Supplementary File 1. ROI identification ImageJ Macro

run("8-bit");

- run("Arrange Channels...", "new=2");
- run("Gaussian Blur...", "sigma=1");
- setAutoThreshold("Default dark");
- //run("Threshold...");
- setThreshold(25, 255);
- //setThreshold(25, 255);
- run("Convert to Mask");
- run("Watershed");

run("Analyze Particles...", "size=0.04-Infinity circularity=0.10-1.00 display exclude clear add");

Supplementary File 2. ROI Quantification ImageJ Macro

run("Arrange Channels...", "new=12");

roiManager("multi-measure measure_all");

Methods for supplementary figures

Isolation of islet DNA and measurement of Plin2 exon 5 by quantitative PCR (qPCR)

Total DNA was isolated from mouse islets by QIAamp DNA minikit (Qiagen). Three primers (P1, P2 and P3 in Supplementary Fig. 1A) surrounding *lox*P sites followed previously published sequences (1). P1 (forward): 5'-AGC AAC CTG ATG GAG ACA CTC AG-3', 86580629-86580607 of NC_000070.7, GRCm39. P2 (reverse): 5'-CAC TGT TCA TGA ACT GCA CCA TC-3', 86580243-86580265 of NC_000070.7, GRCm39. P3 (reverse): 5'-CCG AGA GCA GAG CTT GGT AGA-3', 86578412-86578432 of NC_000070.7, GRCm39. SYBR green real time PCR was performed with P1 and P2 primers using 20 ng of islet DNA as a template to amplify a region between intron prior to an upstream *lox*P site and exon 5 of Plin2. Ndufv1was amplified using 5'-CTT CCC CAC TGG CCT CAA G-3' (forward) and 5'-CCA AAA CCC AGT GAT CCA GC-3' (reverse) primers published by Doliba et al. (2). P1 and P2 product levels were expressed as 2–(delta CT) values using Ndufv1 as an internal control of an unmodified gene. Serial dilution of WT islet DNA was amplified and used to calibrate a linearity of 2–(delta CT) for P1-P2 product.

Morphometric analysis of beta cell area

Morphometric analysis of mouse pancreatic sections was performed as published (3). In brief, whole pancreas was dissected en bloc, fixed in 10% formalin overnight, and paraffin embedded to keep the original shape of pancreas. 7 µm section that contains the maximum footprint was deparaffinized, rehydrated, and immunostained with guinea pig anti-insulin antibody (Ab7842, ABCAM at 1:100) followed by the visualization by Alexa 488 anti-guinea pig antibody at 1:500. Islets were imaged using a Leica DMI6000 B Inverted Microscope by first locating one insulin

positive area and then adjusting fluorescence intensity for best quality images at 10X magnification. GFP settings used for 10X magnification were 300 ms exposure and gain of 16. Next, the microscope was switched to 5X magnification to allow whole pancreas section imaging. Insulin positive sections were then sequentially located in the 5X magnification and imaged using the 10X magnification using preset settings. Once all insulin positive areas were imaged, size of insulin positive area was quantified automatically using ImageJ analysis software.

Mitochondrial DNA

Mitochondrial DNA content was measured by comparing mitochondrial gene (MTeCO1 for mouse islets and Mt-ND6 for INS1 cells) level relative to nuclear gene (Ndufv1 for mouse islets and β actin for INS1 cells) by real-time PCR in total DNA isolated from mouse islets and INS1 cells by QIAamp DNA minikit (Qiagen). Primers were MTeCO1, 5'-TGC TAG CCG CAG GCA TTA C-3' (forward) and 5'-GGG TGC CCA AAG AAT CAG AAC-3' (Reverse); Ndufv1, 5'-CTT CCC CAC TGG CCT CAA G-3' (forward) and 5'-CCA AAA CCC AGT GAT CCA GC-3' (reverse) published by Doliba et al. (2). Mt-ND6, 5'-TTG GGG TTG CGG CTA TTT AT-3' (forward) and 5'-ATC CCC GCA AAC AAT GAC CA-3' (reverse); β-actin, 5'-GCT CTA TCA CTG GGC ATT GG-3' (forward) and 5'-CGC AAC TCT TAA CTC GGA AGA-3' (reverse) published by Yamazaki et al (4).

Calcium imaging

INS1 cells were re-plated on a cover slip coated with extracellular matrix of HTB9 cells 72h after transfection and calcium imaging was performed as published (5). In brief, cells were

loaded with Fura-2-AM (10 μ M) in RPMI1640 at 37 °C for 20 min followed by bathing at 37 °C in the basal KRBH solution containing (in mM): 129 NaCl, 5 NaHCO₃, 4.8 KCl, 1.2 KH₂PO₄, 2.5 CaCl₂, 2.4 MgSO₄, 10 HEPES, 1 glucose, 29 mannitol, 0.1% w/v bovine serum albumin, pH 7.4 with NaOH (300 mOsm/kg) with change to 30 mM glucose or 30 mM KCl at time indicated. Solutions were changed at 2.5 ml/min that is expected to replace the entire bath within 30 seconds. INS1 cells were excited by 340 and 387 nm light alternatively using a DG-4 xenon-arc lamp (Sutter Instruments) and emission signals were recorded at 510 nm every 3 s using CMOS charge-coupled device (CCD) camera (Orca flash 4.0+, Hamamatsu). Images of cells were capture by an Olympus IX73 microscope using a 20 x /0.75 NA objective. The ratio of 340/380 fluorescent signal intensity (*I340/I380*) was used as the measure of [Ca²⁺]_i. Area under the curve (AUC) was obtained from the average tracing for each cover slip. Glucose response was calculated as (AUC during 30 mM glucose- AUC during 1 mM glucose)/AUC during 1 mM glucose.

Metabolomics

INS1 cells transfected with siRNA were washed with PBS. Then, cells were snap frozen on liquid nitrogen, and stored in -80 °C. After overnight lyophilization, dried cells were extracted into an 1 ml/well of methanol/acetonitrile/water (2:2:1 V/V/V) solution containing 1 ng/µl of D4-Succinate, D8-Valine, D4-Citrate, ¹³C5-Glutamine, ¹³C5-Glutamate, ¹³C6-Lysine, ¹³C5-Methionine, ¹³C3-Serine, and ¹³C11-Tryptophan internal standards. The lyophilized cells were scraped for 25 seconds, transferred to a microcentrifuge tube, and flash frozen in liquid nitrogen. Frozen extracts were thawed in a bath sonicator at room temperature (RT) for 10 min, rotated at -20 °C for 1 h, and centrifuged at 20,000 x g at 4 °C for 10 min. 400 µl of the supernatants

transferred into new tubes were dried using a Speedvac for 3 h at RT. Dried extracts were reconstituted in 40 μ L acetonitrile/water (1:1 v/v), vortexed for 5 min, and centrifuged at 20,000 x g at 4 °C for 10 min. Finally, 2µL of metabolite extracts were separated using a Millipore SeQuant ZIC-pHILIC (2.1 X 150 mm, 5 µm particle size) column with a ZIC-pHILIC guard column (20 x 2.1 mm) attached to a Thermo Vanquish Flex UHPLC. Mobile phase comprised Buffer A: 20 mM (NH₄)²CO₃, 0.1% NH₄OH and Buffer B: acetonitrile. The chromatographic gradient was run at a flow rate of 0.150 mL/min as follows: 0-20 min-linear gradient from 80 to 20% Buffer B; 20–20.5 min—linear gradient from 20 to 80% Buffer B; and 20.5–28 min hold at 80% Buffer B (6). Data was acquired using a Thermo Q Exactive mass spectrometer operated in full-scan, polarity-switching mode with a spray voltage set to 3.0 kV, the heated capillary held at 275 °C, and the HESI probe held at 350 °C. The sheath gas flow was set to 40 units, the auxiliary gas flow was set to 15 units, and the sweep gas flow was set to 1 unit. MS data was acquired in a range of m/z 70–1,000, with the resolution set at 70,000, the AGC target at 10e6, and the maximum injection time at 200 ms. Acquired LC-MS data were processed by Thermo Scientific TraceFinder 4.1 software, and metabolites were identified based on the University of Iowa Metabolomics Core facility in-house, physical standard-generated library. NOREVA was used for signal drift correction (7). Data per sample were then normalized to total ion signal per sample (Supplementary Table 1) and MetaboAnalyst 4.0 was used for further statistical processing and visualization (8).

Principal Component Analysis

Principal Component Analysis (PCA) was performed using MetaboAnalyst 4.0 software for metabolomic data (Supplementary Table 1) obtained from 2 independent experiments of INS1 cells treated with Scr control and SiPLIN2 as in Methods, each performed in triplicate. A 2D scores plot comparing the top 2 PC calculated is shown in Supplementary Figure 4.

Supplementary Figure

Figure 1. Efficiency of Cre-mediated recombination of Plin2 in Ins1Cre PLIN2^{fl/fl} mice (A) *Lox*P sites flanks exon 5 of the Plin2 locus in PLIN2^{fl/fl} mice used in the study (1). The location of three primers in Supplementary methods are shown in blue. (B) Expected size of PCR products and representative gel images of PCR products for islet DNA isolated from WT_{fl}; INS1Cre PLIN2^{+/+}, WT_{cre}; CreWT PLIN2^{fl/fl}, and β KO; INS1Cre PLIN2^{fl/fl} mice. 100 bp DNA ladder (New England BioLabs) is included. (C) qPCR compared abundance of P1-P2 products using 20 ng of islet DNA as a template in 7 WT (2 WT_{fl} and 5 WT_{cre}) and 4 β KO mice. Data are mean ± s.e.m. *; p<0.05 vs WT_{fl} and WT_{cre} by Student's t test.

Figure 2. Metabolic profiling of beta cell specific PLIN2 deficient mice.

(A) body weight (BW) and (B) 1.5 mg/g BW glucose GTT was done on 3-month old male mice on regular rodent chow after 6 h fasting. WT_{fl}; INS1Cre PLIN2^{+/+}, WT_{cre}; CreWT PLIN2^{fl/fl}, β KO; INS1Cre PLIN2^{fl/fl}. n= 7 for WT_{fl}, 3 for WT_{cre}, and 9 for β KO. (C) BW and (D) 1.0 mg/g BW glucose GTT was done on 6-month old female mice on high fat diet chow for 6 weeks after 6 hour fasting. WT_{fl}; INS1Cre PLIN2^{+/+}, WT_{cre}; CreWT PLIN2^{fl/fl}, β KO; INS1Cre PLIN2^{fl/fl}. n= 3 for WT_{fl}, 6 for WT_{cre}, and 6 for β KO. (E) Serum insulin in response to 1.5 mg/g BW i.p. glucose GTT and (F) stimulation index determined as insulin level at 15 min over 0 min for each female mouse. n= 4 for WT_{fl}, 5 for WT_{cre}, and 7 for β KO. All data are mean ± s.e.m.

Figure 3. Islet data from beta cell specific PLIN2 deficient mice.

(A-B) Beta cell area per islet was defined by measuring insulin positive area as in Supplementary methods in pancreatic section from 3 WT (WT_{fl};INS1Cre PLIN2^{+/+}) and 3 β KO (INS1Cre PLIN2^{fl/fl}) mice placed on HFD. (A) Mean \pm s.e.m. of islet size for each mouse. n= 41 for WT1, 55 for WT2, 16 for WT3, 29 for KO1, 29 for KO2, and 33 for KO3. (B) Distribution of islet size defined as beta cell area. Data combines all islets from 3WT and 3 β KO from (A). n=112 for WT and 91 for β KO. (C) Proton leak expressed as % basal oxygen consumption rate (OCR) determined by Seahorse Metabolic analyzer in mouse islets from high fat fed WT (WT_{fl}) and β KO islets for expression levels of mitochondrial DNA (MTeCO1) and nuclear DNA (Ndufv1). Expression of MTeCO1 was corrected for Ndufv1 and the average of value for WT was taken as 100%. Data are mean \pm s.e.m. n=5 for WT (1WT_{fl} and 4WT_{cre}) and 4 for β KO.

(A) Expression of *Plin2* in INS1 cells transfected with scramble control siRNA (Scr) or siRNA targeting Plin2 (SiPlin2) determined by qPCR using *Ppib* as an internal control. n= 4. (B) Western blot compared the expression of PLIN2 in SiPLIN2 and Scr treated INS1 cells. A representative Western blot and densitometry data corrected for GAPDH. n=4. (C) Number of lipid droplets (LDs) per cell in 12 cells treated by Scr and 6 cells treated by SiPLIN2 were

measured. Representative of 3 independent experiments. (D) Tracing of Fura-2 Ca²⁺ transients in INS1 cells transfected with Scr or SiPlin2 on a cover slip in response to 30 mM glucose (basal 1 mM glucose) from Fig. 4f plotted to show an individual cell. n= 8 cells for Scr and 14 cells for SiPLIN2 per cover slide. (E) Representative Western blot for Figure 5h that probed OXPHOS complex proteins in protein lysate of INS1 cells transfected by Scr and SiPLIN2 treated with or without 0.2 mM palmitic acids (PA) for 24 h prior to harvest. (F) Distribution of aspect ratio and form factor shown as violin plots for all mitochondria counted in three independent experiments n= 210 for Scr and 154 for siPLIN2. Medium and quantiles are shown. For all others, data are mean \pm s.e.m. *; p<0.05 by student's t test.

Figure 5. Principal component analysis compared metabolites between Scr and SiPLIN2 treated INS1 cells

% variance explained by principal component (PC)1 is shown in x axis and PC2 in y axis. Experiments were repeated twice (Exp1 and 2) each in triplicates and the results were combined making total 6 samples per treatment. Scr control (C1, C2) values were shaded red and siPLIN2 (P1, P2) values in green. See Supplementary Table 1 for raw data.

				C	EX	r I	C'DI D'A			C	EX	.r2	C'DI D'A	
				Scr			SiPLIN2	2		Scr			SiPLIN2	
Name	KEGG ^a	HMDB ^b	1	2	3	1	2	3	1	2	3	1	2	3
-Deoxy-			9.39	7.75	9.67	8.94	8.48	8.26	11.77	11.05	8.83	13.53	8.20	12.60
guanosine 5-														
riphosphate		UN (DD												
odium salt	C00286	HMDB 0001440												
-	C00280	0001440	10.80	8.68	7.02	7.44	7.87	5.30	9.31	8.89	21.25	4.57	7.36	19.17
nidazoleacrylic		HMDB							,					
cid	C00785	0000301												
-Deoxy.5.		UMDD	8.50	7.91	8.75	11.2	9.63	9.50	9.92	9.60	10.48	10.46	10.62	10.22
denosine	C00170	0001173				3								
-phospho-	0001/0	HMDB	11.10	9.05	9.33	7.25	6.35	7.13	13.33	13.07	15.97	9.02	6.00	7.04
luconate	C00345	0001316												
	C00147	HMDB	8.24	8.33	8.17	11.6	9.24	9.17	10.18	10.21	10.68	11.13	10.58	11.34
denine	C00147	0000034 HMDB	10.10	9.91	9 30	3 7 73	7 91	7.26	14 44	0.83	10.75	9.92	8 74	8 53
denosine	C00212	0000050	10.10).)1	7.50	1.15	7.91	7.20	17.77	7.05	10.75).)2	0.74	0.55
		HMDB	9.01	5.35	8.49	7.97	5.82	7.24	9.29	12.18	7.84	14.07	12.81	11.40
DP	C00008	0001341	0.00	0.04	0.10	7.00	0.25	7 70	11.00	11 70	12.04	0.10	0.26	0.66
lanina	C00041	HMDB 0000161	8.89	8.94	9.10	7.99	8.35	7.70	11.80	11.70	12.04	9.12	9.36	8.66
lamic	C00041	HMDB	9.21	9.25	8.52	8.76	8.62	8.38	10.37	10.91	10.85	10.63	11.07	9.66
llantoin	C01551	0000462												
10	G000000	HMDB	9.33	9.14	9.39	8.05	8.54	8.31	11.28	11.33	9.03	11.41	10.25	11.51
MP	C00020	0000045 HMDB	0.30	7 75	9.67	8 0/	8 18	8 26	11 77	11.05	8 83	13 53	8 20	12.60
ТР	C00002	0000538	9.39	1.15	9.07	0.94	0.40	8.20	11.//	11.05	0.05	15.55	6.20	12.00
Nicotinamide.		HMDB	4.04	5.18	5.91	8.72	11.08	10.40	8.19	12.15	9.93	10.79	12.08	9.20
ononucleotide	C00455	0000229												
utyryl.L.carniti	C02862	HMDB 0002012	8.96	9.65	8.85	8.92	8.27	8.84	11.04	10.99	10.37	9.89	9.49	9.36
;	C02802	HMDB	7.64	8.37	8.38	8.84	9.82	9.18	10.00	9.81	10.03	11.02	11.33	11.22
trulline	C00327	0000904												
		HMDB	11.78	10.46	15.07	7.60	9.62	7.81	12.01	12.27	11.77	9.68	9.07	7.94
MP	C00055	0000095	0.12	0.20	0 06	0 24	8 70	7.20	0.96	11.05	10.90	0.72	10.47	0.52
reatine	C00300	0000064	9.12	9.30	0.00	6.54	0.79	1.39	9.80	11.05	10.80	9.72	10.47	9.52
	000000	HMDB	9.93	10.04	9.82	7.98	8.69	7.80	12.82	12.31	13.67	7.91	7.45	7.75
ytidine	C00475	0000089												
ytidine.5.diphos			7.98	9.19	9.26	7.20	9.62	8.01	10.09	9.90	9.43	10.45	12.24	10.76
salt.		HMDB												
lihydrate	C00307	0001413												
Decanoyl.L.carni		HMDB	9.04	13.38	13.48	12.2	13.41	12.81	7.59	9.48	10.49	12.61	11.39	11.79
ine Chaomia agid a	C03299	0062631	0 66	9 6 1	° 50	1	0 75	0.05	11.21	11 70	11.40	10.16	10.29	0.08
Jution	C00257	0000625	8.00	8.01	8.50	9.14	8.75	9.05	11.51	11.79	11.49	10.16	10.38	9.98
O.Glucose.6.phos	000237	0000025	10.43	9.89	9.78	7.46	7.68	7.43	11.81	11.89	10.81	9.57	9.16	9.60
hate.potassium.s		HMDB												
t	C00092	0001401	0.22	7 (5	0.02	7.07	0.54	9 (0	11.01	11 41	0.01	10.59	0.52	11.27
L.	C05330	HMDB 0000742	9.32	/.05	9.93	1.97	8.54	8.09	11.01	11.41	9.01	10.58	9.52	11.27
L.	000000	HMDB	12.24	12.13	9.48	10.8	11.13	14.98	8.20	9.20	9.98	10.96	12.38	12.11
uroylcarnitine	None	0002250				6								
T T	C00122	HMDB	5.18	7.29	7.91	9.20	10.42	10.65	11.24	10.12	10.89	11.81	11.89	10.75
Ornithine mon	C00123	0000687 HMDB	9 10	8 4 8	8 40	8 4 1	8 78	8 78	10.45	10.59	9.66	10.22	10.08	9 95
ydrochloride	C00515	0003374	2.10	5.10	5.10	5.11	5.70	5.70	10.15	10.07	2.00	10.22	10.00	
-		HMDB	8.09	7.90	7.55	10.7	9.95	10.32	9.89	9.67	9.74	11.72	11.63	10.68
).Tryptophan	C00525	0013609	0.47	0 72	0.49	4	0 / /	0 15	10.40	10.41	0 02	11 47	0.00	10.52
FAD	C00016	0001248	9.4/	0./3	9.48	0.33	0.00	0.45	10.49	10.41	0.82	11.4/	9.00	10.52
	200010	0001240	I .						I .					

Supplementary Table 1: List of metabolites measured

GDP	C00035	HMDB 0001201	8.72	8.96	8.95	8.62	9.65	7.87	11.12	13.61	9.10	14.61	9.51	12.01
	G00055	HMDB	8.54	8.90	8.49	8.95	9.32	8.85	10.84	11.33	11.14	9.49	9.49	9.24
Glutamate	C00025	0000148 HMDB	5.99	5.94	5.73	12.1	11.65	11.53	9.74	9.09	9.69	11.33	11.47	10.78
Glutamine	C00064	0000641	7 52	8 05	7 56	6	0.11	0 00	0 96	8 27	9 42	12.11	10.70	12 21
oxidized.	C00127	0003337	1.55	8.05	7.50	0.01	9.11	0.00	0.00	0.27	0.45	12.11	10.79	12.51
Glutathione.	C00051	HMDB 0000125	9.69	8.95	8.28	9.89	8.61	9.14	8.94	9.26	9.86	11.42	11.86	11.35
	C0011(HMDB	10.60	8.38	9.01	9.47	7.53	7.57	8.20	7.96	7.51	7.07	20.30	6.68
Glycerol	C00116	HMDB	9.02	9.33	9.21	8.35	8.93	8.94	11.92	11.33	11.34	8.93	8.74	9.00
Glycine	C00037	0000123 HMDB	9 77	9 29	9 76	7.61	9 14	8 55	8 80	10.43	9 23	12 27	11 32	11 45
GMP	C00144	0001397	0.24	7.04	8.00	0.07	7.02	7.91	14.20	16.92	0.42	19.02	(97	12 (2
GTP	C00044	0001273	0.34	7.04	8.09	9.27	1.92	/.01	14.29	10.82	9.42	18.05	0.87	12.02
Guanosine	C00387	HMDB 0000133	9.65	9.94	9.01	7.99	8.51	7.90	10.27	10.52	9.85	10.22	9.80	9.75
Hexanoyl.	News	HMDB	8.98	8.80	8.38	8.69	8.61	8.13	8.93	11.41	11.00	10.98	10.52	11.00
L.carmune	None	HMDB	8.12	8.11	7.76	9.23	9.53	9.01	10.42	10.40	10.84	10.07	10.62	10.48
Hypotaurine	C00519	0000965 HMDB	7.42	6.92	6.26	9.69	10.85	10.91	5.60	5.71	5.93	14.84	16.56	14.84
Hypoxanthine	C00262	0000157	8.04	0.50	0.21	0.40	11.26	10.69	7 20	7.50	6.02	14.44	12 70	12.74
IMP	C00130	0000175	0.04	9.50	9.21	9.49	11.20	10.08	7.20	7.50	0.82	14.44	13.76	12.74
Inosine	C00294	HMDB 0000195	8.93	9.76	8.96	9.80	10.67	11.96	8.79	9.11	10.03	10.25	11.87	10.61
Isoleucine	C00407	HMDB 0000172	9.74	9.58	10.79	9.46	8.81	9.78	10.10	9.88	10.66	11.11	11.26	10.70
L.	00407	HMDB	10.03	11.05	9.27	7.59	6.90	7.39	11.73	13.56	13.07	7.81	7.63	7.52
Acetylcarnitine	C02571	0000201 HMDB	9.77	8.65	9.12	8.20	8.11	8.50	10.88	10.74	11.11	9.96	9.52	9.44
Lactate	C00186	0000190 HMDB	8 96	8 82	8 84	9.00	9.15	8 49	11.02	10.63	10.87	9 73	10.18	9 73
L.Asparagine	C00152	0000168	0.70	5.62	5.40	9.00	0.05	0.00	10.50	10.05	10.07		10.10	
L.Aspartic.acid	C00049	HMDB 0000191	7.61	7.61	7.43	10.4 2	9.95	9.89	10.50	10.05	10.49	10.58	10.47	10.17
L Carnitine	C00318	HMDB 0000062	10.00	10.61	8.55	8.41	7.41	8.05	9.98	12.28	10.99	9.26	9.44	9.14
Learmine	C00510	HMDB	7.83	7.06	8.88	9.76	11.14	10.26	10.24	9.36	9.35	10.60	11.20	10.91
L.Carnosine	C00386	0000033 HMDB	8.65	9.80	8.89	9.70	9.80	8.86	9.67	12.03	10.10	9.88	11.34	10.41
L.Cystathionine	C02291	0000099 HMDB	8.21	5.60	6.18	8.66	6.32	8.30	7.41	10.81	10.59	10.64	12.13	10.53
acid	C00337	0003349	7 97	0.06	0 11	0 5 1	0.26	8 22	11.05	0.46	10.57	10.20	10.26	0.02
L.Homoserine	C00263	0000719	/.8/	8.00	8.11	8.51	9.20	8.22	11.05	9.40	10.57	10.30	10.30	9.03
L.Kvnurenine	C00328	HMDB 0000684	8.24	8.19	9.08	8.25	10.36	13.25	11.96	11.07	11.54	11.77	12.05	10.06
L Malia agid	C00140	HMDB	9.76	9.78	9.11	7.92	7.50	7.71	11.27	12.04	11.39	8.70	9.00	8.89
L.Manc.acid	C00149	HMDB	7.37	7.43	7.54	10.1	10.69	10.59	10.76	9.53	9.68	11.22	11.52	10.58
L.Phenylalanine	C00079	0000159 HMDB	7.57	8.43	12.59	1 6.18	7.39	10.93	8.30	11.33	13.71	9.53	6.27	11.19
L.Tartaric.acid	C00898	00956	7.06	7 1 9	7 56	0.56	10.40	10.43	11.02	10.03	0.56	10.70	11 10	11.02
L.Tyrosine	C00082	0000158	7.00	/.10	1.50	9.30	10.40	10.45	11.02	10.05	9.30	10.79	11.10	11.02
L.Valine	C00183	HMDB 0000883	8.90	8.23	8.23	9.20	9.45	8.97	11.29	10.46	11.62	10.69	10.88	10.52
Malonic acid	C00383	HMDB 0000691	6.09	7.13	10.20	6.06	6.74	10.92	10.38	10.16	10.48	10.37	11.02	12.57
Matomodela	000000	HMDB	7.76	7.44	6.80	9.34	9.79	10.68	9.91	8.52	9.72	10.67	12.70	12.39
Nethionine N.Acetyl.	C00073	0000696 HMDB	7.23	8.29	6.82	9.66	10.16	10.24	8.05	8.51	7.65	13.79	12.30	12.72
L.aspartic.acid	C01042	0000812 HMDB	11 73	10.84	10.64	6.05	6 51	6 66	13 94	14 08	13 43	7 48	7 17	7 53
neuraminic.acid	C19910	0000230	11.75	10.04	10.04	0.05	0.01	0.00	15.77	1 1.00	15.45	,	,.1,	,

NAD	C00003	HMDB	9.19	9.62	9.08	8.81	9.09	8.37	12.04	11.55	10.76	10.42	9.90	9.66
NAD	00003	HMDB	9.53	7.42	10.91	11.3	7.84	10.49	14.25	9.38	8.89	12.78	8.59	12.71
NADH	C00004	0001487 HMDB	9.49	7.85	9.75	3 7.62	7.90	8.29	9.34	11.61	8.67	12.76	9.76	10.90
NADP	C00006	0000217 HMDB	8.57	7.02	8.26	9.56	9.25	8.42	13.32	8.26	8.95	12.25	8.73	12.44
NADPH N alpha Acetyl I	C00005	00221 HMDB	7 63	8 94	8 74	10.5	10.43	8 81	10.45	10.29	10.93	10.32	11 29	9 64
asparagine	None	0006028	7.05	0.94	0.74	9	10.45	0.01	10.45	10.29	10.95	10.52	11.29	9.04
Nicotinamide	C00153	HMDB 0001406	9.03	8.90	9.10	9.11	7.49	8.13	10.80	10.21	11.55	10.38	11.92	10.58
Nicotinamide.			7.23	7.15	8.93	9.87	12.45	10.45	9.65	8.97	6.40	10.62	13.38	11.65
dinucleotide.	C04422	News												
sodium.salt	C04423	None HMDB	9.00	8.22	10.15	8.06	8.69	8.64	11.56	9.09	10.68	10.05	10.85	10.14
Nicotinate N Methyl	C00253	0001488 HMDB	8.07	8 3 2	8 1 1	9.68	10.17	9 56	10.74	10.87	10.53	9.72	9.85	0.53
D.aspartic.acid	C12269	0002393	8.07	0.52	0.11	9.08	10.17	9.50	10.74	10.87	10.55	9.72	9.85	9.55
Octanoyl-L- carnitine	C02838	HMDB 0000791	9.41	7.43	13.65	9.62	8.08	10.73	nd	nd	nd	nd	nd	nd
Oleoyl.	002000	HMDB	11.85	12.80	10.14	9.95	8.89	9.69	8.97	9.26	11.16	9.75	12.17	12.35
L.carnitine O.Phosphoryletha		0005065 HMDB	9.42	8.16	8.18	8.68	8.71	8.61	8.31	8.48	8.46	12.07	12.22	12.58
nolamine	C00346	0000224	0.50	11.24	0 27	7.01	6.00	7 27	10.22	10.29	12.00	0 50	10.15	10.62
L.carnitine	C02990	0000222	9.30	11.24	8.57	7.91	0.09	1.57	10.22	10.28	15.09	0.32	10.15	10.05
Phosphocreatine	C02305	HMDB 0001511	8.81	8.53	8.93	8.38	8.96	8.26	11.00	10.24	10.11	10.12	11.30	10.07
		HMDB	8.04	8.26	8.37	8.77	9.28	8.37	11.52	11.23	10.80	9.90	10.29	9.95
Proline Propionyl.	C00148	0000162 HMDB	10.06	11.67	9.16	8.11	7.29	7.65	10.89	12.51	12.46	0.07	8.26	7.64
L.carnitine	C03017	0062514	10.20	11.20	0.24	7.40	(21	0.20	12.21	10.04	10.72	10.24	10.00	0.29
Pyridoxine	C00314	0000239	10.30	11.20	8.34	7.49	0.31	8.30	12.21	10.04	10.72	10.24	10.68	9.28
Ribose.5.	C00117	HMDB 0001548	12.19	10.82	9.73	7.70	6.23	7.49	14.42	14.45	16.50	5.74	5.96	6.05
S.5.Adenosyl.	000117	0001540	6.95	6.91	7.51	10.1	11.60	10.69	8.44	8.20	8.50	11.99	12.06	11.82
L.methionine.p. toluenesulfonate.		HMDB				8								
salt	C00019	0001185	10.44	10 (1	10.21	7.50	(07	7.22	10.47	12 50	11.65	0.05	0.41	0.45
Serine	C00065	0000187	10.44	10.01	10.31	7.50	0.97	1.32	12.47	12.58	11.05	8.05	8.41	8.45
Stearoyl.	None	HMDB 0000848	13.01	13.40	12.74	8.03	6.41	5.22	10.47	9.96	14.65	7.63	9.00	9.09
Learmine	None	HMDB	9.41	10.64	11.71	6.52	7.93	7.37	13.49	12.04	12.32	8.34	8.46	9.92
Succinic.acid	C00042	0000254 HMDB	8.75	8.77	8.25	9.14	8.94	8.85	9.97	9.93	10.58	10.37	10.54	10.28
Taurine	C00245	0000251	0.07	0.24	7 72	10.1	0.46	0.20	11.20	10 (1	10.64	0.72	0.70	0.71
Threonine	C00188	0000167	8.27	9.54	1.12	3	9.40	8.30	11.39	10.61	10.64	9.75	9.79	8.71
trans.4.Hydroxy.	C01157	HMDB 0000725	8.15	8.45	8.21	9.27	8.93	8.40	11.10	9.70	11.16	9.93	10.47	9.78
L.pronne	001157	HMDB	9.24	8.89	8.92	9.25	8.92	7.84	10.60	10.96	9.47	12.29	11.04	10.56
UMP	C00105	0000288 HMDB	8.68	9.26	8.49	9.21	9.92	10.01	10.18	9.90	10.38	11.00	11.40	10.54
Uracil	C00106	0000300	0.45	0.50	0.25	0.24	0.55	0.00	11.10	0.00	11.40	10.04	11.25	0.40
Urate	C00366	HMDB 0000289	9.45	8.52	8.35	8.34	8.55	8.89	11.16	9.68	11.42	10.04	11.35	8.48
Uridine	C00299	HMDB 0000296	10.63	11.25	10.13	8.90	9.37	7.95	13.55	13.05	12.65	8.60	8.17	8.19
Valeryl.	00299	HMDB	5.77	6.09	5.56	13.3	12.14	11.11	5.10	5.60	5.31	15.55	15.65	16.79
L.carnitine	None	0013128 HMDB	8,95	9,17	7.64	4 9.17	8,84	9,80	8,76	9.06	9.83	12.14	12.54	11.26
Xanthine	C00385	0000292	0.75		,		0.01	2.00	0.70	2.00	2.00		12.01	

a; Compound entry in Kyoto Encyclopedia of Genes and Genomes b; The Human Metabolome Database nd; not done

	Exp 1					Exp 2								
		Scr			SiPLIN2			Scr			SiPLIN2		Fold ^a	D 1 b
Name	1	2	3	1	2	3	1	2	3	1	2	3	change	P value
S.5.Adenosyl.L. methionine.p.tolue nesulfonate.salt N.Acetyl.	0.98	0.97	1.05	1.43	1.63	1.50	1.01	0.98	1.01	1.43	1.44	1.41	1.47	1.20E-07
L.aspartic.acid	0.97	1.11	0.92	1.30	1.36	1.37	1.00	1.05	0.95	1.71	1.52	1.58	1.47	4.93E-05
Methionine	1.06	1.01	0.93	1.27	1.34	1.46	1.06	0.91	1.04	1.14	1.35	1.32	1.31	1.07E-04
Citrulline	0.94	1.03	1.03	1.09	1.21	1.13	1.01	0.99	1.01	1.11	1.14	1.13	1.13	1.10E-04
Valeryl.L.carnitine Nicotinamide.hyp oxanthine.dinucle	0.99	1.05	0.96	2.30	2.09	1.91	0.96	1.05	1.00	2.91	2.93	3.15	2.55	6.75E-04
otide.sodium.salt	0.93	0.92	1.15	1.27	1.60	1.34	1.16	1.08	0.77	1.27	1.61	1.40	1.42	8.52E-04
D.Tryptophan	1.03	1.01	0.96	1.37	1.27	1.32	1.01	0.99	1.00	1.20	1.19	1.09	1.24	1.54E-03
Uracil	0.99	1.05	0.96	1.04	1.13	1.14	1.00	0.97	1.02	1.08	1.12	1.04	1.09	1.93E-03
L.Carnosine	0.99	0.89	1.12	1.23	1.41	1.30	1.06	0.97	0.97	1.10	1.16	1.13	1.22	3.24E-03
oxidized.	0.98	1.04	0.98	1.14	1.18	1.14	1.04	0.97	0.99	1.42	1.27	1.45	1.27	4.49E-03
Hypoxanthine	1.08	1.01	0.91	1.41	1.58	1.59	0.97	0.99	1.03	2.58	2.88	2.58	2.10	8.42E-03
Xanthine	1.04	1.07	0.89	1.07	1.03	1.14	0.95	0.98	1.07	1.32	1.36	1.22	1.19	1.21E-02
L.Tyrosine	0.97	0.99	1.04	1.31	1.43	1.43	1.08	0.98	0.94	1.06	1.09	1.08	1.23	2.30E-02
IMP	0.90	1.07	1.03	1.06	1.26	1.20	1.00	1.05	0.95	2.01	1.92	1.78	1.54	2.31E-02
Glutamine	1.02	1.01	0.97	2.07	1.98	1.96	1.02	0.96	1.02	1.19	1.21	1.13	1.59	2.44E-02
DL.Leucine	0.76	1.07	1.16	1.35	1.53	1.57	1.05	0.94	1.01	1.10	1.11	1.00	1.28	3.52E-02
reduced.	1.08	1.00	0.92	1.10	0.96	1.02	0.96	0.99	1.05	1.22	1.27	1.21	1.13	4.23E-02
DL. lauroylcarnitine 5-Deoxy.5.	1.08	1.08	0.84	0.96	0.99	1.33	0.90	1.01	1.09	1.20	1.36	1.33	1.19	4.59E-02
methylthio. adenosine N.acetyl.neuramin	1.01	0.94	1.04	1.34	1.15	1.13	0.99	0.96	1.05	1.05	1.06	1.02	1.13	4.66E-02
ic.acid	1.06	0.98	0.96	0.55	0.59	0.60	1.01	1.02	0.97	0.54	0.52	0.55	0.56	6.73E-10
Serine	1.00	1.02	0.99	0.72	0.67	0.70	1.02	1.03	0.95	0.66	0.69	0.69	0.69	9.52E-10
L.Malic.acid D.Glucose.6.phos phate.potassium.sa	1.02	1.02	0.95	0.83	0.79	0.81	0.97	1.04	0.98	0.75	0.78	0.77	0.79	3.03E-07
Ît	1.04	0.99	0.97	0.74	0.77	0.74	1.03	1.03	0.94	0.83	0.80	0.83	0.79	3.85E-06
L.Acetylcarnitine	0.99	1.09	0.92	0.75	0.68	0.73	0.92	1.06	1.02	0.61	0.60	0.59	0.66	9.54E-06
Succinic.acid Ribose.5.	0.89	1.01	1.11	0.62	0.75	0.70	1.07	0.95	0.98	0.66	0.67	0.79	0.70	2.26E-05
6-	1.12	0.02	0.05	0.74	0.57	0.72	0.95	0.02	1.12	0.50	0.42	0.10	0.02	1.525.04
phosphogluconate	1.13	0.92	0.95	0.74	0.05	0.73	0.94	0.93	1.13	0.04	0.42	0.50	0.01	1.52E-04
	1.06	0.94	0.99	0.89	0.88	0.93	1.00	0.98	1.02	0.91	0.8/	0.87	0.89	2.10E-04
	0.95	0.84	1.21	0.01	0.77	0.63	1.00	1.02	0.98	0.81	0.75	0.66	0.71	0.15E-04
Stearoyl.	1.00	1.05	0.95	0.83	0.88	0.75	0.90	0.85	1.25	0.65	0.62	0.63	0.73	1.04E-03
Cvtidine	1.00	1.01	0.99	0.80	0.87	0.79	0.99	0.95	1.06	0.61	0.58	0.60	0.71	1.93E-03

Supplementary Table 2. Metabolites with significant differences

L.Carnitine	1.03	1.09	0.88	0.87	0.76	0.83	0.90	1.11	0.99	0.84	0.85	0.82	0.83	1.99E-03
Alanine	0.99	1.00	1.01	0.89	0.93	0.86	1.00	0.99	1.02	0.77	0.79	0.73	0.83	2.53E-03
NAD	0.99	1.03	0.98	0.95	0.98	0.90	1.05	1.01	0.94	0.91	0.86	0.84	0.91	5.35E-03
Butyryl. L.carnitine	0.98	1.05	0.97	0.98	0.90	0.97	1.02	1.02	0.96	0.92	0.88	0.87	0.92	6.06E-03
Adenosine	1.03	1.01	0.95	0.79	0.81	0.74	1.24	0.84	0.92	0.85	0.75	0.73	0.78	8.50E-03
Propionyl. L.carnitine	0.98	1.13	0.89	0.79	0.71	0.74	0.91	1.05	1.04	0.01	0.69	0.64	0.60	9.16E-03
Glycine	0.98	1.02	1.00	0.91	0.97	0.97	1.03	0.98	0.98	0.77	0.76	0.78	0.86	1.98E-02
Palmitoyl. L.carnitine	0.98	1.16	0.86	0.82	0.63	0.76	0.91	0.92	1.17	0.76	0.91	0.95	0.80	2.06E-02
Creatine	1.00	1.02	0.97	0.92	0.97	0.81	0.93	1.05	1.02	0.92	0.99	0.90	0.92	2.15E-02

Values are converted from supplementary table 1 taking the average of three scr as 1 for each experiment a; Fold change= (Average of SiPLIN2 from Exp 1 and Exp 2)/ (Average of Scr from Exp 1 and Exp 2) b; p value of student's t test comparing 6 sample of SiPLIN2 from Exp 1 and Exp 2 vs, 6 samples Scr from Exp 1 and Exp 2

	FORWARD	REVERSE
ACTB ^{ref9}	GAAGATCAAGATCATTGCTCCT	TACTCCTGCTTGCTGATCCA
HPRT1 ^{ref9}	CCTGGCGTCGTGATTAGTGAT	AGACGTTCAGTCCTGTCCATAA
XBP1S ref10	TGCTGAGTCCGCAGCAGGTG	GCTGGCAGGCTCTGGGGAAG

Supplementary Table 3. Human primers used for Sybr green qPCR

ACTB; Actin, beta, HPRT1; Hypoxanthinephosphoribosyl transferase1, XBP1s; X-box binding protein, spliced form

guinea pig anti-ADFP	1:5000	ProSci ^a	Figure 1B
rabbit anti-GAPDH	1:1000	2118, Cell Signaling	Figure 1B, 9E, 9G
(14C10)		Technology	
rodent anti-Total	1:1,000	ab110413, abcam	Figure 2H, 5H, 10H
OXPHOS			and supplementary
			figure 4E
Rabbit anti-ADFP	1:1,000	Ab52335, abcam	Figure 9E, 9G and
			supplementary 4B
Mouse anti-tubulin	1:3,000	sc-8035, Santa Cruz	Figure 2H, 10H
(TU-02)		Biotechnology	
HRP-conjugated goat	1:10,000	sc-2438, Santa Cruz	Figure 1B
anti-guinea pig IgG		Biotechnology	_
HRP-conjugated	1:3,000	sc-516102,	Figure 9E, 9G
mouse IgG kappa		Santa Cruz	_
binding protein (m-		Biotechnology	
IgGκ BP)-IgG			
HRP-conjugated	1:10,000	sc-2357, Santa Cruz	Figure 1B, 2H, 5H,
mouse anti-rabbit IgG		Biotechnology	9E, 9G, 10H and
			supplementary
			figure 4B, 4E
DyLight 800 goat	1:10,000	SA5-35521,	Figure 10H
anti-Mouse IgG		ThermoFisher	
(H+L)			

Supplementary Table 4. Antibodies used for Western blots

a; Custom made by ProSci, Inc. using CDPQQSVVMRAVANLPLVSSTYDL, which is 7 to 28 amino acids of mouse Plin2 with addition of C at the beginning to increase the antigenicity. HRP: horseradish peroxidase

Data	Source									
	IIDP ^a	Alberta Institute Core ^b	Prodo ^c							
Figure 9A-D			HP-17055							
			HP-17061							
			HP-17075							
Figure 9E	SAMN08971735									
Representative blot										
Figure 9E	SAMN08971735		HP-17040							
Densitometry			HP-17055							
			HP-17075							
Figure 9F, H	SAMN10737781									
	SAMN11476721									
	SAMN11483342									
	SAMN11864195									
Figure 9G	SAMN10977276									
Representative blot										
Figure 9G	SAMN10977276	SAMN12044342								
Densitometry	SAMN14120450	SAMN15239415								
	SAMN15400953									
	SAMN15579355									
Figure 9I, J	SAMN10737781	SAMN15239415								
	SAMN11476721									
	SAMN11483342									
	SAMN14132340									
	SAMN15400953									
	SAMN15579355									
Figure 10A	SAMN11476721									
Figure 10B-G	SAMN11476721									
	SAMN11483342									
	SAMN11864195									
	SAMN13938639									
	SAMN14120450									
	SAMN14132340									
	SAMN15400953									
	SAMN15579355									
Figure 10H	SAMN15400953									
Representative blot										
Figure 10H	SAMN14120450	SAMN15239415								
Densitometry	SAMN15400953									
-	SAMN15579355									

Supplementary Table 5: Donor ID of human islets used

a; Integrated Islet Distribution Program (https://iidp.coh.org) b: Alberta Diabetes Institute Islet Core (https://www.epicore.ualberta.ca/isletcore/) c; Prodo laboratories INC (https://prodolabs.com)

		D	onor charac	teristics		Islet character	istics				
	Age	Sex	BMI		Cause of		Purity	Viability			
ID	(years)	(M/F)	(kg/m^2)	HbA1c	death	Islet isolation center	(%)	(%)			
SAMN						The Scharp-Lacy Research					
08971735	50	М	32.3	5.4	Head trauma	Institute/IIDP	90	95			
SAMN					Cerebrovasc	The Scharp-Lacy Research					
10737781	66	М	27.2	4.7	ular/stroke	Institute/IIDP	95	95			
SAMN					Cerebrovasc	Southern California Islet					
10977276	52	М	27.2	5.7	ular/stroke	Cell Resource Center/IIDP	85	96			
SAMN						The Scharp-Lacy Research					
11476721	50	М	32.8	6.0	Anoxia	Institute/IIDP	90	95			
SAMN						University of					
11483342	52	F	39.8	6.4	Anoxia	Wisconsin/IIDP	92	98			
SAMN		_			Cerebrovasc	University of					
11864195	53	F	40.0	5.5	ular/stroke	Wisconsin/IIDP	92	98			
SAMN					Cerebrovasc	Southern California Islet					
13938639	50	F	39.2	5.0	ular/stroke	Cell Resource Center/IIDP	80	95			
SAMN						University of					
14120450	37	M	31.9	5.6	Head trauma	Pennsylvania/IIDP	85	96			
SAMN						Southern California Islet					
14132340	31	М	27.0	5.2	Head trauma	Cell Resource Center/IIDP	85	95			
SAMN		_			Cerebrovasc	The Scharp-Lacy Research					
15400953	54	F	24.5	5.7	ular/stroke	Institute/IIDP	90	95			
SAMN						The Scharp-Lacy Research					
15579355	21	M	27.2	5.1	Head trauma	Institute/IIDP	85	95			
SAMN		_									
12044342	44	F	23.2	4.9		Alberta Institute Core		90			
SAMN		_									
15239415	31	F	20.3	4.8		Alberta Institute Core		95			
HP-17040	46	М	27.6	5.4	Cerebrovasc ular/stroke	Prodo laboratories	90	95			
HP-17055	41	М	28	5.3	Head trauma	Prodo laboratories	90	95			
HP-17061	38	М	39	5.8	Anoxia	Prodo laboratories					
HP-17075	37	F	19.8	4.6	Anoxia	Prodo laboratories	95	95			

Supplementary Table 6: Donor and islet characteristics of human islets used

References

- McManaman JL, Bales ES, Orlicky DJ, Jackman M, MacLean PS, Cain S, et al. Perilipin-2-null mice are protected against diet-induced obesity, adipose inflammation, and fatty liver disease. *J Lipid Res.* 2013;54(5):1346-59.
- Doliba NM, Liu Q, Li C, Chen J, Chen P, Liu C, et al. Accumulation of 3hydroxytetradecenoic acid: Cause or corollary of glucolipotoxic impairment of pancreatic beta-cell bioenergetics? *Mol Metab.* 2015;4(12):926-39.
- Roat R, Rao V, Doliba NM, Matschinsky FM, Tobias JW, Garcia E, et al. Alterations of pancreatic islet structure, metabolism and gene expression in diet-induced obese C57BL/6J mice. *PLoS One*. 2014;9(2):e86815.
- Yamazaki M, Munetsuna E, Yamada H, Ando Y, Mizuno G, Murase Y, et al. Fructose consumption induces hypomethylation of hepatic mitochondrial DNA in rats. *Life Sci.* 2016;149:146-52.
- Kang C, Xie L, Gunasekar SK, Mishra A, Zhang Y, Pai S, et al. SWELL1 is a glucose sensor regulating beta-cell excitability and systemic glycaemia. *Nat Commun.* 2018;9(1):367.
- Cantor JR, Abu-Remaileh M, Kanarek N, Freinkman E, Gao X, Louissaint A, Jr., et al. Physiologic Medium Rewires Cellular Metabolism and Reveals Uric Acid as an Endogenous Inhibitor of UMP Synthase. *Cell.* 2017;169(2):258-72 e17.
- Li B, Tang J, Yang Q, Li S, Cui X, Li Y, et al. NOREVA: normalization and evaluation of MS-based metabolomics data. *Nucleic Acids Res.* 2017;45(W1):W162-W70.

- Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G, et al. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. *Nucleic Acids Res.* 2018;46(W1):W486-W94.
- Li X, Yang Q, Bai J, Xuan Y, and Wang Y. Identification of appropriate reference genes for human mesenchymal stem cell analysis by quantitative real-time PCR. *Biotechnol Lett.* 2015;37(1):67-73.
- van Schadewijk A, van't Wout EF, Stolk J, and Hiemstra PS. A quantitative method for detection of spliced X-box binding protein-1 (XBP1) mRNA as a measure of endoplasmic reticulum (ER) stress. *Cell Stress Chaperones*. 2012;17(2):275-9.