

LncRNA VINAS regulates atherosclerosis by modulating NF- κ B and MAPK signaling

Viorel Simion, Haoyang Zhou, Jacob B. Pierce, Dafeng Yang, Stefan Haemig, Yevgenia Tesmenitsky, Galina Sukhova, Peter H. Stone, Peter Libby, Mark W. Feinberg

JCI Insight. 2020. <https://doi.org/10.1172/jci.insight.140627>.

Research In-Press Preview **Vascular biology**

Graphical abstract

□

Find the latest version:

<https://jci.me/140627/pdf>

1 **LncRNA VINAS regulates atherosclerosis by modulating NF-κB and MAPK signaling**

2 **Viorel Simion^{1#}, Haoyang Zhou^{1,2#}, Jacob B. Pierce^{1,3}, Dafeng Yang^{1,2}, Stefan Haemig¹,**
3 **Yevgenia Tesmenitsky¹, Galina Sukhova¹, Peter H. Stone¹, Peter Libby¹, Mark W.**
4 **Feinberg^{1*}**

5 ¹ Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard
6 Medical School, Boston, MA, USA

7 ² Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha,
8 Hunan, China

9 ³ Feinberg School of Medicine, Northwestern University, Chicago, IL, USA

10 [#]Authors share equal contribution to this work.

11 *** Correspondence to** Mark W. Feinberg, MD, Department of Medicine, Cardiovascular
12 Division, Brigham and Women's Hospital, Harvard Medical School, Louis Pasteur Avenue 77,
13 02115, Boston, Massachusetts, USA, E-mail: mfeinberg@bwh.harvard.edu, Tel: (617) 525-4381

14

15 **Short title: LncRNA VINAS regulates vascular inflammation and atherosclerosis**

16

17 **Word count: 6377**

18 **Figures: 7**

19 **Supplementary Figures: 4**

20

21 **Key words:** atherosclerosis, endothelium, lncRNA, vascular inflammation

22

23 **Conflict of interest statement:** The authors have declared that no conflict of interest exists.

24

25 **Non-standard Abbreviations and Acronyms**

26	<i>VINAS</i>	Vascular INflammation and Atherosclerosis lncRNA Sequence
27	DEPDC4	DEP (Dishevelled, Egl-10 and Pleckstrin) Domain Containing 4
28	BMDM	Bone marrow derived macrophages
29	CPM	Counts per million
30	CVD	Cardiovascular disease
31	EC	Endothelial cell
32	HCD	High cholesterol diet
33	IHC	Immunohistochemistry
34	lncRNA	long non-coding RNA
35	MAPK	Mitogen-activated protein kinases
36	NF- κ B	nuclear factor kappa-light-chain-enhancer of activated B cells
37	NOR	No overlapping reads
38	PBMC	Peripheral blood mononuclear cell
39	RT-qPCR	Real-time polymerase chain reaction
40	TNF α	Tumor necrosis factor alpha
41	VCAM-1	Vascular cell adhesion molecule
42	ICAM-1	Intracellular adhesion molecule
43	IL-1 β .	Interleukin beta
44	COX-2	Cyclooxygenase
45	MCP-1	Monocyte Chemoattractant Protein-1
46		

47 **Abstract**

48 Long non-coding RNAs (lncRNAs) play important roles in regulating diverse cellular processes
49 in the vessel wall, including atherosclerosis. RNAseq profiling of intimal lesions revealed a
50 lncRNA, *VINAS* (Vascular INflammation and Atherosclerosis lncRNA Sequence), that is
51 enriched in the aortic intima and regulates vascular inflammation. Aortic intimal expression of
52 *VINAS* fell with atherosclerotic progression and rose with regression. *VINAS* knockdown reduced
53 atherosclerotic lesion formation by 55% in LDLR-/- mice, independent of effects on circulating
54 lipids, by decreasing inflammation in the vessel wall. Loss- and gain-of-function studies *in vitro*
55 demonstrated that *VINAS* serves as a critical regulator of inflammation by modulating NF- κ B
56 and MAPK signaling pathways. *VINAS* knockdown decreased the expression of key
57 inflammatory markers, such as MCP-1, TNF- α , IL-1 β , COX-2, in endothelial (EC), vascular
58 smooth muscle cells, and bone marrow-derived macrophages. Moreover, *VINAS* silencing
59 decreased expression of leukocyte adhesion molecules VCAM-1, E-selectin, and ICAM-1 and
60 reduced monocyte adhesion to ECs. DEPDC4, an evolutionary conserved human ortholog of
61 *VINAS* with ~74% homology, shows similar regulation in human and pig atherosclerotic
62 specimens. DEPDC4 knockdown replicated *VINAS*' anti-inflammatory effects in human ECs.
63 These findings reveal a novel lncRNA that regulates vascular inflammation, with broad
64 implications for vascular diseases.

65

66

67

68

69

70

71

72

73

74 **Introduction**

75 Accumulating studies highlight that inflammatory processes and traditional cardiac risk
76 factors may cooperatively contribute to vascular disease leading to the development of
77 cardiovascular events (1) (2). Although Virchow hypothesized involvement of inflammation in
78 atherosclerosis over 150 years ago (3), only recently did the CANTOS trial confirm in humans
79 the inflammatory hypothesis of atherosclerosis, by showing that neutralization of the pro-
80 inflammatory cytokine IL-1 β reduced recurrent cardiovascular events independent of changes in
81 serum lipid levels (4) (5).

82 Inflammation impairs endothelial functions. For example, in response to both
83 biochemical (e.g. IL-1 β , modified-LDL) and biomechanical (e.g. disturbed blood flow) stimuli,
84 endothelial activation occurs early in atherogenesis (6). Expression of adhesion molecules (e.g.
85 VCAM-1, E-Selectin, ICAM-1) and secretion of chemokines (e.g. MCP-1) facilitates the
86 recruitment of leukocyte subsets into the vessel wall (7). Impaired endothelial barrier function
87 accompanies vascular inflammation and atherosclerosis (1) (8). Similar to ECs, SMCs can also
88 express a variety of adhesion molecules in response to cytokine stimulation to which monocytes
89 and lymphocytes can adhere and migrate into the vessel wall (9) (10) (5). However, major
90 mechanistic gaps remain in our understanding of regulatory pathways involved in homeostasis of
91 the vessel wall in response to pathophysiological stimuli, contributing to the dearth of targeted
92 therapeutics in a range of vascular disease states.

93 Recently, lncRNAs have emerged as powerful regulators of nearly all biological
94 processes by exerting epigenetic, transcriptional, or translational control of target genes due to
95 their polyvalent binding properties to RNA, DNA, and protein as well as acting as molecular
96 sponges for other transcripts and miRNAs (11) (12). However, the role of lncRNAs in vascular
97 inflammation and cardiovascular diseases (CVD) is only emerging (13). Identification of
98 lncRNAs specifically expressed in the vascular intima of lesions during the progression of
99 atherosclerosis may provide insight into their roles in atherogenesis and potentially uncover new
100 insights for vascular inflammation in advanced lesions (14).

101 This study identifies the lncRNA *VINAS* as a key regulator of vascular inflammation and
102 atherosclerotic lesion formation. We further find that its human ortholog DEPDC4 is similarly
103 expressed in atherosclerotic lesions and phenocopied effects on human endothelial cell

104 inflammation. Collectively, these findings provide new insights for lncRNA-mediated control of
105 inflammation in the vessel wall.

106

107 **Results**

108 **Identification and characterization of *VINAS* lncRNA**

109 *LDLR*^{-/-} male mice were placed on a high cholesterol diet (HCD) for 0, 2, and 12 weeks
110 (progression phases; groups 1-3) and subsequently placed on chow diet for another 6 weeks in
111 the fourth group (regression phase, Fig. 1A). RNA was isolated from the aortic intima and RNA-
112 Seq profiling revealed 11 differentially expressed lncRNAs (log2-fold change (1.5); FDR<0.05)
113 using EdgeR and NOR (No Overlapping Reads) algorithms (Fig. 1B). 8 lncRNAs rose with
114 atherosclerosis progression (group 3) and fell during regression (group 4), while only 3 lncRNAs
115 were decreased with atherosclerosis progression (Fig. 1C). The lncRNA 1500026H17Rik
116 showed the strongest decrease in group 3 (by 59%), while regaining initial levels with
117 atherosclerosis regression as quantified by RT-qPCR (Fig. 1C, D). Because of its high
118 regulability and participation in both vascular inflammation and atherosclerosis, as we show
119 here, we have named this lncRNA ***VINAS*** (Vascular Infllammation and Atherosclerosis
120 lncRNA Sequence).

121 Further experiments characterized arterial *VINAS* expression. *VINAS* expression is higher
122 in endothelial cells (ECs isolated from lungs and Bend.3 cell line) compared to other cell types
123 such as vascular smooth muscle cells (MOVAS cell line), NIH3T3 fibroblasts, bone marrow-
124 derived macrophages or the RAW 264.7 macrophage cell line (Fig. 1E), and is broadly expressed
125 in several other organs, with a strong enrichment in the aortic intima compared to the media in
126 the vessel wall (Fig. 1F). Our previous study verified the specificity of aortic intima isolation
127 (15) To test whether *VINAS* lncRNA indeed does not encode a protein or peptide, the *VINAS*
128 sequence was cloned upstream of the p3xFLAG-CMV plasmid, transfected in HEK293 cells, and
129 immunoblotted for FLAG Tag, yielding no detectable peptide or protein (Fig. 1G). Additionally,
130 *VINAS* was found to be polyadenylated (Fig. 1H) and is enriched in the cytosol as observed by
131 cellular fractionation and by RNA-ISH in mouse ECs (Fig. 1I, J).

132

133 ***VINAS* regulates inflammation in vascular cells**

134 ECs participate pivotally in vascular inflammation and development of atherosclerosis. Because
135 *VINAS* is enriched in ECs (Fig. 1E) the potential phenotype of *VINAS* loss- and gain-of-function
136 was assessed in mouse ECs. For the knockdown strategy, we designed 3 different locked nucleic
137 acid (LNA)-gapmeRs (Suppl. Fig. 1B). GapmeR #2 showed the highest silencing efficiency in a
138 dose-dependent manner (Suppl. Fig. 1C) and it was used throughout the study. The gapmeR-
139 mediated knockdown of *VINAS* dramatically decreased the mRNA expression of the adhesion
140 molecules VCAM-1 by \approx 50-95% and E-selectin by \approx 40-65% in ECs activated with 0.5, 1, and
141 2.5 ng/ml of TNF- α or IL-1 β (Fig. 2A-B). In addition, *VINAS* knockdown in activated ECs
142 reduced the mRNA expression of the chemokine MCP-1, by \approx 50-80% and the inflammatory
143 molecule COX-2 by \approx 40-55% (Fig. 2A-B). Moreover, *VINAS* silencing produced similar effects
144 at the protein level, decreasing VCAM-1 by \approx 45-55% after activation with 20 ng/ml TNF- α or
145 IL-1 β (Fig. 2C, D), and MCP-1, COX-2, and IL-1 β by \approx 50% (Fig. 2E-G). Transfection with 2
146 different *VINAS* gapmeRs (gapmeR #1 and #3) produced comparable decreases in VCAM-1 and
147 COX-2 in ECs activated with 20 ng/ml TNF- α (Supplementary Figure 1E). In contrast,
148 overexpression of *VINAS* using a pCDNA3 plasmid (Supplementary Figure 1D) had the opposite
149 effect in mouse ECs, increasing the protein expression of VCAM-1 (20%), ICAM-1 (26%) and
150 IL-1 β (35%) (Fig. 2H-J). Because *VINAS* knockdown in ECs decreased the expression of
151 VCAM-1 and E-selectin, two cell adhesion molecules known to mediate leukocyte adhesion to
152 ECs, we assessed adhesion of peripheral blood mononuclear cells (PBMCs) to EC monolayers in
153 response to 10 ng/ml of TNF- α stimuli. *VINAS* knockdown reduced PBMCs adherence to EC
154 monolayers by 29% ($p<0.0001$), verifying the functional importance of *VINAS* lncRNA in
155 leukocyte-EC cellular interactions (Fig. 2K). Further experiments assessed the anti-inflammatory
156 actions of *VINAS* in two other cell types that are enriched in atheroma: vascular smooth muscle
157 cells and bone marrow-derived macrophages. We observed similar effects of *VINAS* knockdown
158 in the MOVAS smooth muscle cell line with reduced expression of VCAM-1 (70%), ICAM-1
159 (40%), and MCP-1 (22%) at the mRNA level (Fig. 3A-C) and decreased protein expression of
160 VCAM-1 (34%), ICAM-1 (72%), MCP-1 (22%), TNF- α (37%) and IL-1 β (44%) after
161 stimulation with 5 ng/ml of TNF- α (Fig. 3D-H). Consistently, *VINAS* silencing also decreased
162 COX-2 (19%), IL-1 β (38%), and MCP-1 (37%) in primary bone marrow-derived macrophages

163 stimulated with 50 ng/ml LPS (Fig. 3K). Collectively, these findings indicate that *VINAS* broadly
164 regulates inflammatory mediators in relevant cell types in the vessel wall. The stronger anti-
165 inflammatory phenotype observed in endothelial cells compared to VSMCs and BMDMs
166 correlates with the increased expression of *VINAS* in ECs (Fig. 1E).

167

168 ***VINAS* regulates NF-κB and MAPK signaling pathways in endothelial cells**

169 To identify potential signaling pathways subject to *VINAS* regulation, ECs transfected
170 with *VINAS* gapmeRs were activated with 20 ng/ml TNF- α for 5 to 60 minutes and assessed for
171 expression of key pro-inflammatory signaling pathways. Immunoblotting showed that *VINAS*
172 knockdown significantly decreased the phosphorylation of I κ B- α in ECs activated with TNF- α
173 (20 ng/ml) by 35%, 33% and 37% after 5, 15 and 30 minutes respectively (Fig. 4A). In addition,
174 silencing of *VINAS* in ECs reduced the phosphorylation of p38 MAPK by 55-75% in the
175 presence of TNF- α (20 ng/ml) for 15, 30 and 45 minutes (Fig. 4B). Similar conditions were
176 tested for AKT signaling pathway and showed no specific effect of *VINAS* silencing on AKT
177 phosphorylation (Fig. 4C). Taken together, these findings indicate that *VINAS* knockdown
178 regulates predominantly the NF- κ B and MAPK signaling pathways.

179

180 ***In vivo* knockdown of *VINAS* markedly reduced atherosclerotic lesion formation by 181 decreasing vascular inflammation**

182 To explore whether systemically delivered *VINAS*-gapmeRs modulates atherosclerosis,
183 LDLR $^{-/-}$ mice received i.v. injections of vehicle control or *VINAS*-gapmeR (10 mg/kg/2x
184 weekly) over 12 weeks on a high cholesterol diet (HCD) (Fig. 5A). After 12 weeks on HCD,
185 gapmeR-mediated silencing of *VINAS* reduced its expression in the aortic intima by 57% (Fig.
186 5H) and in the media by 30% (Fig. 5I),

187 Analysis of atherosclerotic lesion formation by Oil-Red O (ORO) staining revealed a
188 55% decrease in lesion area in the aortic sinus after antagonism of *VINAS* (Fig. 5B). While
189 *VINAS* knockdown was associated with a modest reduction in total cholesterol (22%), LDL
190 (25%), HDL (6%) and triglycerides (7%) (Supplementary Fig. 2A), the lesion areas as quantified

191 by Oil Red O staining remained 48% smaller in *VINAS* knockdown mice when examined in mice
192 with similar total cholesterol in both groups (Supplementary Fig. 2B). Although ~8% of the
193 atherosclerotic plaque reduction may be accounted for effects on cholesterol metabolism, it
194 cannot account entirely for the marked reduction in atherosclerosis lesions following *VINAS*
195 knockdown.

196 Immunohistochemistry (IHC) staining revealed that VCAM-1 and the macrophage
197 marker Mac-2 decreased by 38%, and 43%, respectively, in the aortic sinus indicating reduced
198 vascular inflammation and macrophage accumulation in the vascular wall (Fig. 5C and 5D). No
199 significant differences were observed for CD4+ or CD8+ T cells or vascular smooth muscle cells
200 after normalization to lesion area (Fig. 5E-G). *In vivo* knockdown of *VINAS* in the aortic intima
201 reduced the expression of inflammatory markers TNF- α , MCP-1, ICAM-1, COX-2, and IL-1 β
202 (Fig. 5H). Moreover, *VINAS* knockdown in the aortic media decreased inflammatory effectors
203 such as COX-2, IL-1 β , E-selectin, VCAM-1, and ICAM-1 (Fig. 5I). While *VINAS* silencing also
204 reduced circulating PBMCs (62%), it did not significantly alter mRNAs that encode the
205 inflammatory mediators TNF- α , IL-1 β , COX-2 and MCP-1 in these cells (Suppl. Fig. 1F). Nor
206 did *VINAS*-knockdown alter the anti-inflammatory Ly6C^{low} or the pro-inflammatory Ly6C^{interm}
207 or Ly6C^{high} fractions in the PBMCs as determined by flow cytometry (Suppl. Fig. 1G). Overall,
208 *VINAS* neutralization in LDLR^{-/-} mice fed HCD for 12 weeks muted atherosclerotic lesion
209 formation in tandem with decreased inflammation.

210

211 **DEPDC4 is a *VINAS* ortholog conserved in humans**

212 While *VINAS* lncRNA is only present in the mouse genome, we observed that the
213 genomic locus is largely conserved, with the genes SCYL2, ACTR6 and ANKS1B in the
214 immediate proximity and the gene DEPDC4 (DEP Domain Containing 4) in the same position as
215 *VINAS* (Fig. 6A). BLAST findings showed that DEPDC4 has a ~74% homology with *VINAS* in a
216 region of 157-323 bp, depending on isoform variations (Suppl. Fig. 4A). DEPDC4 is widely
217 conserved across species, except for the mouse (Suppl. Fig. 4A). To verify the coding
218 probability, the DEPDC4 sequence was cloned upstream of the p3xFLAG-CMV plasmid,
219 transfected in HEK293 cells, and immunoblotted for FLAG Tag. The resulting immunoblot

220 showed no detectable peptide or protein (Fig. 6B). As with *VINAS* loss of function in mouse
221 cells, DEPDC4 knockdown (Supplementary Fig. 4B) induced an anti-inflammatory program in
222 HUVECs stimulated with TNF- α , decreasing the expression of VCAM-1 (42%), E-selectin
223 (40%), and COX-2 (30%) (Fig. 6C-E). We then assessed adhesion of THP-1 monocytes to a
224 monolayer of HUVECs in response to TNF- α stimulation. DEPDC4 silencing significantly
225 decreased monocyte adherence to the EC monolayer by 30%, verifying the functional
226 importance of DEPDC4 lncRNA in leukocyte-EC cellular interactions (Fig. 6F).

227 To assess the translational relevance of *VINAS* and DEPDC4 lncRNAs, RNA was
228 isolated from human carotid atherosclerotic plaques with characteristics associated with stability
229 or instability. The expression of DEPDC4 is decreased by 77.4% in carotid arteries with plaques
230 with unstable vs. those with stable features (Fig. 6G). To explore this expression pattern across
231 species, we analyzed the RNA-Seq data from Yorkshire pigs that were placed for up to 60 weeks
232 on an HCD and developed coronary atherosclerosis. Based on histopathological characterization,
233 the coronary sections were separated into mild, intermediate, and severe groups for progression
234 of atherosclerosis as described elsewhere (15). Similar to *VINAS* regulation in LDLR-/- mice fed
235 HCD (Fig. 1C), DEPDC4 was decreased ~60% with disease progression in swine pigs fed HCD
236 (Fig. 6H). Concordantly, in endothelial cells stimulated with TNF- α expression of *VINAS* and
237 DEPDC4 also decrease after 4-8 hours and 16-24 hours, respectively (Suppl. Fig 1H, I). In
238 summary (Fig. 7), these results demonstrate dynamic regulation of the lncRNA *VINAS* with
239 atherosclerosis progression, *VINAS* influences arterial inflammation, and that loss of function of
240 *VINAS*’ evolutionary conserved lncRNA ortholog DEPDC4 exerts similar anti-inflammatory
241 effects.

242

243 **Discussion**

244 Arterial inflammation occurs very early in atherogenesis and is associated with
245 impairment of many salutary functions of the healthy endothelium. Accumulating studies point
246 to lncRNAs as regulators of endothelial homeostasis, smooth muscle cell contractility, and
247 macrophage-mediated inflammation in the vessel wall (11) (13) (15) (16) (17) (18). This study

248 provides evidence for the first time that the mouse-specific lncRNA *VINAS* and its human
249 ortholog DEPDC4 play important roles in vascular inflammation and atherogenesis.

250 Our study expands upon a growing body of literature implicating lncRNAs as pivotal
251 regulators in the development and progression of atherosclerosis. Our group recently identified
252 SNHG12 as an evolutionarily conserved lncRNA that plays an important role in atherogenesis
253 (15). SNHG12 mediated the interaction between DNA damage repair proteins DNA-PK and its
254 binding partners Ku70 and Ku80. Following *SNHG12* knockdown in *LDLR*^{-/-} mice,
255 atherosclerotic lesion area increased by 240% with corresponding increases in markers of DNA
256 damage and endothelial cell senescence (15). The lncRNAs *LeXis* and *MeXis* were identified as
257 key regulators of cholesterol metabolism (19, 20). Both of these lncRNAs are transcriptionally
258 regulated by the liver X receptor, a nuclear sterol receptor responsible for transcriptional control
259 of genes involved with cholesterol metabolism. *LeXis* interacted with the ribonuclear protein
260 RALY to aid in transcription of cholesterol metabolism genes in the liver, and *in vivo* delivery of
261 *LeXis* using an adenoviral vector reduced aortic atherosclerosis in mice (21). *MeXis* altered
262 expression of *ABCA1* via its binding partner DDX17, and genetic abrogation of *MeXis* increased
263 serum cholesterol and atherosclerotic lesion area (20).

264 Similar to *VINAS*, a few other lncRNAs regulate atherosclerosis by modulating
265 inflammatory pathways. For example, the lncRNA *NEXN-AS1* lies antisense to and increases the
266 expression of NEXN, a protein that negatively regulates TLR4 and NF- κ B signaling (22).
267 Genetic depletion of *NEXN-AS1* dramatically increased atherosclerosis in *ApoE*^{-/-} mice with
268 concurrent increases in markers of vascular inflammation such as VCAM1, ICAM1, TNF- α , and
269 MCP-1. Similarly, knockdown of *lncRNA-FA2H-2* increased atherosclerotic plaque size and
270 expression of inflammatory genes. Here, we show that *VINAS* plays an analogous role in
271 inflammation and atherogenesis, albeit as a pro-inflammatory lncRNA in contrast to the anti-
272 inflammatory lncRNAs *NEXN-AS1* or *lncRNA-FA2H-2*. *In vivo* delivery of *VINAS*-specific LNA
273 gapmeRs significantly decreased the expression of important inflammatory mediators and cell
274 adhesion molecules in the intima as well as the media of the aortic arch. *VINAS* silencing exerted
275 strong anti-inflammatory effects across different cellular constituents of the vessel wall,
276 demonstrated by decreased key inflammatory effectors such as MCP-1, TNF- α , IL-1 β , COX-2,
277 and the leukocyte adhesion molecules VCAM-1, E-selectin, or ICAM-1 in both endothelial and

278 vascular smooth muscle cells (Fig. 2, 3). The stronger anti-inflammatory phenotype observed in
279 in ECs and the intima is likely due to increased *VINAS* silencing efficiency (Fig. 5H, I and
280 Supplementary Fig. 1B, C) coupled with the relatively higher expression of *VINAS* in ECs and
281 intima (Fig. 1E, F) compared to the aortic media. Also, the aortic media is composed of more
282 heterogeneity of cell types (e.g. fibroblasts, VSMCs, immune cells) and *VINAS* expression is
283 variable across these different cell types (Fig. 1E).

284 Leukocyte adhesion to activated ECs overexpressing adhesion molecules such as VCAM-1 and
285 E-selectin is amongst the earliest processes involved in atherosclerotic lesion initiation (23) (24). This
286 study shows that *VINAS* knockdown in TNF- α -activated ECs significantly reduced monocyte adhesion to
287 EC monolayers (Fig. 2K). In line with this finding, *in vivo* *VINAS* knockdown decreased the staining of
288 macrophage marker Mac-2 in the aortic root, suggesting a diminished macrophage accumulation in the
289 vessel wall due to lower expression of cell adhesion molecules (Fig. 5D). Macrophage polarization to a
290 pro-inflammatory phenotype contributes to the progression and destabilization of atherosclerotic plaques.
291 For example, symptomatic patients suffering from acute transient ischemic attacks with unstable
292 plaques had a higher concentration of M1 pro-inflammatory macrophages in lesions compared to
293 asymptomatic patients with stable plaques (25) (26). Although the M1/M2 macrophage
294 dichotomy oversimplifies macrophage heterogeneity, an M1 pro-inflammatory macrophage
295 predominance in atherosclerotic plaques associates with a higher incidence of ischemic stroke
296 and increased lesional inflammation (27). Moreover, plaques from patients with recently
297 symptomatic carotid disease have a predominance of M1-macrophages and higher lipid content
298 than femoral plaques, consistent with a more unstable plaque (28). While *VINAS* knockdown in
299 bone marrow-derived macrophages *in vitro* decreased the expression of MCP-1, IL-1 β , and
300 COX-2, (Fig. 3K), there were no differences in these effectors or of Ly6C $+$ pro-inflammatory in
301 PBMCs *in vivo*, suggesting that the anti-inflammatory effects of *VINAS* knockdown *in vivo* were
302 likely driven more by impacting leukocyte adhesion molecules in intimal ECs (Figs 2,3). While
303 the dominant impact of lncRNA *VINAS* knockdown is regulating inflammation in the vessel
304 wall with a 48% reduction in atherosclerotic plaque when cholesterol values are normalized
305 between the groups (Supplementary Fig. 2B), we cannot exclude a minor contribution to
306 cholesterol metabolism.

307

308 Identification of the potential signaling pathways that lncRNAs regulate is critical from a
309 therapeutic point of view. In some cases, deciphering the signaling pathway and its upstream or
310 downstream regulators can indicate the mechanisms used by a specific lncRNA (29). In this
311 study, *VINAS* and *DEPDC4* knockdown in cytokine-activated ECs reduced the phosphorylation
312 of IKB- α and p38 MAPK while having no significant effects on phosphorylation of AKT
313 signaling pathway (Fig. 4). Both the NF- κ B and p38 MAPK inflammatory pathways serve as
314 critical nodal points of regulation in atherosclerosis, particularly in the vascular endothelium (30-
315 32). Gareus et al. demonstrated that endothelial-specific genetic depletion of IKK γ or I κ B α , key
316 signaling molecules in the NF- κ B pathway, was sufficient to significantly reduce atherosclerosis
317 in *ApoE*^{-/-} mice (33). Systemic delivery of microRNAs that inhibit NF- κ B activation in the
318 vascular endothelium also reduced inflammation and atherosclerosis lesion in *ApoE*^{-/-} mice (34).
319 Similarly, p38 MAPK inhibitors decreased levels of systemic and vascular inflammation in both
320 mouse models of atherosclerosis (35, 36) as well as humans with coronary artery disease (37,
321 38). Furthermore, Seeger et al. demonstrated that systemic p38 MAPK inhibition for four weeks
322 reduced atherosclerotic lesion size by more than 50 percent (36). Our study extends these
323 findings by showing that lncRNA *VINAS* is an important regulator of NF- κ B and p38 MAPK
324 signaling pathways and thus exerts considerable control over the development of vascular
325 inflammation and atherosclerosis. The observed anti-inflammatory phenotype induced by *VINAS*
326 knockdown may inform the potential upstream mechanisms by which this lncRNA impacts these
327 inflammatory pathways. *VINAS* lncRNA is enriched in the cytosol and its knockdown potently
328 reduced the phosphorylation of p38 MAPK, a signaling pathway with its main effectors localized
329 in the cytosol (39) (40) (41) (42) (43). While cytosolic lncRNAs have been reported to interact
330 with miRNAs by a base pair binding mechanism (44) (45), this competing endogenous RNA
331 (ceRNA) hypothesis remains controversial in the field. An *in vivo* quantitative study showed that
332 modulation of a miRNA target abundance is unlikely to cause significant effects on gene
333 expression and metabolism through a ceRNA effect (46). Future studies exploring the candidate
334 factor(s) mediating this inhibition of dual signaling pathways may further elucidate potential
335 therapeutic targets for atherosclerosis and other chronic inflammatory disease states.

336 Finally, while lncRNAs are not typically as conserved across species compared to other
337 non-coding RNAs, such as microRNAs, emerging studies demonstrate conservation via

338 orthologous transcripts (20). Finding an evolutionary conserved transcript DEPDC4, a human
339 ortholog of *VINAS* in humans with ~74% homology, exhibit regulation in human EC cells
340 congruent to the effects of *VINAS* on mouse cells supports the human relevance of the present
341 mouse findings. Consistent with *VINAS* regulation in atherosclerotic mice, DEPDC4 levels
342 decline in coronary arteries of pigs with progression of atherosclerosis and in human carotid
343 plaques with unstable characteristics (Fig. 6G-I). *VINAS* expression also decreases in ECs after
344 4- and 8-hours incubation with TNF- α , while returning to basal levels after 16 to 24 hours
345 (Suppl. Fig 1H). In all our experiments the cytokines were added to the cells at 48 hours after
346 gapmeRs transfection, when the *VINAS* silencing efficiency was already achieved by ~90%.
347 Hence, the potential *VINAS* downregulation after cytokines addition would be negligible. Several
348 mechanisms can be responsible for the observed *VINAS* regulation, including compensatory or
349 feedback mechanisms in response to stress induced by inflammatory stimuli. For instance, LPS
350 induces inflammation via the NF- κ B pathway. However, LPS also induces the synthesis of anti-
351 inflammatory cytokines such as IL-10 and IL-4, which in turn blocks NF- κ B activation in a
352 negative feedback mechanism (47) (48), suggesting that the upregulation of anti-inflammatory
353 genes are not always coincident with inflammatory state. Indeed, lncRNAs can be regulated as a
354 negative feedback during inflammation. For example, LPS increases the expression of lncRNA
355 Mirt2. However, lncRNA Mirt2 serves as a negative feedback regulator of excessive
356 inflammation and reduces inflammation across different cell types (49). Interestingly, the IL-10
357 anti-inflammatory phenotype is regulated by the ubiquitously expressed transcription factor Sp1
358 (50), which also has multiple binding sites in the *VINAS* and DEPDC4 promoters (Supplementary
359 Table 2). While we have not identified the exact mechanism for the upstream regulation of
360 *VINAS* lncRNA, we cannot rule out the existence of a compensatory mechanism in response to
361 pro-inflammatory stimuli. Future studies will need to assess the specific upstream mechanism of
362 *VINAS* / DEPDC4 regulation at the promoter and the transcript levels and whether this is a
363 regulatory effect on RNA stability or a compensatory mechanism in the cell.

364 In conclusion, the discovery of *VINAS* reported here extends the understanding of
365 participation of lncRNAs in inflammatory signaling in general and in the pathogenesis of
366 atherosclerosis and potentially other vascular diseases as well. Modulation of lncRNAs *VINAS*
367 and DEPDC4 may facilitate “fine-tuning” of the inflammatory response in a range of chronic
368 vascular diseases, and perhaps of other organ systems as well.

369

370

371

372

373 **Materials and methods**

374 **RNA-Seq Analysis**

375 RNA-Seq analysis was performed after ribodepletion and standard library construction using
376 Illumina HiSeq2500 V4 2x100 PE (Genewiz, South Plainfield, NJ). All samples were processed
377 using an RNA-seq pipeline implemented in the bcbio-nextgen project ([https://bcbio-](https://bcbio-nextgen.readthedocs.org/en/latest/)
378 [nextgen.readthedocs.org/en/latest/](https://bcbio-nextgen.readthedocs.org/en/latest/)). Raw reads were examined for quality issues using FastQC
379 (<http://www.bioinformatics.babraham.ac.uk/projects/fastqc/>) to ensure library generation and
380 sequencing were suitable for further analysis. Trimmed reads were aligned to UCSC build mm10
381 of the Mouse genome, augmented with transcript information from Ensembl release 79 using
382 STAR (51). Alignments were checked for evenness of coverage, rRNA content, genomic
383 context of alignments (for example, alignments in known transcripts and introns), complexity
384 and other quality checks using a combination of FastQC, Qualimap. Counts of reads aligning to
385 known genes were generated by featureCounts (52). Differential expression at the gene level
386 were called with EdgeR. The total gene hit counts and CPM values were calculated for each gene
387 and for downstream differential expression analysis between specified groups was performed
388 using EdgeR and an adapted EdgeR algorithm, which excludes overlapping reads, called no-
389 overlapping reads (NOR). Genes with adjusted FDR< 0.05 and log2fold-change (1.5) were
390 called as differentially expressed genes for each comparison. Mean quality score of all samples
391 was 35.67 within a range of 40,000,000-50,000,000 reads per sample. All samples had at least
392 >70% of mapped fragments over total.

393 **Polyadenylation**

394 RNA of 10^6 ECs was isolated using TRIzol reagent (Invitrogen) and resuspended in RNase-free
395 water. Polyadenylated and non-polyadenylated RNA was enriched with polyA Spin mRNA
396 isolation kit (NEB, S1560S) based on manufacturer's protocol. RT-PCR was performed with
397 same input volume, independent of concentration and normalized to non-polyadenylated RNA
398 fraction.

399 **RNA-ISH**

400 Customized probe for *VINAS* was specifically developed to detect ENSMUST00000181598
401 (Advanced Cell Diagnostics). BMDMs were fixed in 4% paraformaldehyde and the *in situ*

402 hybridization protocol for cultured adherent cells was performed as described by the
403 manufacturer (Basescope 2.5 HD Reagent Kit-Red; Advanced Cell Diagnostics).

404 **Protein coding potential**

405 Transcripts for *VINAS* (1500026H17Rik, NCBI Ref. Seq. NR_130956.1, Ensemble ID#
406 ENSMUST00000181598) were synthesized by Genewiz. For *in vitro* validation of peptide
407 coding potential, *VINAS* transcript was cloned upstream of p3xFLAG-CMV-14 expression
408 vector (Sigma, E7908) using EcoRI restriction site. 293T cells were transfected with 500ng
409 plasmid using Lipofectamine 2000 (Invitrogen) and protein lysate was isolated 72hrs post-
410 transfection, followed by immunoblotting for FLAG Tag (Cell Signaling, 8146).

411 **Molecular cloning for *VINAS* overexpression**

412 For overexpression studies, the *VINAS* transcript synthesized by Genewiz, Inc was cloned in a
413 pCDNA.3 plasmid using the EcoRI restriction site. The integration was validated by DNA
414 sequencing. For transfection studies in ECs, 0.25 ug plasmid/well (12 wells plate) was used in
415 combination with Lipofectamine 3000 according to the manufacturer's instructions.

416 **Cell Culture and Transfection**

417 Mouse endothelial cells (b.End.3, ATCC, CRL-2299) and MOVAS mouse aortic smooth muscle
418 cells (ATCC, CRL-279) were cultured in DMEM medium with 10% FBS and 1% Penicilin-
419 Streptomycin. HUVECs (Lonza, cc-2159) were cultured in endothelial cell growth medium
420 EGM®-2 (Lonza, cc-3162). Cells passaged less than seven times were used for all experiments.
421 Bone marrow was isolated from the femur and tibia of C57BL/6 mice and cultured in IMDM
422 medium supplemented with 10 ng/ml mMCSF (mouse macrophage colony stimulation factor,
423 (416ML, R&D), 10% FBS and 1% Penicilin-Streptomycin. Medium was changed every 2 days
424 and cells were used in experiments after at 7-10 days in culture. Transfection was performed
425 using Lipofectamine 3000 (Invitrogen, 11668-019) as described in manufacturer's protocol, and
426 customized GapmeRs for *VINAS* (Qiagen, 25nmol except when mentioned differently) or
427 negative control #1 (Qiagen). Cells were allowed to grow for 36 hours before treatment with
428 recombinant human TNF- α (210-TA/CF, R&D Systems), IL-1B (401-ML, R&D Systems) or
429 lipopolysaccharides (LPS, O26:B6 E. coli; SIGMAMilipore L2654) for various times, according
430 to the experiment: Western blot, 16 hours; real-time qPCR, 6 hours.

431 **Cell adhesion assay**

432 ECs grown in 24-well plates were transfected with gapmeRs. After 35 hours, 20 ng/ml TNF- α
433 was added for 5 hours. PBMCs were isolated from C57BL6 mice, washed suspended at 5×10^6
434 cells/ml in medium with 5 μ M of Calcein AM (C3100MP; Invitrogen). Cells were kept in an
435 incubator containing 5% CO₂ at 37°C for 30 minutes. The labeling reaction was stopped by the
436 addition of the cell growth medium, and cells were washed with growth medium twice and
437 resuspended in growth medium at 5×10^5 cells/ml. After 4 hours of TNF- α treatment, ECs were
438 washed once with DMEM growth medium, and 500 μ l Calcein AM-loaded PBMCs were added
439 to each well. After 1 hour of incubation, non-adherent cells were removed carefully. Adherent
440 cells were gently washed with prewarmed DMEM medium 4 times. Adherent cells were counted
441 using a Nikon fluorescence microscope.

442 **RNA isolation and RT-qPCR**

443 Tissues were homogenized using TissueLyser II (Qiagen) according to manufacturer's
444 instructions. For RNA isolation, TRIzol reagent (Invitrogen) or RNeasy kit (Qiagen) was used
445 based on manufacturers protocol. Isolation of intimal RNA and subsequent RT-qPCR from aorta
446 was performed as previously documented (53) (34).

447 Briefly, aortas were carefully flushed with PBS, followed by intima peeling using TRIzol
448 reagent (Invitrogen, 15596018). TRIzol was flushed for 10 sec – 10 sec pause – another 10 sec
449 flushed and collected in an Eppendorf tube (~300-400 μ L total) and snap frozen in liquid
450 nitrogen. The intima specific isolation was assessed by qPCR showing enrichment of endothelial
451 marker CD31 and macrophage marker Mac2 in the intima fraction compared to media/adventitia
452 fraction as previously described (15) . Subsequent RT-qPCR was performed using High-
453 Capacity cDNA Reverse Transcription kit (Applied Biosystems, 4368813). GoTaq qPCR Master
454 Mix (Promega, A6001) was used for RT-qPCR experiments. Expression of mRNAs and lncRNA
455 expression levels were normalized to GAPDH, HPRT, or β -actin (Aglient, AriaMx Real Time
456 PCR System). Changes in expression were calculated using delta delta Ct method. Primer
457 sequences are described in (Table S1).

458 **Cellular fractionation**

459 ECs fractionation for cytoplasmic and nuclear fractions was performed using the Active Motif
460 kit (40410) according to manufacturer's protocol. RNA was harvested as described previously
461 and cleaned up using the RNeasy kit (Qiagen). Equivalent RNA volumes of cytoplasmic and
462 nuclear associated RNA were converted to cDNA as described previously.

463 **Western blot**

464 Proteins were isolated using RIPA buffer (Boston BioProducts, BP-115) with protease inhibitor
465 and phosphatase inhibitors. Protein concentrations were determined using Pierce BCA assay
466 (Thermo Scientific). 20 μ g protein were loaded per lane on a 4-20% Mini-PROTEAN TGX Gel
467 (Bio-Rad, 456-1096). Separated proteins were transferred to PVDF membranes using the
468 Transfer Turbo Blot system (Bio-Rad) and Trans-Blot Turbo RTA Transfer Kit (Bio-Rad, 170-
469 4272). The membrane was blocked with 5% nonfat milk in TBST for 1h at room temperature.
470 After blocking, the membrane was incubated overnight at 4 $^{\circ}$ C with antibodies against Flag Tag
471 (Cell Signaling, 2368, 1:1000), GAPDH (Cell Signaling, 2118, 1:4000), VCAM-1 (Cell
472 Signaling, sc-13160, 1:1000), ICAM-1 (R&D Systems BBA3), I κ B α (Cell Signaling, #4812,
473 1:1000), b-actin (Cell Signaling, #4970, 1:3000), and phospho-I κ B α (Cell Signaling, #2859,
474 1:1000), IL-1 β (Abcam ab9722, 1:1000), MCP-1 (Abcam ab25124, 1:1000), COX-2 (Cell
475 Signaling 12282p), p-P38MAPK (Cell Signaling 4511L, 1:1000), P38 MAPK (Cell Signaling
476 9212L, 1:1000). Quantification of protein bands were performed using a luminescent image
477 analyzer (BioRad, Chemidoc).

478 **Immunohistology and Characterization of Atherosclerotic Lesions**

479 To quantify atherosclerosis in LDLR $^{-/-}$ mice that were placed on high cholesterol diet (HCD)
480 (Research Diets Inc., D12108C), aortic roots and aortic arch were embedded in OCT and frozen
481 at -80 $^{\circ}$ C. Serial cryostat sections (6 μ m) were prepared using tissue processor Leica CM3050.
482 Lesion characterizations, including Oil Red O (ORO) staining of the thoracic-abdominal aorta
483 and aortic root and staining for macrophages (anti-Mac2, BD Pharmingen, 553322, 1:900) T
484 cells (anti-CD4, BD Pharmingen, 553043, 1:90; anti-CD8, (Chemicon, CBL1318, 1:100), and
485 vascular smooth muscle cells (SM- α -actin, Sigma, F-3777, 1:500), were performed as previously
486 described (54) (34). The staining area was measured using Image-Pro Plus software, Media
487 Cybernetics, and CD4+ and CD8+ cells were counted manually.

488 **Intimal RNA isolation from aorta tissue**

489 Isolation of intimal RNA from aorta was performed as previously described in (34) (53). Briefly,
490 aortas were carefully flushed with PBS, followed by intima peeling using TRIzol reagent
491 (Invitrogen, 15596018). TRIzol was flushed for 10 sec – 10 sec pause – another 10 sec flushed
492 and collected in an Eppendorf tube (~300-400µL total) and snap frozen in liquid nitrogen. The
493 intima specific isolation was assessed in a previous study (15) by qPCR showing enrichment of
494 endothelial marker CD31 in the intima fraction compared to media/adventitia fraction.

495 **Lipid Profile Analysis**

496 Lipid profile was measured as previously described (34). Briefly triglyceride levels were
497 determined using InfinityTM Triglycerides Liquid Stable Reagent (Thermo Scientific). Total
498 cholesterol was measured using the InfinityTM Cholesterol Reagent (Thermo Scientific) and
499 HDL cholesterol was measured by colorimetric assay (BioAssay Systems, EnzyChromTM
500 HDL). LDL cholesterol levels were calculated using the following formula: LDL=Total
501 Cholesterol – HDL Cholesterol – Triglycerides divided by five. Standards were purchased from
502 Pointe Scientific, Inc.

503 **Animal Studies**

504 All protocols concerning animal use were approved by the Institutional Animal Care and Use
505 Committee at Brigham and Women's Hospital and Harvard Medical School, Boston, MA and
506 conducted in accordance with the National Institutes of Health Guide for the Care and Use of
507 Laboratory Animals. Studies were performed in LDLR^{-/-} male mice (Jackson Laboratory,
508 Stock#: 002207) or in C57Bl/6 mice (Charles River, Strain code#027).

509 **Pig Atherosclerotic Samples**

510 The study protocol included 15 male hypercholesterolemic Yorkshire swine that were placed on
511 an HCD for up to 60 weeks. Detailed sectioning of 3-mm coronary artery segments was
512 performed so that the gene sequencing samples were derived from the exact same portions of the
513 coronary artery plaques used for the histology and immunohistochemistry analyses. Histology
514 and IHC analyses included H & E, van Gieson elastin staining, smooth muscle cell α -actin, oil
515 red-O staining (ORO), picrosirius red staining, CD31 and CD45 cells as described in (55) (15).

516 **Human Atherosclerotic Specimens**

517 RNA was isolated from human carotid atherosclerotic lesions that were obtained from the
518 Division of Cardiovascular Medicine, Brigham and Women's Hospital in accordance with the
519 Institutional Review Board-approved protocol for use of discarded human tissues (protocol
520 #2010-P-001930/2).

521 **Statistics**

522 Data throughout the paper are expressed as mean \pm SD. Statistical differences were calculated
523 using unpaired two-tailed Student's t-test or one-way ANOVA with Bonferroni correction for
524 multiple comparisons. A probability of $p < 0.05$ was considered statistically significant. Ns, not
525 significant; * $p < 0.05$; ** $p < 0.01$; *** $p < 0.001$; **** $p < 0.0001$. For illustration of differentially
526 expressed genes Prism GraphPad software (V.7.0a) was used.

527

528 **Author Contributions:**

529 Conceived the hypothesis (M.W.F. and V.S.), performed the experiments (V.S., H.Z., J.B.P.,
530 D.Y., and Y.T.), designed and interpreted the results (V.S., H.Z., J.B.P., S.H., G.S. P.S., P.L.,
531 and M.W.F.), wrote the manuscript (V.S. and M.W.F.).

532

533

534 **Acknowledgments:**

535 We would like to thank J. Hutchinson and L. Pantano (Harvard Chan Bioinformatics Core,
536 Harvard T.H. Chan School of Public Health, Boston, MA) for assistance with RNA-seq analysis.
537 This work was supported by the NIH (HL115141, HL134849, HL148207, HL148355,
538 HL153356 to M.W.F.; the Arthur K. Watson Charitable Trust (to M.W.F.), the Dr. Ralph and
539 Marian Falk Medical Research Trust (to M.W.F.), the American Heart Association
540 (18SFRN33900144 and 20SFRN35200163 to M.W.F.), the Sarnoff Foundation Fellowship
541 Award (J.B.P.). PL received funding from the National Heart, Lung, and Blood Institute
542 [R01HL080472], American Heart Association [18CSA34080399], and RRM Charitable Fund.

543

544

545

546

547 **References**

- 548 1. Libby P. Inflammation in atherosclerosis. *Arterioscler Thromb Vasc Biol.*
549 2012;32(9):2045-51.
- 550 2. Wolf D, and Ley K. Immunity and Inflammation in Atherosclerosis. *Circ Res.*
551 2019;124(2):315-27.
- 552 3. Virchow R. Cellular pathology. As based upon physiological and pathological histology.
553 Lecture XVI--Atheromatous affection of arteries. 1858. *Nutr Rev.* 1989;47(1):23-5.
- 554 4. Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, et al.
555 Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. *N Engl J
556 Med.* 2017;377(12):1119-31.
- 557 5. Nahrendorf M. Myeloid cell contributions to cardiovascular health and disease. *Nat Med.*
558 2018;24(6):711-20.
- 559 6. Libby P. Mechanisms of acute coronary syndromes and their implications for therapy. *N
560 Engl J Med.* 2013;368(21):2004-13.
- 561 7. Mullick AE, Soldau K, Kiosses WB, Bell TA, 3rd, Tobias PS, and Curtiss LK. Increased
562 endothelial expression of Toll-like receptor 2 at sites of disturbed blood flow exacerbates
563 early atherogenic events. *J Exp Med.* 2008;205(2):373-83.
- 564 8. Gimbrone MA, Jr., and Garcia-Cardena G. Endothelial Cell Dysfunction and the
565 Pathobiology of Atherosclerosis. *Circ Res.* 2016;118(4):620-36.
- 566 9. Doran AC, Meller N, and McNamara CA. Role of smooth muscle cells in the initiation
567 and early progression of atherosclerosis. *Arterioscler Thromb Vasc Biol.* 2008;28(5):812-
568 9.
- 569 10. Ley K, Miller YI, and Hedrick CC. Monocyte and macrophage dynamics during
570 atherogenesis. *Arterioscler Thromb Vasc Biol.* 2011;31(7):1506-16.
- 571 11. Simion V, Haemig S, and Feinberg MW. LncRNAs in vascular biology and disease.
572 *Vascul Pharmacol.* 2018.
- 573 12. Aryal B, and Suarez Y. Non-coding RNA regulation of endothelial and macrophage
574 functions during atherosclerosis. *Vascul Pharmacol.* 2018.
- 575 13. Haemig S, Simion V, and Feinberg MW. Long Non-Coding RNAs in Vascular
576 Inflammation. *Front Cardiovasc Med.* 2018;5:22.
- 577 14. Haemig S, Simion V, Yang D, Deng Y, and Feinberg MW. Long noncoding RNAs in
578 cardiovascular disease, diagnosis, and therapy. *Curr Opin Cardiol.* 2017;32(6):776-83.
- 579 15. Haemig S, Yang D, Sun X, Das D, Ghaffari S, Molinaro R, et al. Long noncoding RNA
580 SNHG12 integrates a DNA-PK-mediated DNA damage response and vascular
581 senescence. *Sci Transl Med.* 2020;12(531).
- 582 16. Leisegang MS, Fork C, Josipovic I, Richter FM, Preussner J, Hu J, et al. Long Noncoding
583 RNA MANTIS Facilitates Endothelial Angiogenic Function. *Circulation.*
584 2017;136(1):65-79.
- 585 17. Mahmoud AD, Ballantyne MD, Micianinov V, Pinel K, Hung J, Scanlon JP, et al. The
586 Human-Specific and Smooth Muscle Cell-Enriched LncRNA SMILR Promotes
587 Proliferation by Regulating Mitotic CENPF mRNA and Drives Cell-Cycle Progression
588 Which Can Be Targeted to Limit Vascular Remodeling. *Circ Res.* 2019;125(5):535-51.
- 589 18. Stapleton K, Das S, Reddy MA, Leung A, Amaram V, Lanting L, et al. Novel Long
590 Noncoding RNA, Macrophage Inflammation-Suppressing Transcript (MIST), Regulates

591 Macrophage Activation During Obesity. *Arterioscler Thromb Vasc Biol.* 2020;40(4):914-28.

592

593 19. Sallam T, Jones MC, Gilliland T, Zhang L, Wu X, Eskin A, et al. Feedback modulation

594 of cholesterol metabolism by the lipid-responsive non-coding RNA LeXis. *Nature.*

595 2016;534(7605):124-8.

596 20. Sallam T, Jones M, Thomas BJ, Wu X, Gilliland T, Qian K, et al. Transcriptional

597 regulation of macrophage cholesterol efflux and atherogenesis by a long noncoding RNA.

598 *Nat Med.* 2018;24(3):304-12.

599 21. Tontonoz P, Wu X, Jones M, Zhang Z, Salisbury D, and Sallam T. Long noncoding RNA

600 facilitated gene therapy reduces atherosclerosis in a murine model of familial

601 hypercholesterolemia. *Circulation.* 2017;136(8):776-8.

602 22. Hu Y-W, Guo F-X, Xu Y-J, Li P, Lu Z-F, McVey DG, et al. Long noncoding RNA

603 NEXN-AS1 mitigates atherosclerosis by regulating the actin-binding protein NEXN. *The*

604 *Journal of clinical investigation.* 2019;129(3).

605 23. Li H, Cybulsky MI, Gimbrone MA, Jr., and Libby P. An atherogenic diet rapidly induces

606 VCAM-1, a cytokine-regulatable mononuclear leukocyte adhesion molecule, in rabbit

607 aortic endothelium. *Arterioscler Thromb.* 1993;13(2):197-204.

608 24. Libby P. Mechanisms of acute coronary syndromes. *N Engl J Med.* 2013;369(9):883-4.

609 25. de Gaetano M, Crean D, Barry M, and Belton O. M1- and M2-Type Macrophage

610 Responses Are Predictive of Adverse Outcomes in Human Atherosclerosis. *Front*

611 *Immunol.* 2016;7:275.

612 26. Williams HJ, Fisher EA, and Greaves DR. Macrophage differentiation and function in

613 atherosclerosis: opportunities for therapeutic intervention? *J Innate Immun.* 2012;4(5-6):498-508.

614 27. Cho KY, Miyoshi H, Kuroda S, Yasuda H, Kamiyama K, Nakagawara J, et al. The

615 phenotype of infiltrating macrophages influences arteriosclerotic plaque vulnerability in

616 the carotid artery. *J Stroke Cerebrovasc Dis.* 2013;22(7):910-8.

617 28. Shaikh S, Brittenden J, Lahiri R, Brown PA, Thies F, and Wilson HM. Macrophage

618 subtypes in symptomatic carotid artery and femoral artery plaques. *Eur J Vasc Endovasc*

619 *Surg.* 2012;44(5):491-7.

620 29. Han J, Liu S, Sun Z, Zhang Y, Zhang F, Zhang C, et al. LncRNAs2Pathways: Identifying

621 the pathways influenced by a set of lncRNAs of interest based on a global network

622 propagation method. *Sci Rep.* 2017;7:46566.

623 30. Hajra L, Evans AI, Chen M, Hyduk SJ, Collins T, and Cybulsky MI. The NF-κB signal

624 transduction pathway in aortic endothelial cells is primed for activation in regions

625 predisposed to atherosclerotic lesion formation. *Proceedings of the National Academy of*

626 *Sciences.* 2000;97(16):9052-7.

627 31. Baker RG, Hayden MS, and Ghosh S. NF-κB, inflammation, and metabolic disease. *Cell*

628 *metabolism.* 2011;13(1):11-22.

629 32. Bäck M, and Hansson GK. Anti-inflammatory therapies for atherosclerosis. *Nature*

630 *Reviews Cardiology.* 2015;12(4):199.

631 33. Gareus R, Kotsaki E, Xanthoulea S, van der Made I, Gijbels MJ, Kardakaris R, et al.

632 Endothelial cell-specific NF-κB inhibition protects mice from atherosclerosis. *Cell*

633 *metabolism.* 2008;8(5):372-83.

634

635 34. Sun X, He S, Wara AKM, Icli B, Shvartz E, Tesmenitsky Y, et al. Systemic delivery of
636 microRNA-181b inhibits nuclear factor-kappaB activation, vascular inflammation, and
637 atherosclerosis in apolipoprotein E-deficient mice. *Circ Res*. 2014;114(1):32-40.

638 35. Morris JB, Olzinski AR, Bernard RE, Aravindhan K, Mirabile RC, Boyce R, et al. p38
639 MAPK inhibition reduces aortic ultrasmall superparamagnetic iron oxide uptake in a
640 mouse model of atherosclerosis: MRI assessment. *Arteriosclerosis, thrombosis, and*
641 *vascular biology*. 2008;28(2):265-71.

642 36. Seeger FH, Sedding D, Langheinrich AC, Haendeler J, Zeiher AM, and Dimmeler S.
643 Inhibition of the p38 MAP kinase in vivo improves number and functional activity of
644 vasculogenic cells and reduces atherosclerotic disease progression. *Basic research in*
645 *cardiology*. 2010;105(3):389-97.

646 37. Sarov-Blat L, Morgan JM, Fernandez P, James R, Fang Z, Hurle MR, et al. Inhibition of
647 p38 mitogen-activated protein kinase reduces inflammation after coronary vascular injury
648 in humans. *Arteriosclerosis, thrombosis, and vascular biology*. 2010;30(11):2256-63.

649 38. Elkhawad M, Rudd JH, Sarov-Blat L, Cai G, Wells R, Davies LC, et al. Effects of p38
650 mitogen-activated protein kinase inhibition on vascular and systemic inflammation in
651 patients with atherosclerosis. *JACC: Cardiovascular Imaging*. 2012;5(9):911-22.

652 39. Cargnello M, and Roux PP. Activation and function of the MAPKs and their substrates,
653 the MAPK-activated protein kinases. *Microbiol Mol Biol Rev*. 2011;75(1):50-83.

654 40. Hommes DW, Peppelenbosch MP, and van Deventer SJ. Mitogen activated protein
655 (MAP) kinase signal transduction pathways and novel anti-inflammatory targets. *Gut*.
656 2003;52(1):144-51.

657 41. Roux PP, and Blenis J. ERK and p38 MAPK-activated protein kinases: a family of
658 protein kinases with diverse biological functions. *Microbiol Mol Biol Rev*.
659 2004;68(2):320-44.

660 42. Liu T, Zhang L, Joo D, and Sun SC. NF-kappaB signaling in inflammation. *Signal*
661 *Transduct Target Ther*. 2017;2.

662 43. Xie Y, Xie K, Gou Q, and Chen N. IkappaB kinase alpha functions as a tumor suppressor
663 in epithelial-derived tumors through an NF-kappaB-independent pathway (Review).
664 *Oncol Rep*. 2015;34(5):2225-32.

665 44. Shan Y, Ma J, Pan Y, Hu J, Liu B, and Jia L. LncRNA SNHG7 sponges miR-216b to
666 promote proliferation and liver metastasis of colorectal cancer through upregulating
667 GALNT1. *Cell Death Dis*. 2018;9(7):722.

668 45. Wu DM, Wang S, Wen X, Han XR, Wang YJ, Shen M, et al. LncRNA SNHG15 acts as a
669 ceRNA to regulate YAP1-Hippo signaling pathway by sponging miR-200a-3p in
670 papillary thyroid carcinoma. *Cell Death Dis*. 2018;9(10):947.

671 46. Denzler R, Agarwal V, Stefano J, Bartel DP, and Stoffel M. Assessing the ceRNA
672 hypothesis with quantitative measurements of miRNA and target abundance. *Mol Cell*.
673 2014;54(5):766-76.

674 47. Iyer SS, Ghaffari AA, and Cheng G. Lipopolysaccharide-mediated IL-10 transcriptional
675 regulation requires sequential induction of type I IFNs and IL-27 in macrophages. *J*
676 *Immunol*. 2010;185(11):6599-607.

677 48. Mukherjee S, Chen LY, Papadimos TJ, Huang S, Zuraw BL, and Pan ZK.
678 Lipopolysaccharide-driven Th2 cytokine production in macrophages is regulated by both
679 MyD88 and TRAM. *J Biol Chem*. 2009;284(43):29391-8.

680 49. Du M, Yuan L, Tan X, Huang D, Wang X, Zheng Z, et al. The LPS-inducible lncRNA
681 Mirt2 is a negative regulator of inflammation. *Nat Commun.* 2017;8(1):2049.

682 50. Tone M, Powell MJ, Tone Y, Thompson SA, and Waldmann H. IL-10 gene expression is
683 controlled by the transcription factors Sp1 and Sp3. *J Immunol.* 2000;165(1):286-91.

684 51. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast
685 universal RNA-seq aligner. *Bioinformatics.* 2013;29(1):15-21.

686 52. Liao Y, Smyth GK, and Shi W. featureCounts: an efficient general purpose program for
687 assigning sequence reads to genomic features. *Bioinformatics.* 2014;30(7):923-30.

688 53. Sun X, Icli B, Wara AK, Belkin N, He S, Kobzik L, et al. MicroRNA-181b regulates NF-
689 kappaB-mediated vascular inflammation. *J Clin Invest.* 2012;122(6):1973-90.

690 54. Cao Z, Wara AK, Icli B, Sun X, Packard RR, Esen F, et al. Kruppel-like factor KLF10
691 targets transforming growth factor-beta1 to regulate CD4(+)CD25(-) T cells and T
692 regulatory cells. *J Biol Chem.* 2009;284(37):24914-24.

693 55. Koskinas KC, Chatzizisis YS, Papafaklis MI, Coskun AU, Baker AB, Jarolim P, et al.
694 Synergistic effect of local endothelial shear stress and systemic hypercholesterolemia on
695 coronary atherosclerotic plaque progression and composition in pigs. *Int J Cardiol.*
696 2013;169(6):394-401.

697

698

699

700

819 **Tabel S1. Primers sequences**

Primers	forward	reverse
<i>VINAS</i>	TAGGAAGCCCGAGTTCTGGA	GTTTCCAGATGTCCTTCACAGC
DEPDC4	CCAGGAACCGTAGAGATGGC	CCACTTGGGCCTGAAGAGAG
GAPDH	AGGTCGGTGTGAACGGATTG	TGTAGACCATGTAGTTGAGGTCA
COX-2	TGTGACTGTACCCGGACTGG	TGCACATTGTAAGTAGGTGGAC
MCP-1	GCTGGAGCATCCACGTGTT	ATCTTGCTGGTGAATGAGTAGCA
TNF- α	CTGGATGTCAATCAACAATGGGA	ACTAGGGTGTGAGTGTGTTCTGT
VCAM-1	CAACATGTGGCTCTGGGAAG	GCCAAACACTGACCGTGAC
ICAM-1	TTCTCATGCCGCACAGAACT	TGTCGAGCTTGGGATGGTA
E-selectin	ATGCCTCGCGCTTCTCTC	GTAGTCCCGCTGACAGTATGC
MCP-1	TTAAAAAACCTGGATCGGAACCAA	GCATTAGCTTCAGATTACGGGT
COX-2	CATCCCCTCCTGCGAAGTT	CATGGGAGTTGGGCAGTCAT
U6	CTCGCTTCGGCAGCACA	AACGCTTCACGAATTGCGT
IL-1 β	ATGCCACCTTGACAGTGATG	AGCTTCTCCACAGCCACAAT
COX2	TTCAACACACTCTATCACTGGC	AGAAGCGTTGCGGTACTCAT

820

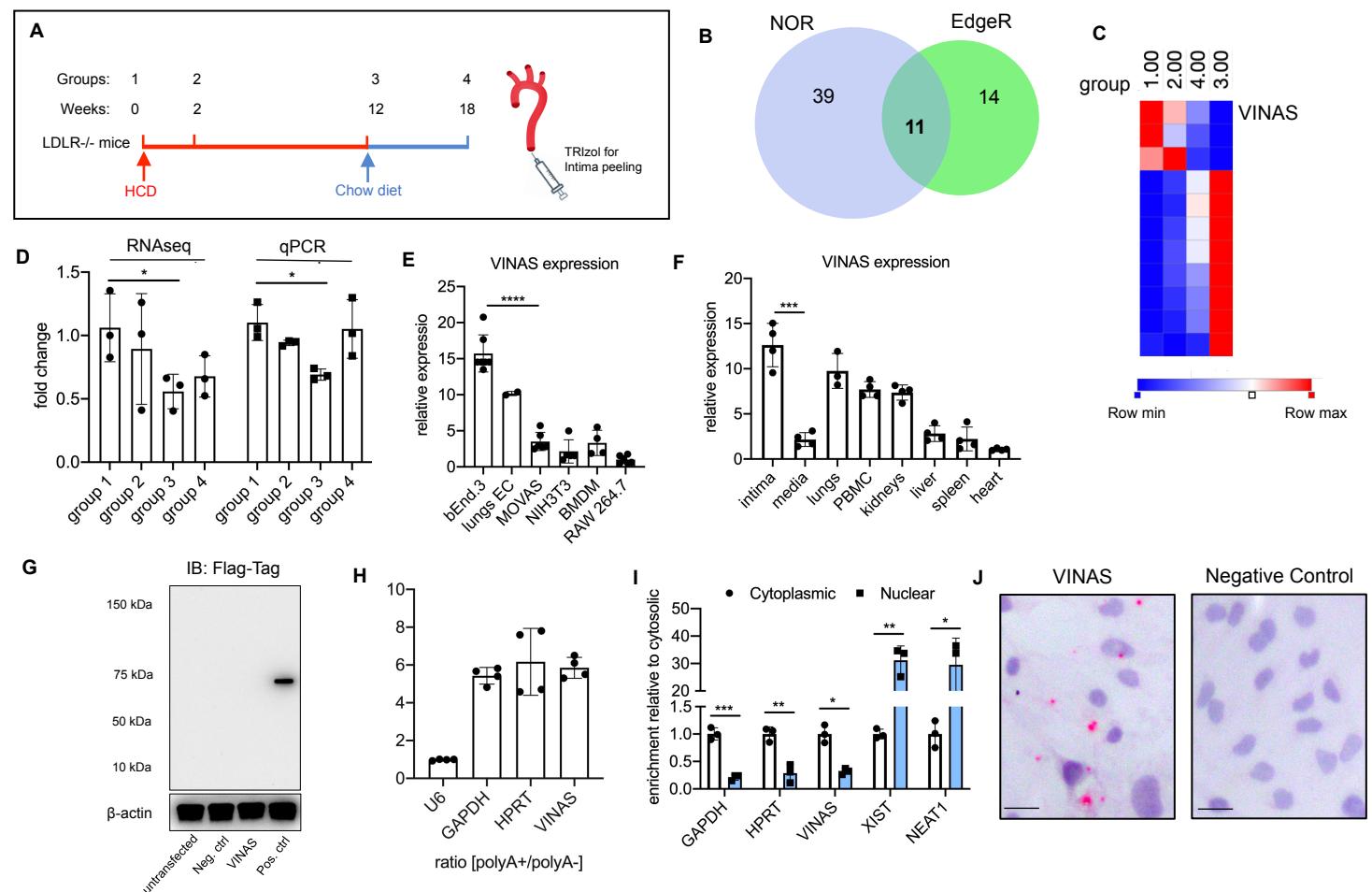
821

822

823 **Table S2. Transcription factors binding to *VINAS* and DEPDC4 promoters**

VINAS	DEPDC4
Elk-1	AP-2
Sp1	AP-2-alpha
Pegasus	AP-2-gamma
Sp1	AP-2
SIF	AP-2-alpha
E4F1	AP-2-gamma
AP-2-alpha	Ets

AP-2	SIF
AP-2-gamma	E4F1
AP-2-alpha	AP-2
AP-2	Pax4-PD
SIF	Sp1
PEA2	TEF
AP-2	AP-2-alpha
Pegasus	AP-2-gamma
AP-2-alpha	Ap-2
AP-2-gamma	STAT1-hs
AP-2	Pax4-PD
RAR	ZNF217
ARP-1	COUP-TF
H3abp	AP-2
AP-1	TFII-I
AP-2-alpha	AP-2-alpha
H4TF2	Pegasus
AP-2	AP-2-alpha
Pegasus	AP-2-gamma
AP-2-alpha	AP-2
AP-2-gamma	AP-2-alpha
AP-2-alpha	AP-2-gamma
AP-2-gamma	Nkx-3.2
AP-2	Elk-1
AP-2	COUP-TF
AP-2-alpha	Sp1


AP-2-gamma	Elk-1
AP-2	AP-2
AP-2-alpha	Sp1
Sp1	Sp1
Pegasus	Hox15
ENKTF1	AP-2-alpha
E4F1	AP-2
Pegasus	AP-2-alpha
STAT1-hs	Ets
STAT1-hs	Ets
Pegasus	Elk-1
STAT1-hs	ENKTF1
Ets	EGR-1
Ets	AP-2
H3abp	AP-2-alpha
ATF-CREB	AP-2-gamma
TEF	Pegasus
LRF-1	Pegasus
E4F1	Sp1
E4F1	Pax4-PD
LRF-1	ZNF219
Erg	H4TF2
STAT1-hs	AP-2

ATF-CREB	Pegasus
H3abp	STAT5A-hs
EF-1	STAT6-hs
EF-1A	MBF-1
E1A-F	Ets
Net_SAP2	AP-2-alpha
Elk-1	AP-2-gamma
STAT1-hs	AP-2
HNF-4	AP-2-alpha
Pegasus	AP-2-gamma
AP-2	H3abp
AP-2-alpha	ATF-CREB
AP-2-gamma	TEF
Pegasus	LRF-1
Sp1	E4F1
GCF	E4F1
AP-2	LRF-1
AP-2-alpha	Erg
AP-2-gamma	STAT1-hs
	ATF-CREB
	H3abp
	Ets
	EF-1A
	E1A-F
	PEA3
	Net_SAP2

	Elk-1
	Sp1
	STAT1-hs
	CP2
	AP-2-alpha
	AP-2-gamma
	AP-2
	E2A
	Sp1
	Pax4-PD
	ZNF219

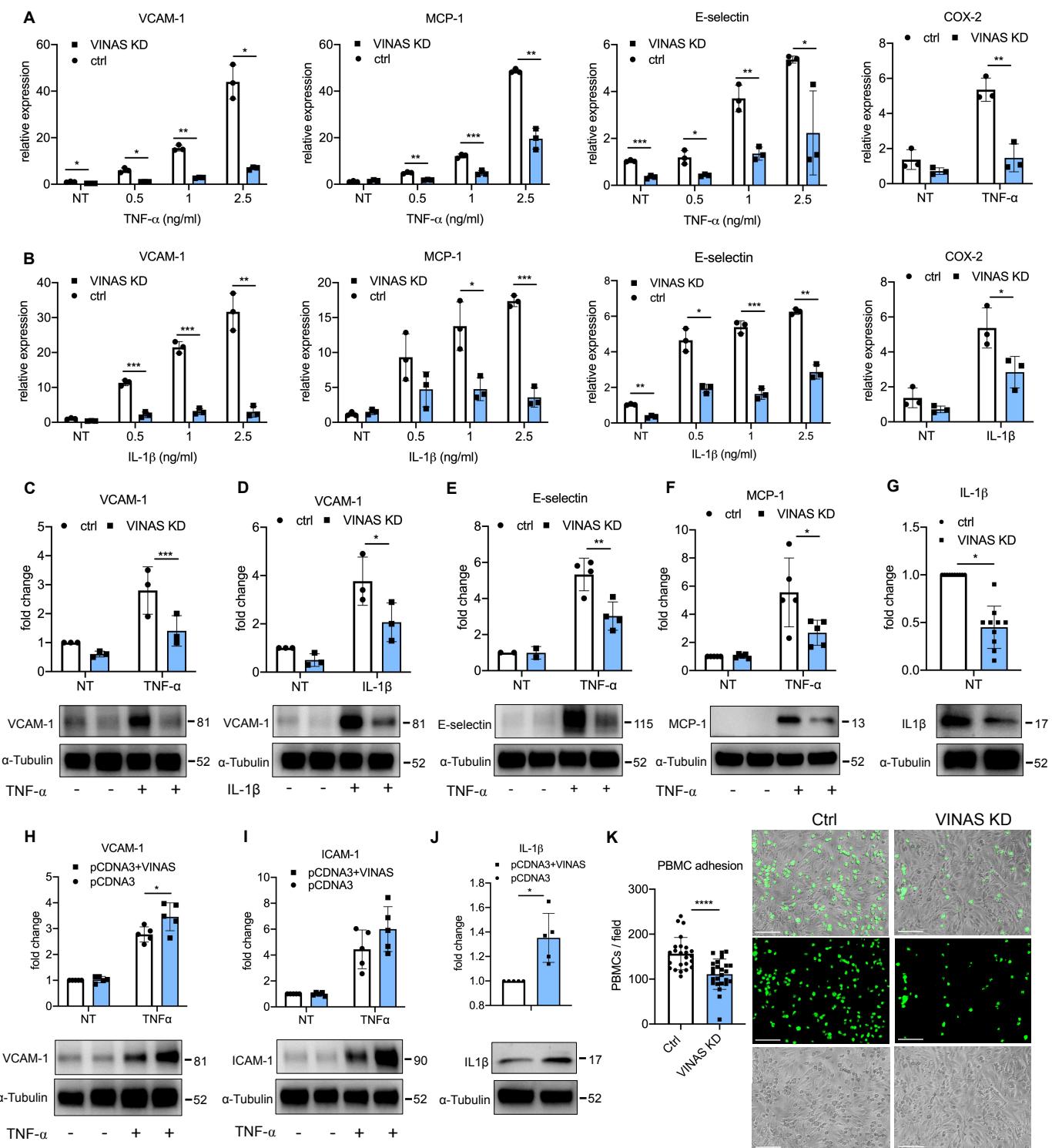

824

Fig. 1

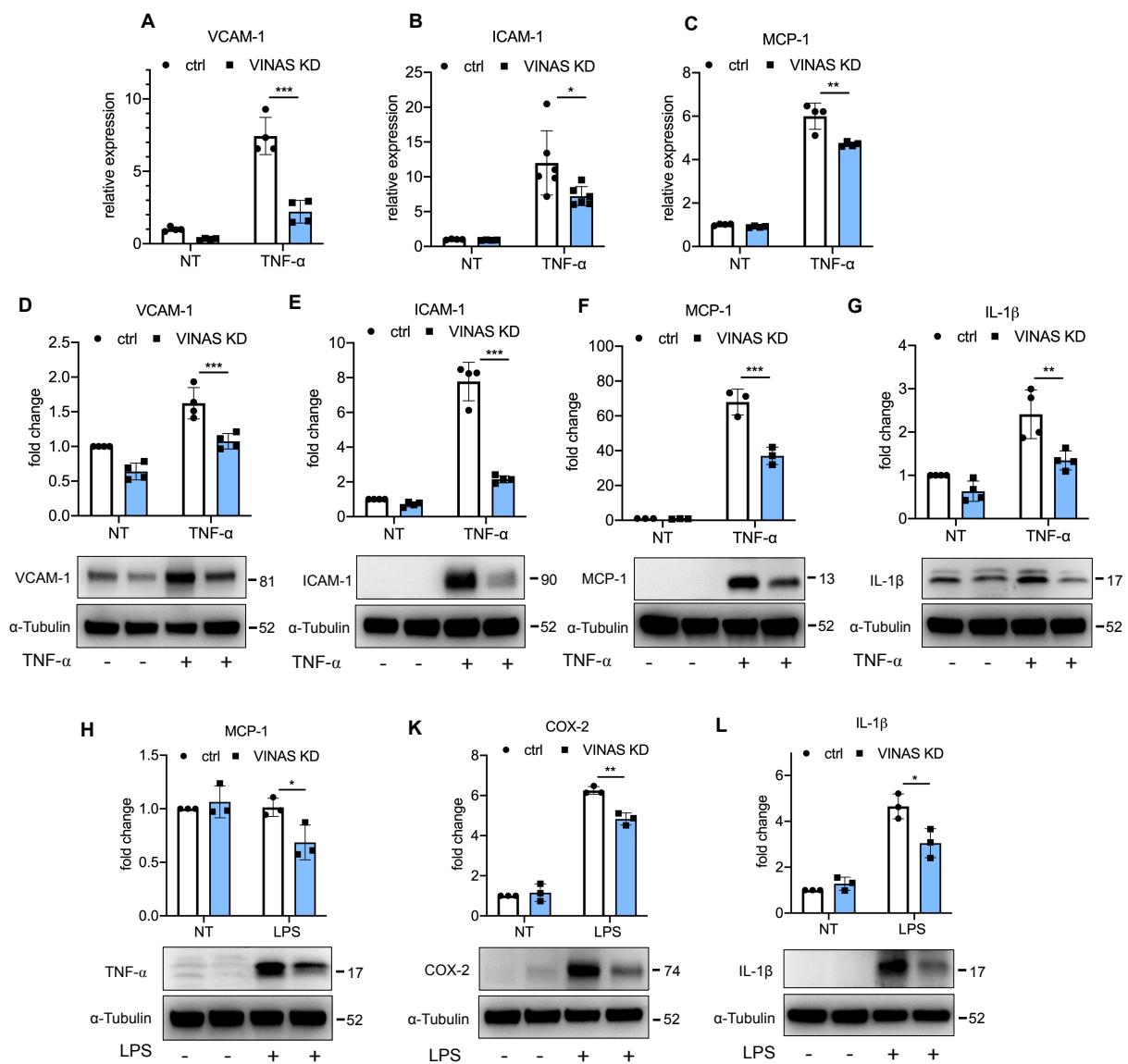

Fig. 1. Identification of the lncRNA *VINAS* in lesional intima. **A.** RNA derived from aortic intima of *LDLR*^{-/-} mice (n=3; each sample represents RNA pooled from two mice) that were placed on an HCD for 0 weeks (group 1), 2 weeks (group 2), 12 weeks (group 3), and 18 weeks after 6 weeks of resumption of a normal chow diet (group 4). **B.** Venn diagram displays significantly dysregulated lncRNAs in genome-wide RNA-Seq profiling using EdgeR and NOR showing intersecting hits (n=11), uniquely identified in EdgeR (n=14) or NOR (n=39), (log2-fold change (1.5); FDR<0.05). **C.** Heatmap for 11 lncRNAs that were dynamically regulated with progression and regression of atherosclerosis (n=3). **D.** RNA-Seq results for *VINAS* across groups 1-4 obtained by RNAseq analysis and verified by RT-qPCR (n=3). **E.** RT-qPCR expression analysis for *VINAS* in different cell types (n=3). **F.** *VINAS* expression in body organs and PBMCs of 24 weeks old C57BL/6 mice (n=4) **G.** To test the coding potential, *VINAS* sequence was cloned upstream of 3xFlag-Tag cassette, transfected in 293T cells, and immunoblotted for Flag antibody. Positive control was provided with the kit (representative of 3 experiments). **H.** RNA from mouse ECs was isolated for polyA+ and polyA- enriched RNA and analyzed by RT-qPCR. (n=3). **I.** RT-qPCR analysis for RNA derived from mouse ECs separated into cytoplasmic and nuclear fractions and normalized to the cytoplasmic fraction (n=3). **J.** RNA-*in situ* hybridization for negative control- and *VINAS*-probes on PFA-fixed mouse ECs; Scale bar, 5 μ m. For all panels, values are mean \pm SD; Statistical differences were calculated using unpaired two-tailed Student's t-test for all panels except for multiple comparisons (E, F) where one-way ANOVA with Bonferroni correction was used. *p < 0.05, **p<0.01; ***p<0.001.

Fig. 2

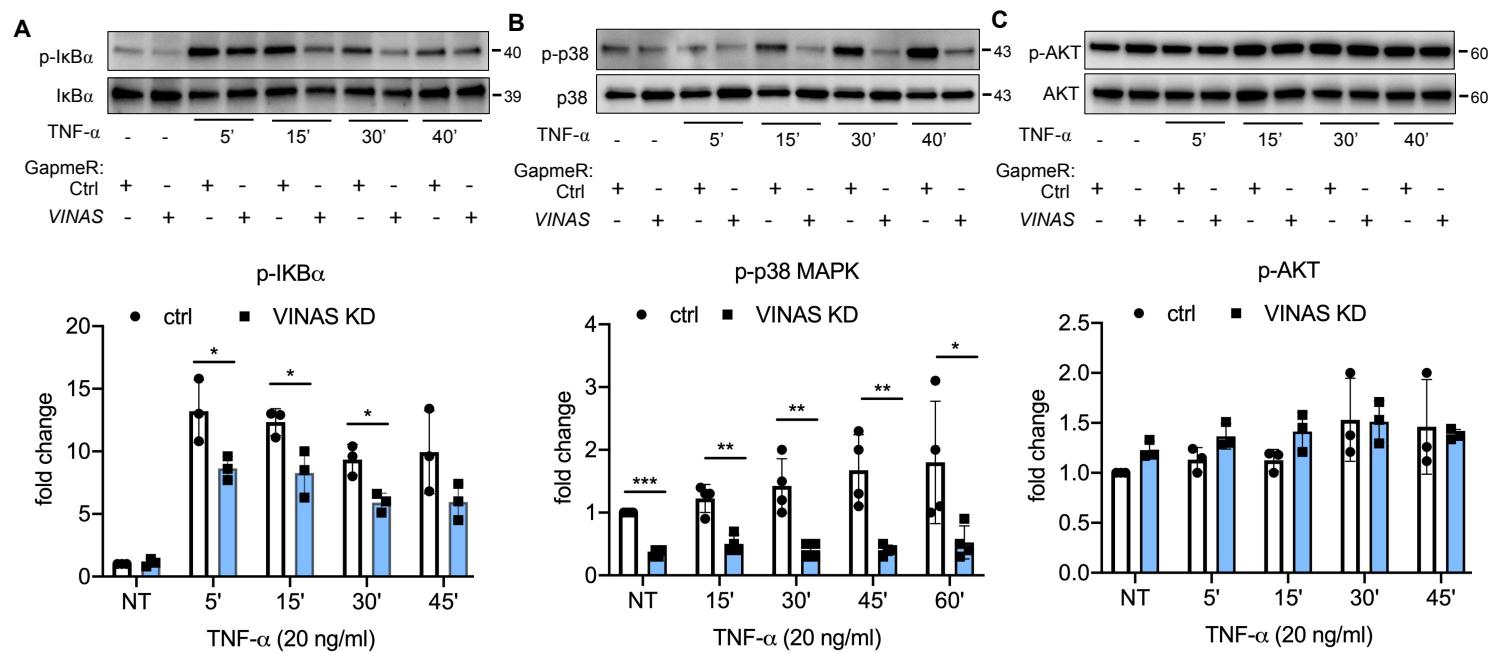

Fig. 2. *VINAS* regulates inflammatory markers in endothelial cells. *VINAS* knockdown decreases the mRNA levels of VCAM-1, E-selectin, MCP-1, and COX2 in mouse ECs activated with TNF- α (A) and IL-1 β (B); n=3. *VINAS* silencing decreases the protein expression of VCAM-1 (C, D, n=3), E-selectin (E; n=4), MCP-1 (F, n=5), and IL-1 β (G; n=10) in basal conditions or after activation with 20 ng/ml of TNF- α or IL-1 β . *VINAS* overexpression increases the protein expression of VCAM-1 (H) ICAM-1 (I) and IL-1 β (J) in mouse ECs non-treated or activated with 20 ng/ml of TNF- α (n=5). K. *VINAS* knockdown decrease the PBMCs adhesion to mouse ECs activated with TNF- α for 4 hours (5 ng/ml, representative of three experiments; Scale bar, 50 μ m. For all panels, values are mean \pm SD; Statistical differences were calculated using unpaired two-tailed Student's t-test for all panels. *p<0.05, **p<0.01; ***p<0.001; ****p<0.0001.

Fig. 3

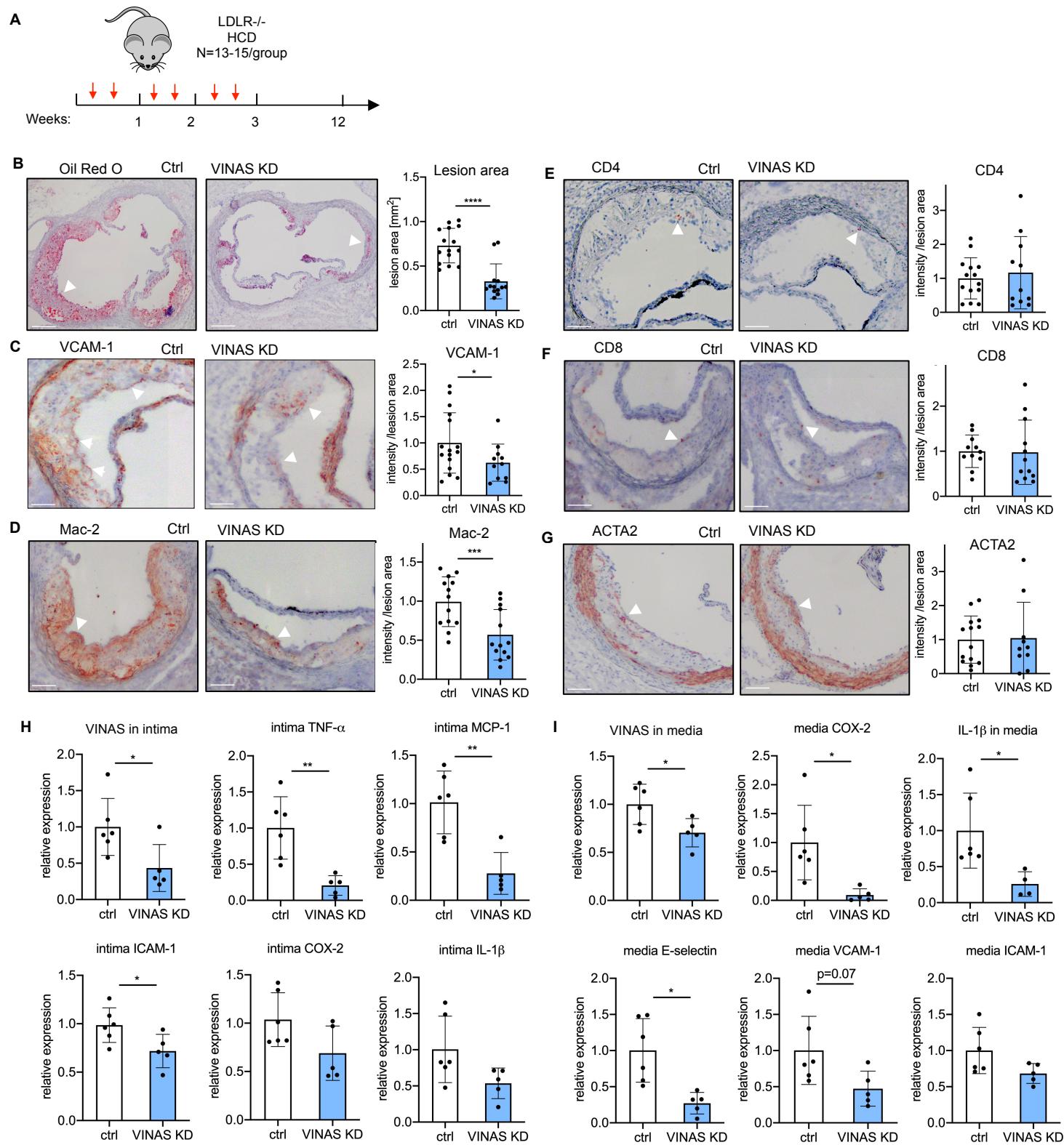
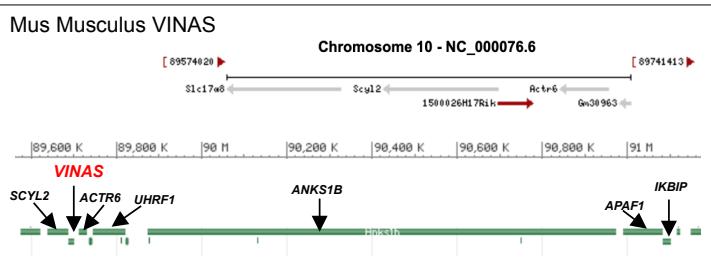

Fig. 3. *VINAS* knockdown decrease inflammation in SMC and BMDM. *VINAS* knockdown decrease mRNA levels of VCAM-1 (A; n=4), ICAM-1 (B; n=6), and MCP-1 (C; n=4) in MOVAS smooth muscle cells (SMC) stimulated with 5 ng/ml TNF- α . *VINAS* knockdown decrease the protein expression of VCAM-1 (D; n=4), ICAM-1 (E; n=4), MCP-1 (F; n=3), IL-1 β (G; n=4), in MOVAS smooth muscle cells stimulated with 20 ng/ml TNF- α . *VINAS* knockdown decreases the protein expression of MCP-1 (H), COX-2 (K), and IL-1 β (L) in bone marrow-derived macrophages (BMDM) stimulated with 50 ng/ml LPS (n=3). For all panels, values are mean \pm SD; Statistical differences were calculated using unpaired two-tailed Student's t-test for all panels. *p < 0.05, **p<0.01; ***p<0.001.

Fig. 4

Fig. 4. *VINAS* knockdown regulates NF-κB and p38 MAPK signaling pathways. Mouse ECs were transfected with *VINAS* gapmeRs and activated with TNF- α (20 ng/ml) for 5, 15, 30, 45 and 60 minutes. Phosphorylation of IKB- α (A; n=3), p-38 MAPK (B; n=4), and AKT (C; n=3) were assessed by Western Blot. For all panels, values are mean \pm SD; Statistical differences for all panels were calculated using one-way ANOVA with Bonferroni correction. *p < 0.05, **p<0.01; ***p<0.001.


Fig. 5

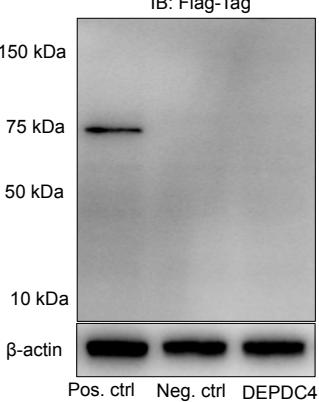
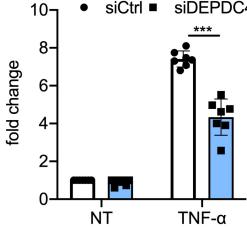
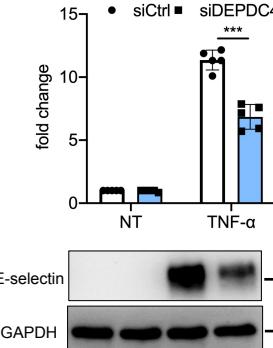
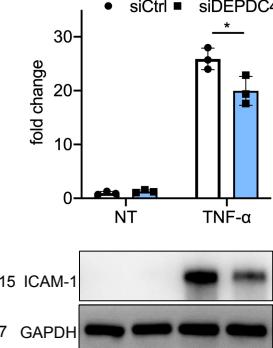
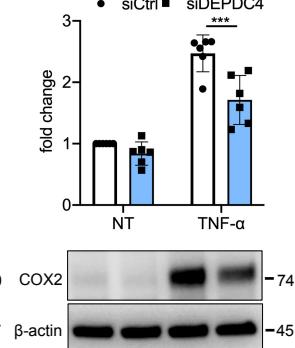

Fig. 5. *In vivo* knockdown of *VINAS* inhibits atherosclerotic lesion formation by decreasing vascular inflammation. **A.** *LDLR*^{-/-} mice were i.v. injected with vehicle control-gapmeR (n=15) or *VINAS*-gapmeR (n=13) twice per week (10 mg/kg/mouse/injection) and placed on HCD for 12 weeks. Representative images and quantification for Oil Red O (Scale bar, 400 μ m) (**B**), VCAM-1 (**C**), Mac-2 (**D**), CD4 (**E**), CD8 (**F**) and ACTA2 (**G**) staining (arrowhead) of the aortic sinus of *LDLR*^{-/-} HCD mice treated with control (n=15) or *MAARS* (n=13) gapmeRs for 12 weeks; Scale bar, 100 μ m. *VINAS* silencing efficiency and expression of inflammatory markers was assessed by RT-qPCR in the intima (**H**) and media (**I**) fractions of the aortic arch from control gapmeR (n=6) and *VINAS* gapmeR groups (n=5). For all panels, values are mean \pm SD; Statistical differences were calculated using unpaired two-tailed Student's t-test for all panels. *p<0.05, **p<0.01; ***p<0.001; ****p<0.0001.

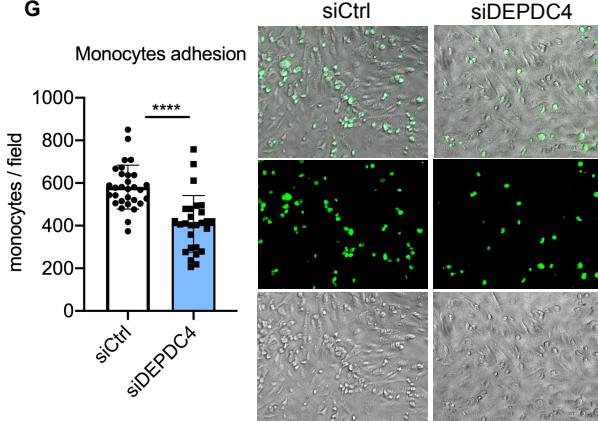
Fig. 6


A

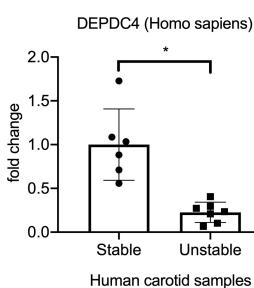

B IB: Flag-Tag


C VCAM-1

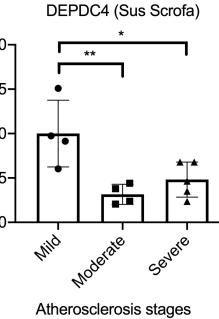

D E-selectin


E ICAM-1

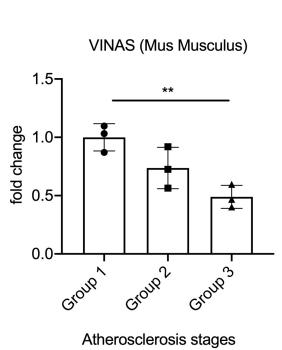
F COX-2



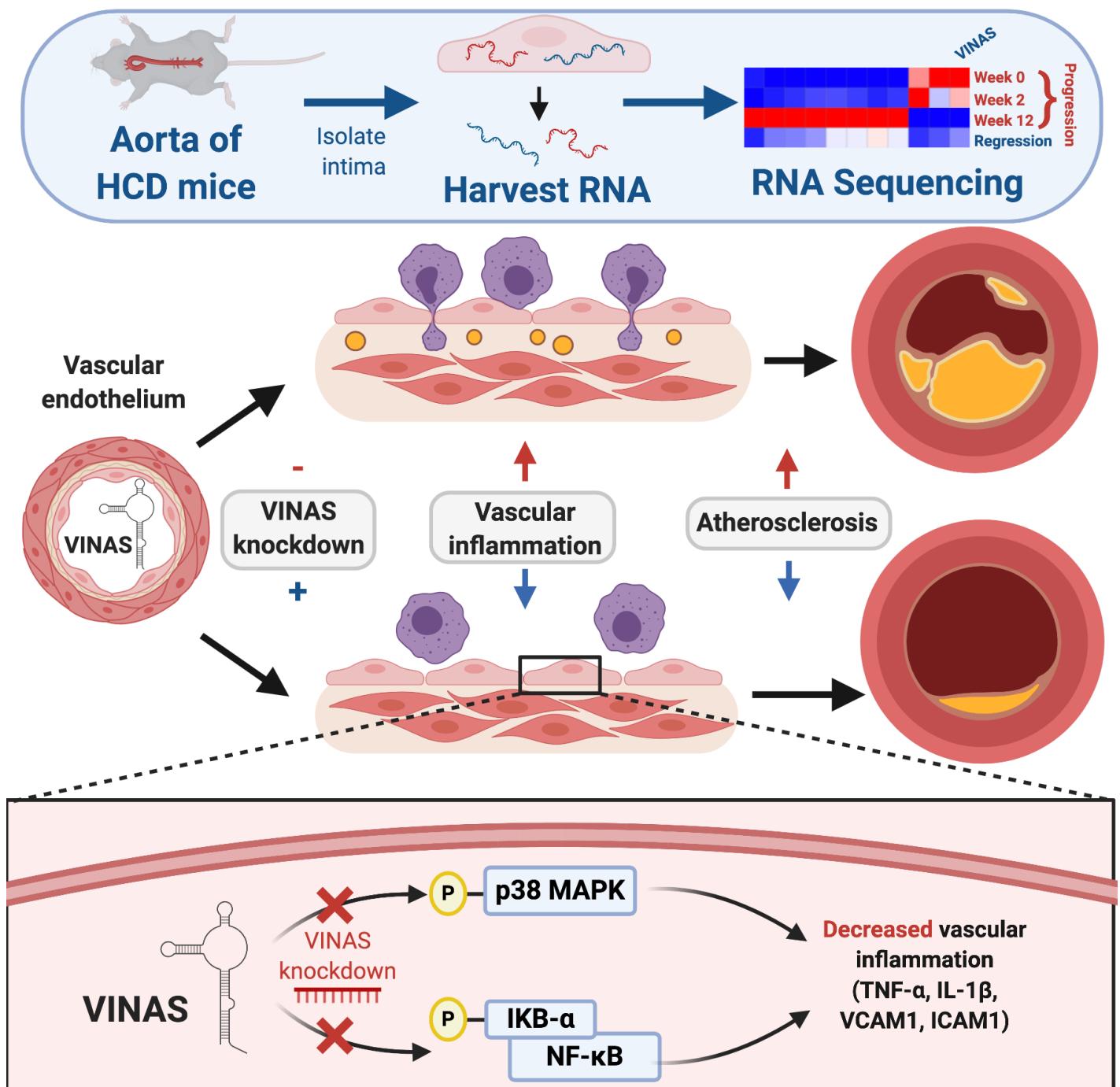
G



siCtrl siDEPDC4


H DEPDC4 (Homo sapiens)

I DEPDC4 (Sus Scrofa)



J

Fig. 6. DEPDC4 is a human ortholog of VINAS. **A.** Illustration of the genomic locations of *VINAS* and DEPDC4 in the mouse and human chromosomes 10 and 12, respectively. **B.** DEPDC4 does not encode for a protein or peptide. To test the coding potential, DEPDC4 sequence was cloned upstream of the 3xFlag-Tag cassette, transfected in 293T cells, and immunoblotted for Flag antibody; positive control was provided with the kit (n=3 experiments). DEPDC4 silencing decreases the protein expression of VCAM-1 (**C**; n=7), E-selectin (**D**; n=5), and ICAM-1 (**E**; n=3) COX-2 (**E**; n=6) in HUVECs activated with 20 ng/ml TNF- α . **G.** DEPDC4 knockdown decreases THP-1 monocyte adhesion to HUVEC monolayers activated with TNF- α for 4 hours (5 ng/ml, representative images and quantification of adhered monocytes). **H.** RT-qPCR of DEPDC4 in human carotid arteries with stable (n=6) or unstable (n=7) atherosclerotic plaques; Scale bar, 50 μ m. **I.** Expression of DEPDC4 from RNA-Seq analyses of lesions with increasing severity of coronary atherosclerosis in yorkshire pigs fed a high cholesterol diet for 60 weeks (n=4/group). **J.** RT-qPCR of *VINAS* expression in aortic intima of LDLR-/- mice at 0, 2, and 12 weeks of high cholesterol diet (n=3/group). For all panels values are mean \pm SD; Statistical differences were calculated using unpaired two-tailed Student's t-test for all panels except for multiple comparisons (I, J) where one-way ANOVA with Bonferroni correction was used. *p<0.05, **p<0.01; ***p<0.001; ****p<0.0001.

Fig. 7

Fig. 7. Graphical Abstract. RNAseq profiling of intimal lesions revealed VINAS lncRNA that is enriched in the aortic intima, decreased with atherosclerotic progression and increased with regression. VINAS knockdown decreased the expression of key inflammatory markers, NF- κ B and MAPK signaling pathways, cell adhesion molecules and the monocytes adhesion to ECs. *In vivo* VINAS knockdown reduced atherosclerotic lesion formation in LDLR $^{-/-}$ mice by decreasing vascular inflammation.