

Figure S1. Qx28 inhibits $TNF\alpha$ -mediated activation of the NF- κ B canonical pathway but has no effect on TWEAK-mediated activation of the NF- κ B non-canonical pathway. **A:** Representative immunoblot and quantitative data for IkB α . MEFs were grown overnight in 1% FCS/DMEM, pre-incubated for 1-hour with media alone or Qx28, and then co-incubated for 30-min with TNF α (10ng/mL). **B:** Representative immunoblot and quantitative data for p52:p100 ratio and total p52/p100. MEFs were grown overnight in

1% FCS/DMEM, pre-incubated for 1-hour with media alone or Qx28, and then coincubated for 4-hrs. with TWEAK (20ng/mL).

Membranes were stripped and re-probed for β -actin as a loading control. Quantification of the bands was performed using ImageJ (NIH). Results are expressed as mean +/- SEM from 3 independent experiments. Statistical analysis: One-way ANOVA with correction for Dunnett's multiple comparisons test. *P<0.05; **P<0.01; ***P<0.001 versus TNF α or TWEAK alone.

Figure S2. Aminoglycosides and CDDP are not involved in the activation of the NF- κ B

non-canonical pathway. Representative immunoblot and quantitative data for p52:p100 ratio and total p52+p100. MEFs were incubated for 16-hours with the corresponding treatment in 1% FCS media and then processed for western blot analysis. Membranes were stripped and re-probed for β-actin as a loading control. TWEAK (20ng/mL) was used as a positive control for NF- κ B non-canonical pathway activation. Quantification of the bands was performed using ImageJ (NIH). Results are expressed as mean +/- SEM from 3 independent experiments. Statistical analysis: Two-tailed Student's t test versus the corresponding ototoxin. *P<0.05, **P<0.01 Qx28 10µM versus TWEAK. Cartoon depicts some of the signaling molecules involved in the NF- κ B non-canonical pathway.

Figure S3. *Aminoglycosides and CDDP have no effect on p52 subcellular localization.* Representative images of MEFs incubated for 16-hours with 1% FCS media and the indicated treatment. **A-C:** media; **D-F:** Qx28 10µM; **G-I:** TWEAK 20ng/mL for 4-hours was used as a positive control for nuclear translocation; **J-L:** gentamicin (GM) 150µM, **M-O:** GM+Qx28; **P-R:** neomycin (Neo) 250µM; **S-U:** Neo+Qx28; **V-X:** CDDP 50µM; **Y-Aa:** CDDP +Qx28. Cells were fixed and immunostained for p52 (green) and counterstained with phalloidin (red). Representative images from 2 independent experiments. Scale bar = 55μ m.

Figure S4. *ikbkb morphants showed specific ikbkb knockdown and normal gross morphology.* **A:** Four micrograms of RNA from controls (non-injected or scrambled) and *ikbkb* morphants (two independent experiments), were used in RT-PCR experiments using specific primers for *ikbkb* and *actb* (loading control). **B:** 3dpf scrambled (**a**) and *ikbkb* morphants (**b**). Scale bar: 200µm.

Compound ID	Substitution	Doses	Compound ID	Substitution	Doses
Qx2	2-	300µM,	Qx37	6-	300µM,
	NSO2PhNH2N a*	1µM		CH ₂ CO ₂ Me	1µM
Qx3	2,3,6-trimethyl	300μM, 1μM	Qx38	6-amine	300µ,1µM, 10nM
Qx4	2-chloro	300µM	Qx39	2-carboxylic acid, 3- methyl	300µM
Qx5	2-bromo	300μM, 1μM	Qx40	2-hydroxy*	300μM, 1μM
Qx6	2-hydroxy, 7- chloro, 8- methoxy*	300µM	Qx41	2,3-dichloro	300µM
Qx7	2-methoxy, 7- bromo	300µM	Qx42	5-methyl	300μM, 1μM
Qx8	2-chloro, 7- trifluoromethyl	300µM	Qx43	2-CHO	300μM, 1μM
Qx9	2,3-dichloro, 6-methyl	300µM	Qx44	2-amine, 7- bromo	300μM, 1μM
Qx10	2-chloro, 6- nitro	300µM, 1µM, 10nM	Qx45	6-COCH₃	300μM, 1μM
Qx11	2,3-dithiol, 6- methyl*	300µM, 1µM, 10nM	Qx46	5-hydroxy*	300μM, 1μM
Qx12	2-carboxylic acid	300µM, 1µM, 10nM	Qx47	6- CO ₂ Et	300µM
Qx13	2,3-dimethyl, 5-amine, 6- methoxy	300µM	Qx48	2,3-dimethyl, 6,7- dimethoxy	300μM, 1μM
Qx14	2-chloro, 3- methoxy	300µM	Qx49	2,3-dichloro, 6- trifluorometh oxy*	300µM
Qx15	2,3-dichloro, 6-bromo	300µM	Qx50	2,3-diamine	300μM, 1μM
Qx16	2-chloro, 7- bromo	300µM	Qx51	5-fluoro, 7- bromo	300μM, 1μM
Qx17	2-chloro, 8- methoxy	300µM	Qx52	2- NHSO₂PhM e, 3-chloro*	300µM

Qx18	2,8-dichloro	300μM, 1μM	Qx53	5-nitro	300µM
Qx19	2-CO ₂ Et, 3- chloro*	300µM	Qx54	2-CO ₂ Me*	300µM
Qx20	2-chloro, 7- methyl	300µМ, 1µМ	Qx55	2-chloro, 6- fluoro	300µM
QX21	2,3-dichloro, 6-mehtoxy	300μM, 1μM	Qx56	2,3-dichloro, 6,7-difluoro	300µM
Qx22	2,6-dichloro	300μM, 1μM	Qx57	5-chloro	300µM
Qx23	2,3-dimethoxy	300μM, 1μM	Qx58	2-chloro, 6,7- dimethoxy	300µM
Qx24	6-2,4- thiazolidinedio ne	300µM	Qx59	5-bromo	300µM
Qx26	2-hydroxy, 6- bromo	300μM, 1μM	Qx60	2-chloro, 6- trifluorometh yl	300µM
Qx27	2-amine	300μM, 1μM	Qx61	6-CH₂OH	300µM
Qx28	5-carboxylic acid	300µM, 1µM, 10nM	Qx62	6-iodo	300µM
Qx29	2,3-dichloro, 6-CO ₂ Me	300µM	Qx63	6-BH ₂ O ₂ . HCI*	300µM
Qx30	2-chloro, 3- methyl	300μM, 1μM	Qx64	5-bromo, 8- chloro	300µM
Qx31	6-hydroxy*	300μM, 1μM	Qx65	2-chloro, 6- methoxy	300µM
Qx32	5-fluoro	300µM	Qx66	6-carboxylic acid	300µM, 100µM, 50µM, 1µM
Qx33	5-CO₂Me	300µM,	Qx67	5-bromo, 6- amine	300µM
Qx34	3-methyl, 5- carboxylic acid	300μM, 1μM	Qx68	6-methyl	300µM
Qx35	6- chloromethyl	300µM,	Qx69	2,5-dichloro	300µM
Qx36	2- carboxamide*	300µM, 1µM	Qx70	6-bromo	300µM`

Table S1. Quinoxaline derivatives: Library of the quinoxaline derivatives tested in this paper including the functional group substitutions at the different positions of the quinoxaline ring. * derivatives purchased from commercial sources.