	N	HCoV-HKU1	1.2	5.3	41	N-terminal RNA binding domain
201455	197	230	м	HCoV-OC43	1.2	3.5	147	Interaction with N protein region
Q6Q1R8	309	364	N	HCoV-NL63	1.1	9.5	132	C-terminus of dimerization domain
P0C6X2	4509	4564	pp1ab	HCoV-HKU1	1.1	3.6	2	RNA-directed RNA polymerase
20QJI4	757	812	S	HCoV-OC43	1.0	4.9	46	Receptor binding domain
		84					40	
Q5MQC5	29		ORF8	HCoV-HKU1	1.0	3.0		N-terminal RNA-binding domain
P0C6X2	1065	1120	pp1ab	HCoV-HKU1	0.9	2.8	12	Asp-rich region, Papain-like proteinase
P0C6X1	5377	5432	pp1ab	HCoV-229E	-2.2	2.4	9	RNA virus helicase
QOZJJ1	965	1020	pp1ab	HCoV-HKU1	-2.7	26.8	12	Asp-rich region, Papain-like proteinase
P0C6X4	897	952	pp1ab	HCoV-HKU1	-3.0	6.5	12	Asp-rich region, Papain-like proteinase
QOZJG7	925	980	pp1ab	HCoV-HKU1	-3.4	40.7	12	Asp-rich region, Papain-like proteinase
P0C6X4	925	980	pp1ab	HCoV-HKU1	-3.6	65.2	12	Asp-rich region, Papain-like proteinase
P0C6X3	925	980	pp1ab	HCoV-HKU1	-3.6	65.4	12	Asp-rich region, Papain-like proteinase
P0C6X4	953	1008	pp1ab	HCoV-HKU1	-4.0	81.9	12	Asp-rich region, Papain-like proteinase
P0C6X2	1037	1092	pp1ab	HCoV-HKU1	-4.0	66.6	12	Asp-rich region, Papain-like proteinase
P0C6X4	1009	1064	pp1ab	HCoV-HKU1	-4.1	89.8	12	Asp-rich region, Papain-like proteinase
QOZJJ1	1037	1092	pp1ab	HCoV-HKU1	-4.2	106.1	12	Asp-rich region, Papain-like proteinase
P0C6X3	1009	1064	pp1ab	HCoV-HKU1	-4.3	94.1	12	Asp-rich region, Papain-like proteinase
P0C6X2	951	1006	pp1ab	HCoV-HKU1	-4.3	114.6	12	Asp-rich region, Papain-like proteinase
P0C6X3	1037	1092	pp1ab	HCoV-HKU1	-4.4	105.0	12	Asp-rich region, Papain-like proteinase
P0C6X4	981	1036	pp1ab	HCoV-HKU1	-4.9	139.5	12	Asp-rich region, Papain-like proteinase
P0C6X2	925	980	pp1ab	HCoV-HKU1	-5.2	147.1	12	Asp-rich region, Papain-like proteinase
QOZJJ1	925	980	pp1ab	HCoV-HKU1	-5.3	153.3	12	Asp-rich region, Papain-like proteinase
0C6X3	953	1008	pp1ab	HCoV-HKU1	-5.5	162.7	12	Asp-rich region, Papain-like proteinase
	953							
P0C6X3		1006	pp1ab	HCoV-HKU1	-5.9	183.5	12	Asp-rich region, Papain-like proteinase
QOZJJ1	1093	1148	pp1ab	HCoV-HKU1	-6.0	182.1	12	Asp-rich region, Papain-like proteinase
P0C6X2	949	1004	pp1ab	HCoV-HKU1	-6.2	192.8	12	Asp-rich region, Papain-like proteinase
QOZJJ1	953	1008	pp1ab	HCoV-HKU1	-6.2	190.9	12	Asp-rich region, Papain-like proteinase
0C6X2	953	1008	pp1ab	HCoV-HKU1	-6.2	195.5	12	Asp-rich region, Papain-like proteinase
QOZJJ1	979	1034	pp1ab	HCoV-HKU1	-6.6	204.6	12	Asp-rich region, Papain-like proteinase
0C6X4	4761	4816	pp1ab	HCoV-HKU1	-7.1	21.0	36	RNA-directed RNA polymerase
0000A4	4985	5040	pp1ab	HCoV-HKU1	-8.1	47.6	21	3C-like proteinase
		3040			-0.1		<u> </u>	

^AStart and end position of enriched peptides relative to the amino acid sequences in UniProtKB. ^BCluster annotation was adapted from UniProtKB entry descriptions and features. Only peptides with a log odds ratio $(lod) \ge ln(2)$ or $\le ln(-2)$ and a *P* value < 0.005 (Fisher's exact test) are listed. Immunodominant peptides (i.e., peptides found to be significantly enriched in $\ge 1\%$ of samples of the tested individuals (*N* = 1399)) are marked in bold font.

Supplemental Table 7. Demographic data and sample collection for COVID-19 patients

Patient no.	Age	Gender	Nationality	Time from onset of symptoms to sample collection
1	49 years	Female	Belgian	25 days, 55 days
2	68 years	Male	Pakistani	5 days
3	30 years	Male	Egyptian	12 days
4	49 years	Male	Indian	10 days
5	68 years	Male	Sudanese	9 days
6	56 years	Male	Indian	10 days
7	67 years	Male	Indian	12 days

Supplemental Table 8. Peptides enriched by Ph	PhIP-Seq in COVID-19 patients (n = 7)
---	---------------------------------------

UniProtKB entry	Start ^A	End ^A	Species	Protein symbol	Cluster no.	No. of samples enriched	Cluster annotation ^B / peptide location
K9N5Q8	841	896	MERS-CoV	S	16	2	Furin-like S2' cleavage site
Q91A26	869	924	Beta-CoV-1 ^C	S	16	2	Furin-like S2' cleavage site
Q5MQD0	897	952	HCoV-HKU1	S	19	3	Furin-like S2' cleavage site
Q14EB0	897	952	HCoV-HKU2	S	19	3	Furin-like S2' cleavage site
Q14EB0	869	924	HCoV-HKU3	S	19	2	Furin-like S2' cleavage site
A0A0U2V9P1	85	140	MERS-CoV	S	19	2	Furin-like S2' cleavage site
A0A023Y9K3	813	868	MERS-CoV	S	19	3	Furin-like S2' cleavage site
A0A023Y9K3	841	896	MERS-CoV	S	19	3	Furin-like S2' cleavage site
T2BBI8	869	924	MERS-CoV	S	19	3	Furin-like S2' cleavage site
P59594	785	840	SARS-CoV	S	19	6	Furin-like S2' cleavage site
Q91A26	897	952	Beta-CoV-1 ^C	S	19	4	Furin-like S2' cleavage site
U5NJG5	1177	1232	MERS-CoV	S	59	3	Heptad repeat 2
U5NJG5	1205	1260	MERS-CoV	S	59	3	Heptad repeat 2
K9N5Q8	1205	1260	MERS-CoV	S	59	2	Heptad repeat 2
K9N5Q8	337	392	MERS-CoV	S	71	2	Receptor binding region
P59594	1093	1148	SARS-CoV	S	91	4	Heptad repeat 2
P59594	1121	1176	SARS-CoV	S	91	6	Heptad repeat 2
Q14EB0	1149	1204	HCoV HKU1	S	140	2	Upstream of heptad repeat 2
Q91A26	1205	1260	Beta-CoV-1 ^C	S	181	3	Heptad repeat 2
P59594	533	588	SARS-CoV	S	245	2	C-terminal of receptor binding domain
Q8BB23	197	252	Beta-CoV-1 ^C	N	15	2	SR-rich region
P59595	141	196	SARS-CoV	N	25	4	N-terminal RNA-binding domain
P59595	197	252	SARS-CoV	Ν	25	5	SR-rich region
Q6Q1R8	337	377	HCoV-NL63	N	132	2	C terminus
P59595	365	420	SARS-CoV	Ν	243	4	C terminus
A0A075Q443	169	224	MERS-CoV	pp1a	24	2	NA
W6A0R5	1121	1176	MERS-CoV	pp1a	57	2	Papain-like proteinase
K9N7C7	5489	5544	MERS-CoV	pp1ab	8	4	Helicase
Q0ZJJ1	953	1008	HCoV-HKU1	pp1ab	12	2	Asp-rich region, Papain-like proteinase
P0C6X2	953	1008	HCoV-HKU1	pp1ab	12	4	Asp-rich region, Papain-like proteinase
P0C6X2	949	1004	HCoV-HKU1	pp1ab	12	5	Asp-rich region, Papain-like proteinase
P0C6X3	951	1006	HCoV-HKU1	pp1ab	12	3	Asp-rich region, Papain-like proteinase

^AStart and end position of enriched peptides relative to the amino acid sequences in UniProtKB. ^BCluster annotation was adapted from UniProtKB entry descriptions and features. ^cNon-human CoV isolate. Only peptides that were significantly enriched in two or more patients are listed.