Supplemental Data For

Overexpression of PD-1 on T cells Promotes Tolerance in Cardiac Transplantation via an ICOS-Dependent Mechanism

Thiago J. Borges,^{1,2} Naoka Murakami,² Isadora T. Lape,^{1,2} Rodrigo B. Gassen,¹ Kaifeng Liu,¹ Songjie Cai² Joe Daccache,² Kassem Safa,³ Tetsunosuke Shimizu,² Shunsuke Ohori,² Alison M. Paterson,^{4,5} Paolo Cravedi,⁶ Jamil Azzi,² Peter T. Sage,² Arlene H. Sharpe,^{4,5} Xian C. Li,⁷ Leonardo V. Riella^{1,2,3}

Supplemental Figure 1. Characterization of T cell development in the thymus. The average proportion of double-negative (CD4⁻CD8⁻), double-positive (CD4⁺CD8⁺) and single-positive cells (CD4⁺CD8⁻ or CD4⁻CD8⁺) T cells in the thymus of WT and PD-1 Tg mice (n=4/group).

Elastin

Supplemental Figure 2. Histopathology of the tolerized allografts in PD-1 Tg recipients. BALB/c hearts were transplanted into PD-1 Tg C57BL/6 mice with a single dose of CTLA-4-Ig (250 μ g on day 2 post-transplant). Representative histology of cardiac allografts retrieved on day 100 post-transplant and stained with H&E and elastin (A and B, respectively) revealing a normal architecture, minimal lymphocytes infiltration and minimal intimal proliferation (n=6, 40x).

Supplemental Figure 3. Chronic rejection is less severe in PD-1 Tg mice compared with WT. (A) Kaplan-Meier curves of allograft survival: bm12 hearts were transplanted into PD-1 Tg or WT C57BL/6 recipients (n=7/group). (B) Representative histology of cardiac allografts retrieved on day 60 post-transplant and stained with H&E (20x). (C) Allograft histology at POD60 (~8 weeks) post-transplantation revealed significantly less rejection, inflammation, myocyte loss, fibrosis, chronic rejection and vasculitis scores in the PD-1 Tg group compared with WT. Statistics by t-test. The vasculitis scores in the PD-1 Tg group compared with WT. Statistics by t-test. The vasculitis scores in the PD-1 Tg group were zero for all recipients and statistical analyses were not applicable. ISHLT-R, consensus rejection score from the International Society of Heart and Lung Transplantation. For all panels, the bar graphs represent mean ± SD.

Supplemental Figure 4. PD-1 Tg animals are able to control Influenza infection. WT or PD-1 Tg animals were infected with $0.3LD_{50}$ *Influenza* (strain A/Puerto Rico/8/1934 H1N1). Weight loss (A) and animal survival (B) were monitored daily until day 12 post-infection (n=6 animal per group). (C) Viral load of influenza A/PR8 acidic polymerase (PA) gene was determined in the lungs of WT or PD-1 Tg infected mice at day 7 post-infection. Data are represented as fold change from non-infected animals and were normalized by mg of the lung. The housekeeping gene *Hprt* was used as an endogenous control. All experiments are representative of two independent experiments. For all panels, the bar graphs represent mean \pm SD.

Supplemental Figure 5. Characterization of Tregs in spleen and thymus of WT and PD-1 Tg naïve animals. Average proportion and absolute numbers of Tregs ($CD4^+CD8^-Foxp3^+$) in (A) spleen and (B) thymus of WT and PD-1 Tg mice (n=4-7/group). Results are pooled from two experiments. For all panels, the bar graphs represent mean \pm SD.

Supplemental Figure 6. Activation of the mTOR signaling pathway in WT or PD-1 Tg Tregs. Expression of phosphorylated-S6 kinase (pSS6K) in WT and PD-1 Tg Tregs stimulated with PMA/Ionomycin for 15, 30 or 60 min. Mean fluorescence intensity (MFI) was obtained by flow cytometry. Experiments were performed with a pool of three mice in triplicates. Statistic by two-way ANOVA with Sidak post-test.