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Introduction
The term “cardiogenic dementia” was first introduced in the late 1970s to describe the link between cardiac 
and cognitive dysfunction (1). Estimates indicate up to 50% of  patients with heart failure (HF) experience 
cardiogenic dementia (2, 3). Among patients with HF, cardiogenic dementia is associated with increased 
hospitalization, the loss of  independence, and increased risk of  mortality (4–7). Cardiogenic dementia is 
not characterized by a singular dementia phenotype and frequently includes aspects of  vascular dementia 
as well as amyloidosis and Alzheimer’s disease (AD) (8). As with AD, cardiogenic dementia pathology 
appears to develop in the prefrontal cortex and hippocampus, regions involved closely in executive and 
memory function (8, 9).

Patients with HF with preserved ejection fraction (HFpEF; HF subtype reflecting ~50% of  total HF 
cases) exhibit cardiogenic dementia, yet the etiology of  disease remains unclear in this clinical population 
(2, 10–14). Current evidence indicates that HFpEF occurs more frequently in older women (versus men) 

Individuals with heart failure (HF) frequently present with comorbidities, including obesity, 
insulin resistance, hypertension, and dyslipidemia. Many patients with HF experience cardiogenic 
dementia, yet the pathophysiology of this disease remains poorly understood. Using a swine 
model of cardiometabolic HF (Western diet+aortic banding; WD-AB), we tested the hypothesis 
that WD-AB would promote a multidementia phenotype involving cerebrovascular dysfunction 
alongside evidence of Alzheimer’s disease (AD) pathology. The results provide evidence of 
cerebrovascular insufficiency coupled with neuroinflammation and amyloidosis in swine with 
experimental cardiometabolic HF. Although cardiac ejection fraction was normal, indices of 
arterial compliance and cerebral blood flow were reduced, and cerebrovascular regulation was 
impaired in the WD-AB group. Cerebrovascular dysfunction occurred concomitantly with increased 
MAPK signaling and amyloidogenic processing (i.e., increased APP, BACE1, CTF, and Aβ40 in the 
prefrontal cortex and hippocampus) in the WD-AB group. Transcriptomic profiles of the stellate 
ganglia revealed the WD-AB group displayed an enrichment of gene networks associated with 
MAPK/ERK signaling, AD, frontotemporal dementia, and a number of behavioral phenotypes 
implicated in cognitive impairment. These provide potentially novel evidence from a swine model 
that cerebrovascular and neuronal pathologies likely both contribute to the dementia profile in a 
setting of cardiometabolic HF.
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(15) and reflects a total body syndrome affecting multiple organ systems and tissues beyond the heart, 
including the peripheral vasculature and the brain (8, 16). Mounting evidence suggests metabolic dysregu-
lation and chronic low-grade inflammation represent a unifying link between cerebrovascular insufficiency 
and AD pathology (17, 18). Owing to structural and functional similarities between human and swine car-
diovascular systems and brains (human and pig brains are gyrencephalic, containing >60% white matter) 
(19–21), swine models of  disease may provide unique translational insight into multiorgan/system-level 
pathologies. Recently, our group characterized a large animal (e.g., swine) model of  cardiometabolic HF 
(22) that was identified as a multihit model useful for the study of  HFpEF by the National Heart, Lung, 
and Blood Institute/NIH HFpEF working group (23). This preclinical model exhibits key comorbidities of  
HF, including physical inactivity (decreased home-cage activity), obesity, dyslipidemia, insulin resistance, 
and elevated aortic systolic pressure. In addition, these animals display pathological features of  HF, includ-
ing lung congestion, systemic inflammation, concentric left ventricular remodeling, cardiac diastolic dys-
function, and preserved EF (22). Importantly, work from our lab demonstrates this model of  HF induction 
impairs working memory performance (24), possibly in part through deficits in spatial learning or naviga-
tion (25). This model of  HF induction was highlighted in the American Heart Association Scientific State-
ment for its utility as a model to better understand the pathogenesis of  hypertensive cerebral damage (23). 
Using this disease platform to gain further insight into the heart-brain axis in HF, the purpose of  the current 
study was to test the hypothesis that swine with cardiometabolic HF would exhibit a complex dementia 
phenotype involving cerebrovascular dysfunction as well as indices of  neuroinflammation and AD-like 
amyloidosis. Specifically, we investigated indices of  cerebral blood flow control in vivo as well as pial 
and brain parenchymal artery vasomotor control in isolated cerebral arterioles ex vivo. Further, because it 
interfaces with the heart-brain axis (26, 27), we examined the transcriptomic profile in the stellate ganglia. 
Last, given the established role of  aberrant mitogenic signaling in AD pathology (28–31), transcriptomic 
profiling of  the stellate ganglia was coupled with examination of  MAPK pathway activation as well as key 
regulators of  the generation of  the β-amyloid peptide in the prefrontal cortex and hippocampus. The results 
of  this study demonstrate swine with cardiometabolic HF displayed a combination of  cerebrovascular and 
neuronal pathologies, indicating swine models of  multiorgan disease may provide an excellent model to 
interrogate cardiogenic dementia.

Results
Physical characteristics, cardiovascular parameters, and cerebrovascular function. Results describing physical char-
acteristics as well as a cardiac, peripheral vascular, immune, and hepatic phenotype for the same animals 
used in this study are only summarized here as they were reported previously (22). Swine in the Western 
diet aortic banded (WD-AB) group were obese and dyslipidemic, exhibited steatohepatitis, and displayed 
evidence of  HF, including pulmonary congestion, concentric left ventricle remodeling, diastolic dysfunc-
tion, impaired coronary microvascular vasomotor control, and genetic signatures consistent with an HF 
phenotype alongside normal EF (>45%). Additionally, swine in the WD-AB group displayed significantly 
less daily cage activity. Our previous work provides a detailed description of  the multihit phenotype in this 
swine model and clearly establishes these characteristics of  the model (22). Systolic blood pressure and 
pulse pressure were increased in the WD-AB group (P < 0.05; Supplemental Figure 1; supplemental mate-
rial available online with this article; https://doi.org/10.1172/jci.insight.143141DS1).

Brain mass was lower in the WD-AB group (control = 110 ± 3 vs. WD-AB = 93 ± 2 g, P < 0.01). 
Cerebral blood flow velocity (absolute and scaled to brain mass) was lower and β-stiffness index was 
greater in the WD-AB group (P < 0.01; Figure 1, A and B). Baseline carotid artery blood flow was low-
er and carotid artery vascular resistance was greater in the WD-AB group (carotid artery flow: control 
= 315 ± 145 vs. WD-AB = 169 ± 26 mL/min, P < 0.05; carotid artery vascular resistance: control = 
0.23 ± 06 vs. WD-AB=0.54 ± 0.08 mmHg/mL/min, P < 0.05). Absolute data for carotid artery blood 
flow during central hypovolemia are presented in Figure 1C. The percentage change in carotid artery 
vascular resistance during central hypovolemia was both positive (i.e., increased) and greater in the 
WD-AB group (P < 0.01; Figure 1D).

In isolated pial and parenchymal arteries, maximal luminal diameters were similar between groups 
and artery types (control pial = 284 ± 48 vs. WD-AB pial = 262 ± 36 vs. control parenchymal = 177 ± 
11 vs. WD-AB parenchymal = 294 ± 70 μm; P ≥ 0.32). The wall-to-lumen ratio was similar between 
groups but was greater in pial versus parenchymal arteries (control pial = 0.21 ± 0.03 vs. WD-AB 
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pial = 0.23 ± 0.01 vs. control parenchymal = 0.16 ± 0.01 vs. WD-AB parenchymal = 0.18 ± 0.01; P 
< 0.01). The net vasoconstriction in response to neuropeptide Y (NPY) treatment was greater and the 
net vasodilation in response to γ-aminobutyric acid (GABA) treatment was attenuated in the WD-AB 
group (main effect of  WD-AB; P < 0.05; Figure 2, A and B). The net vasoconstriction in response to 
acetylcholine (ACh) treatment was similar between groups (P = 0.31) but was lower in parenchymal 
versus pial arteries (main effect of  artery type; P = 0.01; Figure 2C). The vasoconstrictor response fol-
lowing treatment with the nitric oxide synthase inhibitor nitro-l-arginine methyl ester (l-NAME) was 
reduced in WD-AB pial arteries (P < 0.05; Figure 2D).

Transcriptomic profile. The stellate ganglia transcriptome signature was compared between control and 
WD-AB groups. Based on Gene Ontology analysis that identified differentially expressed genes, the molec-
ular signatures in the stellate ganglia were associated with those present in the cerebral cortex and hippo-
campus (Table 1; P < 0.001). Furthermore, there was an enrichment of  gene networks associated with AD, 
frontotemporal dementia, stroke, MAPK/ERK signaling pathways, and a number of  phenotypes impli-
cated in cognitive impairment (Table 1; P < 0.001). Unbiased Ingenuity Pathway Analysis (QIAGEN) 
revealed a cluster of  significant gene interactions in the WD-AB group were associated with cognitive 
impairment (Figure 3; P < 0.001). For a complete list of  matched genes, please see Supplemental Table 1.

Molecular markers of  neuroinflammation and AD. Phosphorylated ERK and JNK and the ratio of  phos-
phorylated to total ERK and JNK were elevated in the WD-AB group (P < 0.01), in the absence of  dif-
ferences in total ERK and JNK in the prefrontal cortex (P ≥ 0.42) (Figure 4, A and B), whereas both 

Figure 1. Baseline hemodynamics. (A) Cerebral blow flow velocity (CBFv); (B) β-stiffness index; (C) carotid artery flow during vena cava occlusion; (D) percent-
age change in carotid artery vascular resistance in response to a change in mean arterial pressure. Data analyzed using an unpaired, 2-tailed t test and a 2-way 
ANOVA. Values are represented as mean ± SEM. The box plots depict the minimum and maximum values (whiskers), the upper and lower quartiles, and the 
median. The length of the box represents the interquartile range. Significance indicated by *P < 0.05 compared with control. (CON; n = 5, WD-AB; n = 4.)

https://doi.org/10.1172/jci.insight.143141
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phosphorylated and total p38 were greater in the WD-AB group in the prefrontal cortex (Figure 4C; P < 
0.01). Similar to the prefrontal cortex, phosphorylated ERK and JNK and the ratios of  phosphorylated to 
total ERK and JNK were greater in the WD-AB group (P < 0.01), and total ERK and JNK were similar 
between groups in the hippocampus (P ≥ 0.43) (Figure 5, A and B). Phosphorylated and total p38 protein 
content were also upregulated in the WD-AB group in the hippocampus (P < 0.01) (P ≥ 0.37; Figure 5C). 
Levels of  beta-secretase 1 (BACE1), amyloid precursor protein (APP), and BACE1-mediated APP–C-ter-
minal fragment (APP-CTF) were all greater in the WD-AB group in both the prefrontal cortex (P < 0.01) 
and the hippocampus (P < 0.01; Figure 6, A–C). Immunoprecipitation for specific splice variants of  AD-re-
lated amyloidosis revealed that full-length APP splice variants APP751 and APP695 were greater in the 
prefrontal cortex in the WD-AB group (P ≤ 0.05; Figure 7A). Levels of  the APP-CTF and C99 fragment 
were greater (P < 0.01; Figure 7A), while increases in the levels of  C3-99 fragment approached significance 
in the prefrontal cortex of  the WD-AB group (P = 0.09; Figure 7A). The levels of  the Aβ40 peptide were 
greater in the prefrontal cortex of  the WD-AB group (P ≤ 0.01), whereas levels of  the Aβ38 and Aβ42 
peptides were lower in these same extracts (P < 0.05; Figure 7B). In contrast, differences in hippocampal 

Figure 2. Vasomotor control. (A) NPY-induced %vasoconstriction (AUC); (B) GABA-induced %vasodilation (AUC); (C) ACh-induced %vasoconstriction 
(AUC); (D) l-NAME–induced %vasoconstriction. Data analyzed using a 2-way ANOVA. Values are represented as mean ± SEM. The box plots depict the 
minimum and maximum values (whiskers), the upper and lower quartiles, and the median. The length of the box represents the interquartile range. 
Main effect indicated by *P < 0.05 compared with control, **P < 0.05 compared with pial artery; interaction effect indicated by †P < 0.05 compared 
with control pial. (CON; n= 5, WD-AB; n = 4.)

https://doi.org/10.1172/jci.insight.143141
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levels of  APP751 were not significant between groups (P = 0.47), while the levels of  APP695 were greater 
in the WD-AB group (P < 0.01; Figure 7C). With respect to the APP-CTF, both C99 and C3-99 fragments 
were higher in the hippocampus of  WD-AB swine (P ≤ 0.05; Figure 7C). Similar to the prefrontal cortex, 
the levels of  the Aβ40 peptide were greater in the hippocampus, but levels of  the Aβ38 and Aβ42 peptides 
were lower in the WD-AB group (P < 0.01; Figure 7D).

Discussion
The results of  the current investigation suggest that the development of  cerebrovascular dysfunction 
is coupled with neuroinflammation and amyloidosis in this swine model of  multihit cardiometabolic 
HF (see Graphical abstract). Specifically, the data reveal that indices of  carotid arterial compliance 
and CBF were reduced, and cerebrovascular regulation was altered in the WD-AB group. Cerebrovas-
cular dysfunction was coupled with increased neuronal ERK, JNK, and p38 signaling as well as amy-
loidogenic processing indicated by increased APP, BACE1, CTF, and Aβ40 content in the prefrontal 
cortex and hippocampus of  WD-AB swine. The transcriptome signature in the stellate ganglia revealed 
there was an enrichment of  gene networks associated with disease and behavioral phenotypes consis-
tent with dementia. Collectively, these data support the notion that cardiometabolic HF reflects a total 
body syndrome affecting both cardiac and extracardiac tissues. To our knowledge these data represent 
the first evidence from a swine model that cerebrovascular and neuronal pathologies develop concomi-
tantly in the setting of  experimental cardiometabolic HF.

Despite normal resting EF% values in this HF model, the index of  CBF was decreased, and cranial 
vascular resistance was increased during central hypovolemia in WD-AB swine. We previously reported 
indices of  cerebral perfusion are correlated with memory performance in intact (male and female) and 
ovariectomized (female) pigs with and without AB, highlighting the potential risk of  cerebral insufficiency 
in HF (24, 25). In HF patients with impaired systolic function (HF with reduced EF), reduced cardiac 
output and EF% are believed to be primary contributors to cerebral hypoperfusion and dysregulation (6, 
32–34). However, in HFpEF and this preclinical model of  cardiometabolic HF, cardiac output and EF% 
are normal under resting conditions (35, 36). Combined with the current data, this raises the possibility that 
cerebrovascular dysfunction develops independent of  resting systolic impairment in this HF population. 
In isolated cerebral arteries from the WD-AB group, we also found decreased vasodilation in response 

Table 1. Categories of genes significantly affected by WD-AB

Gene term No. matched genes P value
Tissues
Cerebral cortex 515 <0.001
Hippocampus 264 <0.001
Diseases
Alzheimer disease 92 <0.001
Frontotemporal dementia 64 <0.001
Stroke (ischemic) 12 <0.001
Pathways
Erk signaling 154 <0.001
MAPK/Erk pathway 54 <0.001
MAPK signaling 47 <0.001
MAP kinase signaling 24 <0.001
p38 signaling mediated by MAPKAP 9 <0.001
Phenotypes
Abnormality of higher mental function 224 <0.001
Abnormal brain morphology 208 <0.001
Abnormal aggressive, impulsive or violent 
behavior

38 <0.001

There was a significant (P < 0.001) enrichment of gene networks in the WD-AB group that are linked to AD, 
frontotemporal dementia, stroke, several MAPK and ERK signaling pathways, and phenotypes implicated in dementia. 
28. Significance was determined by a Benjamini-Hochberg–corrected binomial test. (CON; n = 5, WD-AB; n = 4.)

https://doi.org/10.1172/jci.insight.143141
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to GABA and increased vasoconstriction in response to NPY, supporting the interpretation of  cerebro-
vascular dysfunction in this model. GABA and NPY are vasoactive neurotransmitters that can stimulate 
both dilation and constriction depending on concentration and location of  signaling (i.e., vascular smooth 
muscle or endothelium) (37–39). Thus, altered vasoreactivity to GABA and NPY may contribute to impair-
ments in cerebrovascular regulation. Whether disturbed cerebrovascular control is a key contributor to the 
cardiogenic dementia profile in HF warrants further investigation.

We also found that inhibition of NO synthase (NOS) caused greater pial artery vasoconstriction in control 
than WD-AB swine, suggesting basal endothelial NO signaling is decreased in the WD-AB group. Evidence 
indicates that pial arteries contribute significantly to cerebrovascular resistance (40), and although NO is not 
implicated in vasoreactivity to GABA (37), inhibition of endothelial NOS (eNOS) attenuates NPY-induced 
vasodilation (38). Furthermore, inhibition of eNOS can decrease basal CBF (41–44). Thus, impaired endothelial 
NO signaling in pial arteries may represent an additional mechanism that contributes to impaired cerebrovascu-
lar regulation in the WD-AB group. Earlier experiments revealed WD-AB swine display impaired cerebral artery 
vasodilation in response to insulin and sodium nitroprusside, both of which function through an NO-dependent 
pathway (22). Further, our previous work in female swine reveals AB, in the absence of WD, decreases cerebral 
eNOS protein content (25). Collectively, the data highlight endothelial dependent and independent impairments 
in NO signaling may be involved in reduced CBF and impaired cerebrovascular regulation in experimental HF. 
Whereas impaired NO signaling is considered a hallmark feature of HFpEF (45–49), the notion that it contrib-
utes to cardiogenic dementia in this population has not been validated clinically in humans.

Figure 3. Gene Ontology and Ingenuity Pathway Analysis of induced gene pathways in the stellate ganglia that are differentially expressed between 
the control and WD-AB group. Unbiased Ingenuity Pathway Analysis depicting significant gene interactions in the WD-AB group that are associated with 
cognitive impairment. (CON; n = 5, WD-AB; n = 4.)

https://doi.org/10.1172/jci.insight.143141
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In addition to impaired NO signaling, amyloidosis may be involved in neurodegeneration in 
HFpEF (8, 17, 18, 50, 51). In the present study, the WD-AB group displayed amyloidosis in the brain, 
evidenced by increased APP, BACE1, and CTF content as well as increased accumulation of  Aβ40 
peptides. Amyloidosis, which is implicated in cerebral amyloid angiopathy and AD (52, 53), is reflect-
ed by aberrant cleavage of  the full-length APP by BACE1 resulting in the production of  soluble APP 
fragment and a membrane-bound CTF (54). The membrane-bound CTF is subsequently cleaved by 
γ-secretase, releasing it from the membrane and resulting in the production of  extracellular Aβ pep-
tides that vary in length between 38 and 43 amino acid chains (52, 53). Of  note, Aβ40 and Aβ42 
peptides can accumulate in neuronal or vascular cells within the brain and promote cellular dysfunc-
tion and cell death as well as gross neurological impairments, such as mild cognitive impairment or 
dementia (55). Recently, a study revealed Aβ pathology, and notably accumulation of  Aβ40, affects 
the brain (and heart) in patients with combined cardiac diastolic dysfunction and AD (51). Important-
ly, NO is a negative upstream regulator of  APP and BACE1 (56–59). Pharmacological inhibition of  
eNOS as well as its second messenger cyclic guanosine monophosphate results in increased APP and 
BACE1 content in human brain microvascular endothelial cells (56). Moreover, eNOS heterogeneous 
and homogenous knockout mice display increased Aβ40 content in the brain (56, 57). With respect to 
the current findings, these data implicate a potential mechanism linking metabolic dysregulation with 
impaired NO signaling and ensuing amyloidosis in the setting of  experimental cardiometabolic HF.

Beyond impaired NO signaling, increased neuroinflammation, reflected by increased ERK and JNK 
signaling as well as p38 content, may have also contributed to amyloidosis in the WD-AB group. The 
activation of  the MAPK pathway, specifically ERK, JNK, and p38, can result in an upregulation of  

Figure 4. MAPKs in prefrontal cortex. (A) Phosphorylated ERK (p-ERK), total ERK, and the ratio of p-ERK/total ERK in the prefrontal cortex as well as a 
representative blot; (B) p-JNK, total JNK, and the ratio of p-JNK/total JNK in the prefrontal cortex as well as a representative blot; (C) p-p38, total p38, and 
the ratio of p-p38/total p38 in the prefrontal cortex as well as a representative blot. Data analyzed using an unpaired, 2-tailed t test. Values are represent-
ed as mean ± SEM. The box plots depict the minimum and maximum values (whiskers), the upper and lower quartiles, and the median. The length of the 
box represents the interquartile range. Significance indicated by *P < 0.05 compared with control. (CON; n = 5, WD-AB; n = 4.)

https://doi.org/10.1172/jci.insight.143141
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BACE1 expression and content (60, 61), as well as direct phosphorylation of  APP (62, 63), rendering 
it more susceptible to BACE1 cleavage. Further, these MAPKs exacerbate neuronal apoptosis, leading 
to increased brain atrophy and cognitive impairments (64, 65). Indeed, the WD-AB swine displayed an 
enhanced MAPK pathway activation concurrently with a reduction in brain mass (wet weight), indica-
tive of  neurodegeneration. With respect to the heart-brain axis (26, 27), Gene Ontology analysis of  the 
stellate ganglia revealed an enrichment of  several gene signatures associated with MAPK/ERK signal-
ing and AD, highlighting the systemic nature of  this disease phenotype. Given that brain samples from 
patients with AD and transgenic rodent models display higher levels of  phosphorylated JNK, ERK, and 
p38 (66–68), and cardiac transcriptomic data from patients with HFpEF display enhanced MAPK sig-
naling as well as an enrichment in gene networks associated with AD (69), it is conceivable that MAPK 
pathway activation contributes to the cardiogenic dementia profile.

Despite evidence of  increased MAPK pathway activation and amyloidogenic signaling (i.e., increased 
APP, BACE1, CTF, and Aβ40) in WD-AB swine, Aβ lengths 42 and 38 were lower in the WD-AB group. 
These findings suggest that increased APP processing in WD-AB is associated with an apparent shift in 
the preferential cleavage of  the CTF to produce Aβ40. This is not unexpected given that an increase in 
BACE1 (as we have demonstrated herein) is known to preferentially generate the Aβ40 peptide (70). In 
keeping with our model, accumulation of  the Aβ40 peptide is associated more so with cerebral amyloid 
angiopathy (71) rather than with a pathologic diagnosis of  pure AD, which is more closely associated 
with an accumulation of  the aggregation-prone and neurotoxic Aβ42 peptide (72). However, in regard to 
cardiogenic dementia and cardiovascular disease, emerging evidence supports a strong link to the Aβ40 
species, which also matches the current findings (17, 18, 73, 74). For example, while eNOS heterogeneous 

Figure 5. MAPKs in hippocampus. (A) p-ERK, total ERK, and the ratio of p-ERK/total ERK in the hippocampus as well as a representative blot; (B) p-JNK, 
total JNK, and the ratio of p-JNK/total JNK in the hippocampus as well as a representative blot; (C) p-p38, total p38, and the ratio of p-p38/total p38 in 
the hippocampus as well as a representative blot. Data analyzed using an unpaired, 2-tailed t test. Values are represented as mean ± SEM. The box plots 
depict the minimum and maximum values (whiskers), the upper and lower quartiles, and the median. The length of the box represents the interquartile 
range. Significance indicated by *P < 0.05 compared with control. (CON; n = 5, WD-AB; n = 4.)

https://doi.org/10.1172/jci.insight.143141
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and homogenous knockout mice display increased Aβ40 content in the brain, Aβ42 is not detectable in the 
brains of  these mice (56, 57). In addition, in patients with combined diastology and AD, while both Aβ40 
and Aβ42 are increased, the accumulation of  Aβ40 in the brain appears greater (51). Of  note, evidence 
indicates that Aβ40, but not Aβ42, elicits cerebral vasoconstriction (75–77). When considered with the 
current data, these findings raise the question of  the role of  different Aβ species in varying disease states, 
as Aβ40 may be a critical feature of  the dementia profile in this model of  cardiometabolic HF.

Study limitations. The current data provide insight regarding the development of  cerebrovascular and 
neuronal pathologies in a swine model of  experimental cardiometabolic HF. However, owing to the lack of  
nutritional control groups, the contribution from the WD or individual components of  the WD (i.e., cho-
lesterol, saturated fat, sugar, or total kilocalories) could not be determined. Further, although the molecular 
data are in close alignment with brain biopsy data from AD patients with diastology (51) as well as cardiac 
biopsy data from HFpEF patients (78), the lack of  histopathological and behavioral data herein limit the 
interpretation of  the present results. Although our earlier work demonstrates AB alone and in conjunction 
with ovariectomy (experimental menopause) induces impairments in working memory, future work is war-
ranted to assess the contribution of  singular comorbidities (i.e., obesity, hypertension, etc.) or dietary com-
ponents (i.e., cholesterol, sugar, etc.) on cerebrovascular and brain function in HF.

Perspectives. Mounting evidence indicates that extracardiac vascular and neuronal pathologies may 
contribute to the dementia profile in the setting of  HF and cardiovascular disease (8, 9, 17, 18). Hyper-
tension, large artery stiffening, cerebrovascular dysfunction, neuroinflammation, and amyloidosis are all 

Figure 6. Western blot markers for the amyloidogenic cascade. (A) BACE1 in the prefrontal cortex and hippocampus as well as representative blots; (B) 
total APP in the prefrontal cortex and hippocampus as well as representative blots; (C) CTF in the prefrontal cortex and hippocampus as well as represen-
tative blots. Data analyzed using an unpaired, 2-tailed t test. Values are represented as mean ± SEM. The box plots depict the minimum and maximum 
values (whiskers), the upper and lower quartiles, and the median. The length of the box represents the interquartile range. Significance indicated by *P < 
0.05 compared with control. (CON; n = 5, WD-AB; n = 4.)
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extracardiac indicators that may accompany or precede dementia in the setting of  HF. The development of  
translational animal models is necessary to better understand the pathophysiology of  multiorgan diseases. 
This study provides evidence that extracardiac vascular and neuronal pathologies develop concurrently and 
independent of  resting cardiac systolic impairment in this swine model of  multihit cardiometabolic HF. 
Furthermore, in line with clinical observations (8, 9), neuronal maladaptation, herein reported as increased 
MAPK pathway activation coupled with increased APP processing, develop in both the prefrontal cortex 
and hippocampus. These data support the concept that cardiometabolic HF phenotypes reflect a total body 
syndrome affecting extracardiac organs, including the cerebrovasculature and the brain (8, 16–18), and 
that the cardiogenic dementia profile is not always characterized by a singular dementia phenotype (8).  

Figure 7. Immunoprecipitation for markers of the amyloidogenic cascade. (A) FL-APP751, FL-APP695, C99, and C3-99 in the prefrontal cortex as well as 
representative blots for FL-APP and CTF; (B) Aβ38, Aβ40, and Aβ42 in the prefrontal cortex as well as representative blots for Aβ species; (C) FL-APP751, 
FL-APP695, C99, and C3-99 in the hippocampus as well as representative blots for FL-APP; (D) Aβ38, Aβ40, and Aβ42 in the hippocampus as well as repre-
sentative blots for Aβ species. Data analyzed using an unpaired, 2-tailed t test. Values are represented as mean ± SEM. The box plots depict the minimum 
and maximum values (whiskers), the upper and lower quartiles, and the median. The length of the box represents the interquartile range. Significance 
indicated by *P < 0.05 compared with control. (CON; n = 5, WD-AB; n = 4.)
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Given there is no effective intervention for cardiogenic dementia, it is important to determine what signif-
icant vascular and neurological changes precede and contribute to the development of  cognitive decline in 
HF, toward identifying targets for early diagnosis and disease prevention.

Methods
Experimental design. Data from these same animals and details of  this model were originally described 
(22). Intact female Ossabaw swine (15–20 kg; 2 months old) were divided randomly into 2 groups: non-
sham sedentary control (CON; n = 5) and WD-AB (n = 4). Female pigs were used because HFpEF, a 
form of  cardiometabolic HF, disproportionally affects older women (~2:1 vs. men) (15).

The CON group ingested a standard chow diet (5L80, LabDiet; 3.03 kcal/g, carbohydrate = 71%, 
protein = 18.5%, and fat = 10.5%; 500 g/d), and the WD-AB group ingested a WD (1000 g/d) high 
in fat, high fructose corn syrup, and cholesterol (5B4L, LabDiet; 4.14 kcal/g; carbohydrate = 40.8% 
[17.8% of  total calories from high fructose corn syrup], protein = 16.2%, fat = 43%, 2% cholesterol wt/
wt) (22, 79). At 6 months of  age, swine in the WD-AB group underwent aortic banding procedures to 
induce HF as previously described (24, 25, 80). Briefly, under anesthesia, a trans-stenotic systolic gra-
dient of  approximately 70 mmHg (72 ± 2 mmHg) was achieved using phenylephrine (i.v. 1–3 μg/kg/
min) to maintain a distal peripheral vascular mean arterial pressure and heart rate at approximately 90 
mmHg (87 ± 2 mmHg) and 85 beats/min (84 ± 3), respectively. At euthanasia, pial and brain paren-
chymal arteries were harvested for isolated arterial experiments, and the hippocampus as well as the 
prefrontal cortex were harvested for molecular experiments (i.e., immunoprecipitation and immuno-
blotting). In addition, the stellate ganglia were harvested for RNA sequencing (RNA-Seq).

RNA-Seq, principal component analysis, weighted gene coexpression network analysis, module enrichment 
analysis, and Ingenuity Pathway Analysis. As previously described (81–83), total RNA was isolated using 
TRIzol (Thermo Fisher Scientific), Illumina protocol was used to prepare (75 bp paired-end) RNA-Seq 
libraries, and libraries were sequenced on 1 lane on the Illumina Genome Analyzer II platform. Tran-
scriptomic expression was identified using the Salmon 0.8 algorithm (84) using the seqBias and gcBias 
flags, and principal component analysis on all expressed and varying genes (fragments per kilobase 
million [FPKM] > 1, coefficient of  variation > 5%) using the prcomp R function and the ggbiplot R 
package (85) was used to identify and remove outliers. All genes with average FPKM ≥ 1 across all 
samples were analyzed using the weighted gene coexpression network analysis (WGCNA) algorithm 
using default parameters from the provided tutorials (86), except where noted below (85). Briefly, Pear-
son correlations were determined for each pair of  expressed transcripts. Thereafter, correlations were 
converted into an approximately scale-free correlation matrix by applying a factor of  the power of  6 
to each correlation. Adjusted correlations were transformed into a Topological Overlap Matrix (TOM) 
using the following equation:

    Equation 1
where i and j are the pair of  genes to be analyzed, u is the set of  all other genes, A is the adjusted cor-

relation matrix, and k is the degree of  the node. TOM scores were subsequently transformed to DistTOM 
scores by subtracting TOM from 1. The dynamic tree cut algorithm was applied on the DistTOM matrix 
to identify modules, and the first principal component of  the genes in each module was used to determine 
eigengenes. Modules whose eigengenes had a Pearson correlation of  greater than 0.8 were combined for 
downstream analyses. As described previously (87), correlations were then visualized using the heatmap 
function in WGCNA. GeneAnalytics was used for Model Enrichment (88) to identify enriched biological 
categories. Significance was determined by a Benjamini-Hochberg–corrected binomial test reported at the 
P < 0.05 level. Using Ingenuity Pathway Analysis, networks were generated based on the list of  differential-
ly expressed genes and subjected to statistical analysis as described previously (22, 89, 90).

Statistics. Brain mass, CBF velocity, carotid artery blood flow, carotid artery vascular resistance, blood pres-
sure, and β-stiffness index were analyzed using a 2-tailed, unpaired t test. Percentage change (%) in cranial vas-
cular resistance (at 10 and 20 mmHg reductions in mean arterial pressure) during central hypovolemia was ana-
lyzed using a mixed-model repeated measures ANOVA (group × mean arterial pressure). Similarly, vasomotor 
control was analyzed using a mixed-model repeated measures ANOVA (group × artery type). Significant inter-
actions were explored using a post hoc Student-Newman-Keuls test. Molecular markers of neuroinflammation 
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and AD in the prefrontal cortex and hippocampus were analyzed using an unpaired, 2-tailed t test. Where 
possible individual data are presented, and all data are presented as mean ± SEM. Significance is reported at 
the P ≤ 0.05 level. Molecular analyses of brain samples from 1 control animal revealed they were a statistical 
outlier, defined as values > 2 SD for >10 outcome measures. Therefore, this control sample was removed from 
the study. Last, owing to limited tissue sample, immunoprecipitation experiments were only conducted on 3 
animals from the WD-AB group. Where possible, all individual data are plotted. See Supplemental Methods 
for a comprehensive description of experimental methods used in the current study.

Study approval. All animal protocols were in accordance with the “U.S. Government Principles for the 
Utilization and Care of  Vertebrate Animals Used in Testing Research and Training” and approved by the 
University of  Missouri Animal Care and Use Committee.
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