

Supplementary Information:

Prolyl Endopeptidase contributes to early neutrophilic inflammation in acute cardiac transplant rejection

Gregory A. Payne MD, PhD^{1-5*}, Nirmal S. Sharma MD^{6,14}, Charitharth V. Lal MD^{4,7}, Chunyan Song¹, Lingling Guo MD^{8,9}, Camilla Margaroli PhD^{4,10}, Liliana Viera^{4,10,11}, Siva Kumar MD^{6,13}, Jindong Li^{4,10}, Dongqi Xing MD, PhD^{2,4,10}, Melanie Bosley¹³, Xin Xu MD, PhD^{4,10}, J. Michael Wells MD^{4,5,10,11}, James F. George PhD^{8,9}, Jose Tallaj MD^{1,3}, Massoud Leesar MD^{1,3}, J. Edwin Blalock PhD^{2,4,10-12†} and Amit Gaggar MD, PhD^{2,4,5,10-12†}

¹Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL

²Vascular Biology and Hypertension Program, University of Alabama at Birmingham, Birmingham, AL

³Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, AL

⁴Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL

⁵Medical Service at Birmingham VA Medical Center, Birmingham, AL

⁶Department of Internal Medicine, University of South Florida, Tampa, FL

⁷Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL

⁸Department of Surgery, University of Alabama at Birmingham, Birmingham, AL

⁹Nephrology Research & Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL

¹⁰Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL

¹¹Lung Health Center, University of Alabama at Birmingham, Birmingham, AL

¹²Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL

¹³Tampa General Hospital, Tampa, FL

¹⁴Brigham and Women's Hospital, Harvard Medical School, Boston, MA

*denotes corresponding authors

†denotes equal contribution

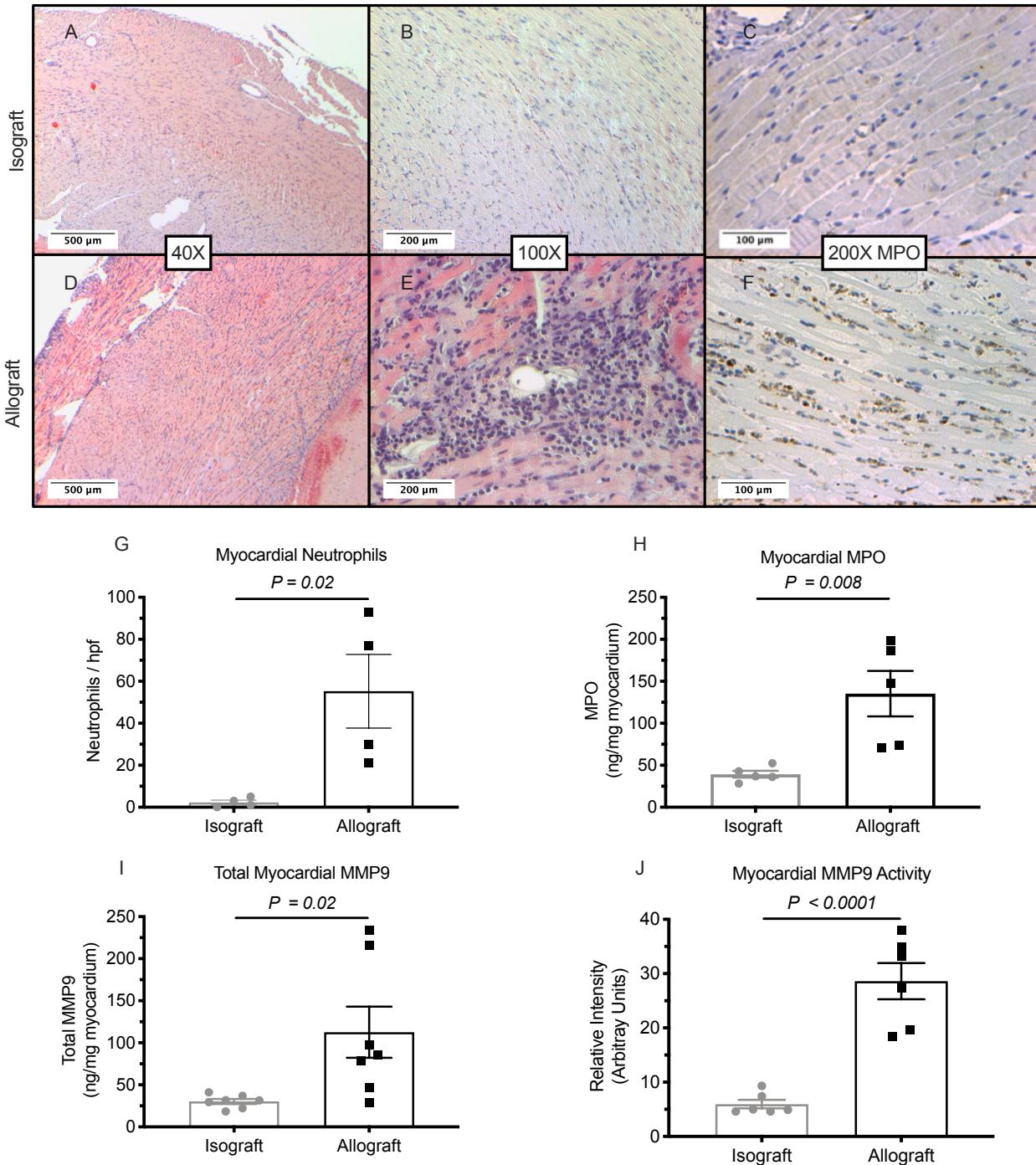
Conflict of Interest: The authors have declared that no conflict of interest exists

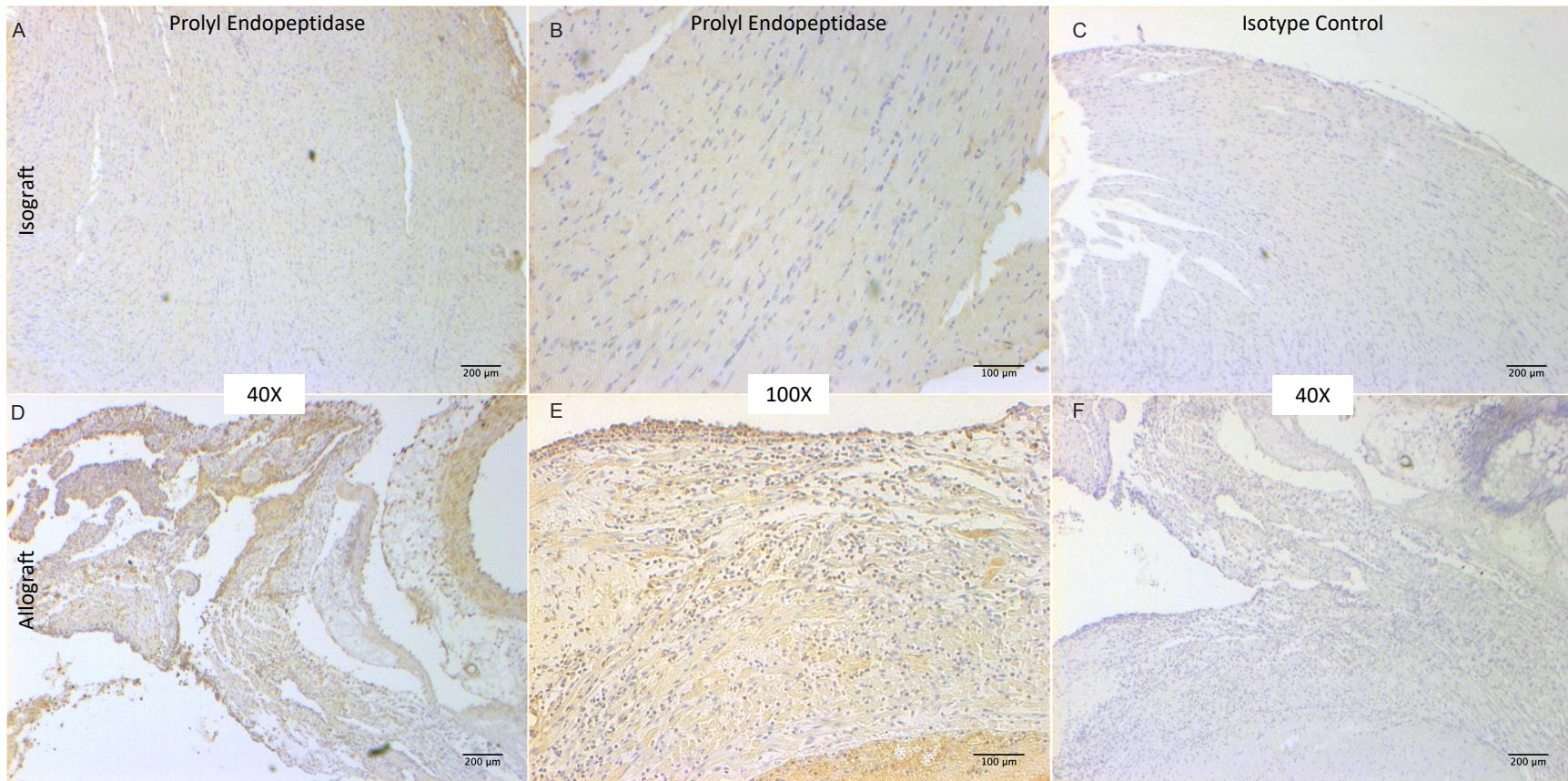
Corresponding Author

Gregory A. Payne MD PhD

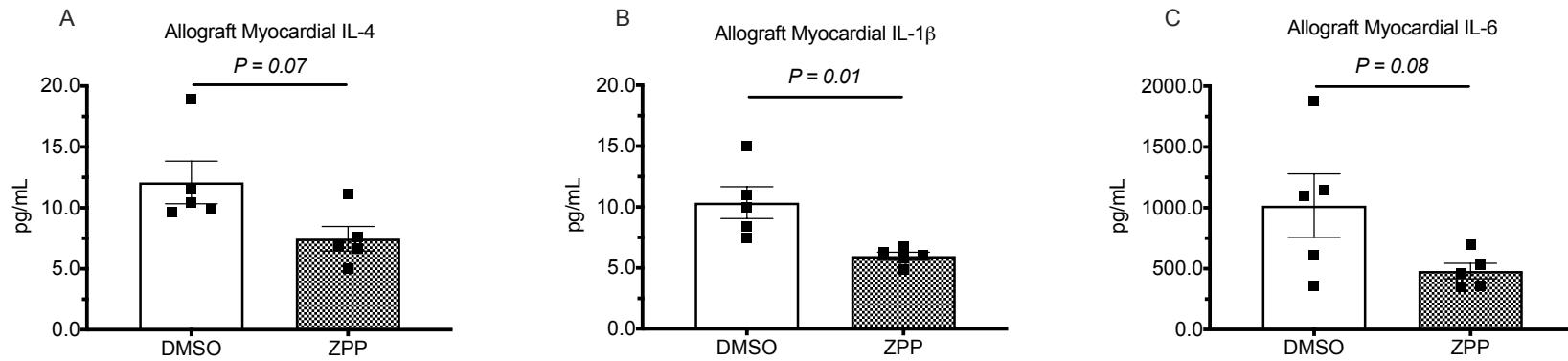
Zeigler Research Building 531
1720 2nd Avenue South
Birmingham, AL 35294
gpayne@uabmc.edu

SUPPLEMENTAL FIGURE LEGENDS


Supplemental Figure 1. Acute allograft transplant rejection induces neutrophilic inflammation.


8-10 week-old, male, BALB/cj mice received heterotopic heart transplants from similarly aged BALB/cj (isograft) or C57BL/6j (allograft) donor mice. Mice were sacrificed 3 days post-transplant. **A-F** illustrates representative images of hematoxylin and eosin and immunohistochemical staining. Compared to syngeneic isografts (**A-C**), allografts were observed to have marked intramyocardial and perivascular inflammatory cell invasion (**D and E**). Staining for the neutrophil marker MPO revealed significant extracellular neutrophil invasion within allografts (**F**) in comparison to isografts (**C**). This neutrophilic response was further quantified by direct neutrophil cell counts (**G**, $n = 4$), as well as direct measurement of allograft MPO expression by ELISA (**H**, $n = 5$). In addition to induction of PE expression (**Figure 1**), acute rejection within allografts caused a marked increase in total matrix metalloprotease (MMP) 9 expression (**I**, $n = 7$) and activity (**J**, $n = 6$). Together, these findings confirm a neutrophilic response and induction of MMP9 (a key protease associated with PGP generation) during acute allograft rejection. Results presented as mean \pm SE. Where indicated, n represents animals/group. Student's unpaired t-test was used for each comparison.

Supplemental Figure 2. Acute allograft transplant rejection induces local PE expression.


8-10 week-old, male, BALB/cj mice received heterotopic heart transplants from similarly aged BALB/cj (isograft) or C57BL/6j (allograft) donor mice. Mice were sacrificed 3 days post-transplant. **A-F** illustrates representative images of myocardial tissue sections immunohistochemically stained for PE or an isotype control. Compared to syngeneic isografts (**A and B**), allografts were observed to have significant immune cell infiltration that was associated with a marked increase in extracellular PE expression (**D and E**).

Supplemental Figure 3. PE inhibition attenuates allograft inflammatory response. Allograft mice were treated with Z-Pro-Prolinal (ZPP, 10mg/kg i.p.) or a 2% DMSO vehicle control. Compared to DMSO-treated mice, ZPP reduced key pro-inflammatory mediators (**Figure 2**). The Th2 promoting cytokine IL-4 showed a non-significant reduction with ZPP (**A**). Interestingly, the innate cytokine IL-1 β was also significantly reduced (**B**) and associated with a trend towards reduced IL-6 production (**C**). $n = 5$ animals/group. Results presented as mean \pm SE. Student's unpaired t-test was used for each comparison.

Supplemental Figure 2. Acute allograft transplant rejection induces local PE expression. 8-10 week-old, male, BALB/cj mice received heterotopic heart transplants from similarly aged BALB/cj (isograft) or C57BL/6j (allograft) donor mice. Mice were sacrificed 3 days post-transplant. **A-F** illustrates representative images of myocardial tissue sections immunohistochemically stained for PE or an isotype control. Compared to syngeneic isografts (**A and B**), allografts were observed to have significant immune cell infiltration that was associated with a marked increase in extracellular PE expression (**D and E**).

Supplemental Figure 3. PE inhibition attenuates allograft inflammatory response. Allograft mice were treated with Z-Pro-Prolinal (ZPP, 10mg/kg i.p.) or a 2% DMSO vehicle control. Compared to DMSO-treated mice, ZPP reduced key pro-inflammatory mediators (Figure 2). The Th2 promoting cytokine IL-4 showed a non-significant reduction with ZPP (A). Interestingly, the innate cytokine IL-1 β was also significantly reduced (B) and associated with a trend towards reduced IL-6 production (C). $n = 5$ animals/group. Results presented as mean \pm SE. Student's unpaired t-test was used for each comparison.