1	Title: Phenotypes of CF rabbits generated by CRISPR/Cas9-mediated disruption of the CFTR gene
2	Authors:
3	Jie Xu ^{a,1} , Alessandra Livraghi-Butrico ^{b,1} , Xia Hou ^{c,1} , Carthic Rajagopalan ^{c,1} , Jifeng Zhang ^a , Jun Song ^a ,
4	Hong Jiang ^c , Hong-Guang Wei ^c , Hui Wang ^d , Mohamad Bouhamdan ^c , Jinxue Ruan ^a , Dongshan Yang ^a ,
5	Yining Qiu ^e , Xie Youming ^d , Ronald Barrett ^f , Sharon McClellan ^f , Hongmei Mou ^g , Qingtian Wu ^c , Xuequn
6	Chen ^c , Troy D. Rogers ^b , Kristen J. Wilkinson ^b , Rodney C. Gilmore ^b , Charles R. Esther Jr. ^b , Khalequz
7	Zaman ^h , Xiubin Liang ^a , Michael Sobolic ^c , Linda Hazlett ^f , Kezhong Zhang ^e , Raymond A. Frizzell ⁱ ,
8	Martina Gentzsch ^b , Wanda K. O'Neal ^b , Barbara R. Grubb ^b , Y. Eugene Chen ^a , Richard C. Boucher ^b , Fei
9	Sun ^{c#}
10	
11	SUPPLEMENTAL MATERIAL
12	
13	Supplemental Figure 1. Production of CFTR KO rabbits. A) Illustration of sgRNA-02 and
14	CRISPR/Cas9. B) Embryo transfer results for production of CFTR mutant rabbits. C) Genotypes
15	of CFTR mutant lines. Specific insertions and deletions (indels) are shown. D) Breeding results
16	of F1 generation $CF\Delta1$ rabbits.
17	
18	Supplemental Figure 2. CF rabbit male reproductive tract abnormalities. Male reproductive
19	tract of wild-type (WT) and CF rabbits (~ 300 days-old). Notable is the complete absence of
20	epididymis and vas deferens in CF rabbit.
21	
22	Supplemental Figure 3. Additional characterization of CF rabbit GI phenotypes. A) Overall
23	appearance of WT (+/+) and a CF Δ 1 (-/-) rabbit at 30 days of age, illustrating the smaller size of

1

24	CF rabbits as compared to WT littermates. B) Complete CFTR RNAscope® panel (including
25	CFTR, Negative, and Positive mRNA probes, red chromogen) for WT rabbit jejunum and distal
26	colon. Scale bar 50µm. C) Ussing chamber characterization of freshly excised jejunal tissue from
27	WT (black) and CF (gray) rabbits (mean PND 367), illustrating short circuit currents (Isc) under
28	basal conditions, forskolin (10^{-5} M) stimulation, bumetanide (10^{-4} M) inhibition, glucose (5 mM,
29	apical) addition, and phloridzin (10^{-4} M) inhibition. Note the absence of increased phloridzin
30	response in older CF rabbit in stable health conditions, as compared to the one shown in Figure
31	1D for younger rabbits. N = $3-4$ /genotype *p < 0.05 different than WT. Unpaired, two-tailed t-
32	test with Welch's correction for unequal variance.

33

Supplemental Figure 4. Additional characterization of WT and CF rabbit blood metabolic 34 panel and liver histopathology. A-K) Blood Chemistry panel for liver, pancreatic, and renal 35 parameters in ~1 year-old WT and $\Delta 1$ CF rabbits raised at UNC (n=4-7/genotype). 36 Abbreviations: Alanine aminotransferase (ALT), alkaline phosphatase (ACP), aspartate 37 aminotransferase (AST), gamma-glutamyl transpeptidase (GGT), lactic acid dehydrogenase 38 (LDH), blood urea nitrogen (BUN). * p < 0.05 CF vs. WT, unpaired, two-tailed t-test. L) 39 Representative histological micrographs of WT and CF rabbit liver, stained for collagen 40 (Masson's trichrome) or H&E, centered on main portal triads. Scale bar = 0.1mm. 41 Representative micrographs from n=3 CF and control rabbits. 42 43

44 Supplemental Figure 5. CFTR mRNA expression in WT rabbit pancreas and pancreas

45 histopathology. A) Complete H&E and CFTR RNAscope® panel (including CFTR, Negative,

46	and Positive mRNA probes) for WT rabbit (red chromogen) and WT mouse (teal chromogen)
47	pancreas. Scale bar = $20\mu m$. Representative micrographs from n=2 rabbits and 2 mice. B)
48	Representative histological micrographs of the focal lesion observed in the pancreas of 3 out of 5
49	Δ 9 CF rabbits at UM. Region highlighted by boxes in the left panels (scale bar 0.2mm) are
50	presented at higher magnification in the right panels (scale bar 0.1mm). Asterisks indicate areas
51	of exocrine gland distension and fibrosis. Arrows indicate inflammatory infiltration. H&E stain.
52	C) Representative histological micrographs of CF and WT rabbit pancreas from the UNC $\Delta 1$
53	cohort, where no pathological changes were observed. Scale bar = 0.1 mm. H&E stain.
54	Representative micrographs from n=6-7 CF and control rabbits.
55	
56	Supplemental Figure 6. Characterization of CFTR expression in the murine nasal cavity.
57	A) Complete H&E, AB-PAS, and CFTR RNAscope® panel (including CFTR, Negative, and
58	Positive mRNA probes, red chromogen) for respiratory and olfactory epithelia in the nasal cavity
59	of WT mice. Scale bar = 0.1 mm . B-C) High power magnification of mouse respiratory (B) and
60	olfactory (\mathbf{C}) nasal epithelium region of interest highlighted with boxes in the low-magnification
61	images above Note the clustered distribution of CETR in both of these regions. Scale bar=
	mages above. Note the elastered distribution of er fix in cour of these regions. Seare our
62	$20\mu m$. Representative micrographs from n=2 mice.

Supplemental Figure 7. Nose pathology in CF rabbits. Additional evidence of inflammatory
remodeling in the olfactory (A-D) and respiratory (E-H) mucosa of CF (B, D, F, H) vs. WT (A,
C, E, G) rabbit nose. Scale bar = 0.1mm

68	Supplemental Figure 8. CFTR mRNA expression in WT rabbit lower airways. A) Complete
69	H&E, AB-PAS, and CFTR RNAscope® panel (including CFTR, Negative, and Positive mRNA
70	probes, red chromogen) for the lower airways of WT rabbits (~ 3 months-old). Scale bar 20 μ m.
71	Representative micrographs from n=2 rabbits. B-C) Uncropped western blots for CFTR and
72	β actin on HBE and tracheal tissue lysates from WT and CF rabbit line $\Delta 1$ (B , shown in Figure
73	6B) and line $\Delta 9$ (C) with labels for protein markers' molecular weight.
74	
75	Supplemental Figure 9. CFTR mRNA expression in WT mouse lower airways. Complete
76	CFTR RNAscope® panel (including CFTR, Negative, and Positive mRNA probes, red
77	chromogen) for the trachea, large and small airways of WT mice (PND56). Arrows indicate

78 CFTR-positive cells. Scale bar $20\mu m$. Representative micrographs from n=2 mice.

79

Supplemental Figure 10. Evidence of unresolved aspiration in a subset of CF rabbits after oral Golytely administration starting at PND6.

82 A) Gross appearance of lungs from a subset of CF rabbit syringe-fed with Golytely starting at PND6. Note the consolidated/yellowish appearance of the lung parenchyma (arrow). **B-D**) 83 Strings of mucus-like material could be pulled out of the airways (**B**, arrow), occasionally 84 contained particulate yellow/green material (C, dotted line highlights the main stem bronchus 85 circumference), and could be isolated by BAL (D, arrows. The presence of blood in BAL 86 suggests lung injury). E) Representative micrographs of lung sections stained with H&E, 87 Periodic-Acid Shiff and Alcian blue, illustrating the presence of particles deposited in the airway 88 and alveolar spaces (arrows), along with airway (*) and parenchymal (#) inflammatory cell 89

90 infiltration in the lungs of a subset of CF rabbits undergoing oral Golytely administration starting91 at PND6.

93	Supplemental Figure 11. CFTR mRNA expression in CF rabbit tissues and rabbit MUC5B
94	agarose western blot. A) CFTR mRNA expression in the lungs of WT vs. CF rabbits (line $\Delta 1$)
95	as assessed by qPCR. Unpaired, two-tailed t-test p=0.12. B) Complete CFTR RNAscope® panel
96	(including CFTR, Negative, and Positive mRNA probes, red chromogen) for CF rabbit jejunum,
97	indicating that CFTR mRNA is still present and detectable in specimens harvested from CF $\Delta 1$
98	rabbits. Scale bar = 0.1mm. Pancreas, proximal colon, trachea, and lungs from the same CF
99	rabbit were also probed, yielding similar results. C) Validation of a goat polyclonal antibody to
100	probe for MUC5B in rabbit bronchoalveolar lavage samples. WT (lanes 1-4) and CF (lanes 4-8)
101	samples (unfractionated/whole BAL, BAL supernatant and pellet fractions obtained after low
102	speed centrifugation) were run under reduced conditions and probed with a polyclonal goat
103	antibody raised against an immunogenic peptide of mouse Muc5b (See Methods). Lane 9-12
104	contain samples not discussed in the current manuscript. Asterisks indicate samples of
105	concentrated mucus harvested from the nasopharyngeal region of WT (black and blue asterisks)
106	or CF (red and yellow asterisks) rabbits, which was used as a positive control, given the extreme
107	dilution of the BAL samples. The lanes marked with green asterisks contain BAL sample
108	harvested from WT mice. This control was used to verify high molecular weight migration of the
109	putative rabbit MUC5B band, and to distinguish it from aspecific low-molecular bands. Rabbit
110	MUC5B appears to migrate at a slightly higher MW compared to murine MUC5B.

В	<pre>#embryos transferred</pre>	<pre>#recipients</pre>	#kits born	<pre>#positive F0 KO (%)</pre>
	162	6	11	3 (27)

С	Animal (sex)	Sequence	Genotype
	Control	$GATGATGATTATG_{\mathbf{G}}GGGGGGGGG$	WT
	FO#1(F)	GATGATGATTAAGCACAGTGGAAG GATGATGATTATG <u>GGAGAGTTGGAGCCTTCTAGAGGGTAAAATTAAGCACAGTGGAAG</u>	∆33 +1
	F0#2(M)	GATGATGATTATG <u>GGAGAGTTGGAGCCTT-AGAGGG</u> TAAAATTAAGCACAGTGGAAG	∆1
	F0#3(F)	GATGATGATTATG <u>GGAGAGTTGGAGCCTTCCAACTCTGGAAGA</u> -CACAGTGGAAG GATGATGATTATG <u>GGAGAGTTGGAGGGTAAAATTAAGCACAGTGGAAG</u>	∆17+14 ∆9

D

		# Genotypes (%)			
Litters bred	Total born	WT	CFTR+/-	CFTR-/-	
28	186	48 (25.8)	96 (51.6)	42 (22.6)	

Supplemental Figure 1. **Production of CFTR KO rabbits**. **A**) Illustration of sgRNA-02 and CRISPR/Cas9. **B**) Embryo transfer results for production of CFTR mutant rabbits. **C**) Genotypes of CFTR mutant lines. Specific insertions and deletions (indels) are shown. **D**) Breeding results of F1 generation CF Δ 1 rabbits.

Supplemental Figure 2. **CF rabbit male reproductive tract abnormalities.** Male reproductive tract of wild-type (WT) and CF rabbits (~ 300 days-old). Notable is the complete absence of epididymis and vas deferens in CF rabbit.

Supplemental Figure 3. Additional characterization of CF rabbit GI phenotypes. A) Overall appearance of WT (+/+) and a CF Δ 1 (-/-) rabbit at 30 days of age, illustrating the smaller size of CF

 $CF\Delta1$ (-/-) rabbit at 30 days of age, illustrating the smaller size of CF rabbits as compared to WT littermates. B) Complete CFTR RNAscope® panel (including CFTR, Negative, and Positive mRNA probes, red chromogen, See Methods for details) for WT rabbit jejunum and distal colon. Scale bar 50µm. C) Ussing chamber characterization of freshly excised jejunal tissue from WT (black) and CF (gray) rabbits (mean PND 367), illustrating short circuit currents (Isc) under basal conditions, forskolin (10⁻⁵ M) stimulation, bumetanide (10⁻⁴ M) inhibition, glucose (5mM, apical) addition, and phloridzin (10-4 M) inhibition. Note the absence of increased phloridzin response in older CF rabbit in stable health conditions, as compared to the one shown in Figure 1D for younger rabbits. N = 3-4/genotype *p < 0.05different than WT. Unpaired, twotailed t-test with Welch's correction for unequal variance.

Supplemental Figure 4. Additional characterization of WT and CF rabbit blood metabolic panel and liver histopathology. A-K) Blood Chemistry panel for liver, pancreatic, and renal parameters in ~1 year-old WT and $\Delta 1$ CF rabbits raised at UNC (n=4-7/genotype). Abbreviations: Alanine aminotransferase (ALT), alkaline phosphatase (ACP), aspartate aminotransferase (AST), gamma-glutamyl transpeptidase (GGT), lactic acid dehydrogenase (LDH), blood urea nitrogen (BUN). * p < 0.05 CF vs. WT, unpaired, two-tailed t-test. L) Representative histological micrographs of WT and CF rabbit liver, stained for collagen (Masson's trichrome) or H&E, centered on main portal triads. Scale bar = 0.1mm. Representative micrographs from n=3 CF and control rabbits.

Supplemental Figure 5. CFTR mRNA expression in WT rabbit pancreas and pancreas histopathology. A) Complete H&E and CFTR RNAscope® panel (including CFTR, Negative, and Positive mRNA probes) for WT rabbit (red chromogen) and WT mouse (teal chromogen) pancreas. Scale bar = 20µm. Representative micrographs from n=2 rabbits and 2 mice. B) Representative histological micrographs of the focal lesion observed in the pancreas of 3 out of 5 Δ 9 CF rabbits at UM. Region highlighted by boxes in the left panels (scale bar 0.2mm) are presented at higher magnification in the right panels (scale bar 0.1mm). Asterisks indicate areas of exocrine gland distension and fibrosis. Arrows indicate inflammatory infiltration. H&E stain. C) Representative histological micrographs of CF and WT rabbit pancreas from the UNC $\Delta 1$ cohort, where no pathological changes were observed. Scale bar = 0.1mm. H&E stain. Representative micrographs from n=6-7 CF and control rabbits.

Supplemental Figure 6. Characterization of CFTR expression in the murine nasal cavity. A) Complete H&E, AB-PAS, and CFTR RNAscope® panel (including CFTR, Negative, and Positive mRNA probes, red chromogen) for respiratory and olfactory epithelia in the nasal cavity of WT mice. Scale bar = 0.1 mm. **B-C**) High power magnification of mouse respiratory (**B**) and olfactory (**C**) nasal epithelium regions of interest highlighted with boxes in the low-magnification images above. Note the clustered distribution of CFTR in specific cell types in both of these regions. Scale bar= $20\mu m$. Representative micrographs from n=2 mice.

Supplemental Figure 7. Nose pathology in CF rabbits. Additional evidence of inflammatory remodeling in the olfactory (A-D) and respiratory (E-H) mucosa of CF (B, D, F, H) vs. WT (A, C, E, G) rabbit nose. Scale bar = 0.1mm

Supplemental Figure 8. CFTR mRNA expression in WT rabbit lower airways. A) Complete H&E, AB-PAS, and CFTR RNAscope® panel (including CFTR, Negative, and Positive mRNA probes, red chromogen) for the lower airways of WT rabbits (~ 3 months-old). Scale bar 20µm. Representative micrographs from n=2 rabbits. **B-C**) Uncropped western blots for CFTR and β actin on HBE and tracheal tissue lysates from WT and CF rabbit line $\Delta 1$ (**B**, shown in Figure 6B) and line $\Delta 9$ (**C**) with labels for protein markers' molecular weight.

Supplemental Figure 9. **CFTR mRNA expression in WT mouse lower airways.** Complete CFTR RNAscope® panel (including CFTR, Negative, and Positive mRNA probes, red chromogen) for the trachea, large and small airways of WT mice (PND56). Arrows indicate CFTR-positive cells. Scale bar 20µm. Representative micrographs from n=2 mice.

Supplemental Figure 10. Evidence of unresolved aspiration in a subset of CF rabbits after oral Golytely administration starting at PND6.

A) Gross appearance of lungs from a subset of CF rabbit syringe-fed with Golytely starting at PND6. Note the consolidated/yellowish appearance of the lung parenchyma (arrow). **B-D**) Strings of mucuslike material could be pulled out of the airways (**B**, arrow), occasionally contained particulate yellow/green material (**C**, dotted line highlights the main stem bronchus circumference), and could be isolated by BAL (**D**, arrows. The presence of blood in BAL suggests lung injury). **E**) Representative micrographs of lung sections stained with H&E, Periodic-Acid Shiff and Alcian blue, illustrating the presence of particles deposited in the airway and alveolar spaces (arrows), along with airway (*) and parenchymal (#) inflammatory cell infiltration in the lungs of a subset of CF rabbits undergoing oral Golytely administration starting at PND6.

Supplemental Figure 11. CFTR mRNA expression in CF rabbit tissues and rabbit MUC5B agarose western blot. A) CFTR mRNA expression in the lungs of WT vs. CF rabbits (line $\Delta 1$) as assessed by qPCR. Unpaired, two-tailed t-test p=0.12. B) Complete CFTR RNAscope® panel (including CFTR, Negative, and Positive mRNA probes, red chromogen) for CF rabbit jejunum, indicating that CFTR mRNA is still present and detectable in specimens harvested from CF Δ 1 rabbits. Scale bar = 0.1mm. Pancreas, proximal colon, trachea, and lungs from the same CF rabbit were also probed, yielding similar results. **C**) Validation of a goat polyclonal antibody to probe for MUC5B in rabbit bronchoalveolar lavage samples. WT (lanes 1-4) and CF (lanes 4-8) samples (unfractionated/whole BAL, BAL supernatant and pellet fractions obtained after low speed centrifugation) were run under reduced conditions and probed with a polyclonal goat antibody raised against an immunogenic peptide of mouse Muc5b (See Methods). Lane 9-12 contain samples not discussed in the current manuscript. Asterisks indicate samples of concentrated mucus harvested from the nasopharyngeal region of WT (black and blue asterisks) or CF (red and yellow asterisks) rabbits, which was used as a positive control, given the extreme dilution of the BAL samples. The lanes marked with green asterisks contain BAL sample harvested from WT mice. This control was used to verify high molecular weight migration of the putative rabbit MUC5B band, and to distinguish it from aspecific low-molecular bands. Rabbit MUC5B appears to migrate at a slightly higher MW compared to murine MUC5B.

Supplemental Table 1. Amino acid identity between human CFTR and that of species that have been genetically modified to model CF

	Human	Mouse	Rat	Pig	Ferret	Sheep	Rabbit
NCBI	P13569.3	P26361.2	P34158.3	Q6PQZ2.1	Q07E16.1	NP 001009781.1	Q00554.4
Accession #					_		_
Human	-						
Mouse	78%	-					
Rat	78%	92%	-				
Pig	92%	79%	78%	-			
Ferret	92%	79%	78%	92%	-		
Sheep	91%	77%	77%	93%	90%	-	
Rabbit	92%	80%	79%	91%	91%	89%	-

Supplemental Table 2. Primers used for off-target analysis of sgRNA-02

Number	Primer Name	Sequence(5' to 3')
1	CF-offtarget1-F(385)	ACAGGCAGAAGAAAGGATG
2	CF-offtarget1-R(666)	CAGGAGTGAGGCTTGAGTT
3	CF-offtarget1-Seq(418)	GAGGCACAGATTTGAGTGGG
4	CF-offtarget2-F(110)	GTATCAACCTGGTGTTTCTACTT
5	CF-offtarget2-R(869)	TGTCCCAATTCTGCTCCT
6	CF-offtarget2-Seq(151)	TGCCAACCACCTGTTTAAGACT
7	CF-offtarget3-F (144)	CTCCACGCTCGGCTATTCTG
8	CF-offtarget3-R (692)	CCTTCTGTCCGCTGGTTCATT
9	CF-offtarget3-Seg(345)	GGCTCCCTGCCTGCGTGCGTTCA
10	CF-offtarget4-F(216)	TGCTGTGGTAGGCTGAAATG
10	CF-offtarget4-R(834)	
12	CF-offtarget4-Seg(286)	
12	CE offtarget5 E(422)	
13	CF offterget5 D(079)	
14	CF-officinget5-R(976)	
15	CF-offiarget5-Seq (757)	GGAAGIGGAAICIGAIGIGCC
16	CF-offtarget6-F(197)	
17	CF-offtarget6-R(874)	GCTGCTCATTCATCCGTTCT
18	CF-offtarget6-Seq(232)	GCTGAAAGCGGGAGACAGGTCA
19	CF-offtarget7-F(198)	CTGAGTGAGGAGGAGCA
20	CF-offtarget7-R(905)	AAGGTGGACTTGAGTATGAAC
21	CF-offtarget7-Seq(301)	GCAGCCGAGTTTCCATCCC
22	CF-offtarget8-F(429)	TGGGCATCCTTAGCAAT
23	CF-offtarget8-R(778)	GTGTCCTCCTAGAAAGACTGA
24	CF-offtarget8-Seq(678)	TTCCAGGGCGCTCCTTAT
25	CF-offtarget9-F(422)	GTGACAAGAGCCGTGGAG
26	CF-offtarget9-R(969)	CGCTAGGCGGAGGATTA
27	CF-offtarget9-Seq(678)	GCTTCTTCCAGGTCTCCCACAT
28	CF-offtarget10-F(211)	CCCACATAGAGGCAGAAATACAG
29	CF-offtarget10-R(880)	AGCAATCTCATCCATCGGTTC
30	CF-offtarget10-Seg(289)	TGACCTTGACCTCCCGCTCCG
31	CF-offtarget11-F(80)	CACTTCTATTCCCACTGTTAC
32	CF-offtarget11-R(840)	GCACCTGGCTCCTGACT
33	CF-offtarget11-Seg(303)	
34	CE offfarget12 E(05)	
35	CE offfarget12 P(830)	
35	CE offforget12 Sog(162)	
30	CF-officinget12-Seq(102)	CTCAATCTCCCACTTTCC
37	CF-officinget 13-F(210)	
38	CF-officiarget 13-R(782)	
39	CF-offtarget13-Seq(715)	GCAAGGGTGTCTTCCTTACTG
40	CF-offtarget14-F(252)	GCIIIGGCICCIIIGIG
41	CF-offtarget14-R(668)	CGAGGCTTCCTCTTCTG
42	CF-offtarget14-Seq(343)	
43		
44		
45	CF-offtarget15-Seq(319)	
40	CF-offformet16 D(752)	
4/	CF-olliargel 10-K(753)	
40	CF-ontarget 10-Seq(307)	
49 50	CF-Official yet 17-F(429) CE-official yet 17 P(721)	
51	CE-offfarget17-Sec(606)	
52		
52	CE-offfarget18 P(900)	
54	CE-offfarget18-Sec(297)	
55	CE-offfarget10 E(410)	
56	CE-officient 10 P(794)	
57	CE-offfarget10-Seg(664)	GTACATTATTAGOTTOCOAGOA
58	CF-offtarget20_F(150)·	
59	CF-offtarget20-R(685)	
60	CF-offtarget20-Seg(342)	
00	Unitalyeizo-Sey(342)	UNUNITARA I LAURICI LAURUCU IAU

Supplemental Table 3. Sequence analysis of predicted off-target loci of sgRNA-02. The genomic DNA from 3 CFTR KO founder rabbits were analyzed. Genomic DNA sequences with 5-7 mismatches near 5' end to the sgRNAs were computationally identified in the rabbit reference genome, and analyzed by Sanger sequencing. No off-target events were detected in these founder animals. PAM sequence is shown in blue, mismatches in the protospacer sequence are highlighted in red. #mm: number of mismatches.

No.	genomic location
1	Chr 1:112376551-112376557
2	Chr 12:23852170-23852176
3	Chr 12:31324798-31324804
4	Chr 13:13290345-13290351
5	Chr 13:34092296-34092302
6	Chr 13:36533825-36533831
7	Chr 14:89379526-89379532
8	Chr 15:38720980-38720986
9	Chr 15:107380356-107380362
10	Chr 16:64652169-64652175
11	Chr 19:18221198-18221204
12	Chr 19:38629041-38629047
13	Chr 19:54725909-54725915
14	Chr 2:71843643-71843649
15	Chr 2:74167517-74167523
16	Chr 2:139877745-139877751
17	Chr 2:159124140-159124146
18	Chr 2:167420450-167420456
19	Chr 20:17982202-17982208
20	Chr 3:49773422-49773428

locus details exon CFTR Intron PDGFD Intergenic Intergenic Intergenic Intergenic Intron LOC103350042 Intron ATP13A4 Intergenic Intergenic Intergenic Intron EFCAB5 Intron LOC100351350 Intergenic Intergenic Intergenic Intron EPAS1 Intron DPYSL5 Intergenic Intergenic Intron WWC1

Sequence	#mm	1
GGAGAGTT GGAGCCTTCAGA<mark>GGG</mark>		
TGCCCTCA <mark>GGAGCCTTCAGAAGG</mark>	7	r
CT <mark>AG</mark> CCG <mark>TGGAGCCTTCAGAAGG</mark>	5	r
CCT <mark>GGCCG</mark> GGAGCCTTCAGAGGG	7	r
CCTCCCCTGGAGCCTTCAGATGG	7	r
AATCTCTTGGAGCCTTCAGATGG	6	r
CTT <mark>GCAGG</mark> GGAGCCTTCAGAGGG	7	r
TTGGAGA TGGAGCCTTCAGAGGG	5	r
G <mark>T</mark> AG <mark>GAC</mark> T GGAGCCTTCAGAGGG	4	r
TTTCCCTTGGAGCCTTCAGATGG	6	r
TCC <mark>GGAAG</mark> GGAGCCTTCAGACGG	7	r
G <mark>TC</mark> GCA <mark>TC</mark> GGAGCCTTCAGAAGG	5	r
CTCCCTC TGGAGCCTTCAGATGG	7	r
G <mark>TGACA</mark> T <mark>GGGAGCCTTCAGAAGG</mark>	6	r
CTAICCCTGGAGCCTTCAGATGG	6	r
ATGAG <mark>G</mark> T GGAGCCTTCAGATGG	6	r
AAT <mark>GACCA</mark> GGAGCCTTCAGATGG	6	r
G <mark>TGC</mark> A <mark>TGC<mark>GGAGCCTTCAGAAGG</mark></mark>	6	r
AAAG <mark>TA</mark> TC <mark>GGAGCCTTCAGAAGG</mark>	5	r
TCATCCCTGGAGCCTTCAGAGGG	6	r
TTCTGTC TGGAGCCTTCAGAGGG	7	r

Supplemental Table 4. Summary of main phenotypes for CF rabbits observed across study sites, i.e., UNC, UM, and WSU. n/a = not available or only limited data available

		CF Δ 1 line	CF ∆9 line	CF +1 line
Mutation type		premature stop codon after amino acid 477	deletion of amino acids P477, S478, E479	premature stop codon after amino acid 480
Lifespan (median)	UNC	44 d with Golytely only, >80 d with Golytely and mucokinetic agents	n/a	n/a
	UM	n/a	45 d with Golytely only	43 d with Golytely only
	WSU	44 d with Golytely only	n/a	n/a
Male infertility	UNC	Yes	n/a	n/a
	UM	Yes	Yes	Yes
	WSU	Yes	Yes	Yes
Retarded growth	UNC	Yes	n/a	n/a
	UM	Yes	Yes	Yes
	WSU	Yes	Yes	Yes
GI obstruction	UNC	Yes	n/a	n/a
	UM	Yes	Yes	Yes
	WSU	Yes	Yes	Yes
Spontaneous upper airway disease (mucus obstruction and inflammation)	UNC	Yes, late onset (> 6 months old)	n/a	n/a
	UM	n/a	n/a	n/a
	WSU	n/a	n/a	n/a
Spontaneous lower airway disease (mucus obstruction and inflammation)	UNC	No, traces in CF	n/a	n/a
		rabbits > 1 year old		
	UM	n/a	n/a	n/a
	WSU	n/a	n/a	n/a