

**Supplemental Figure 1. Validation of multiplex transcriptomic results by qPCR confirms elevated Wnt/hedgehog pathway signaling after c-Met/β1 complex formation. Related to Figures 1A-B.** qPCR was performed to validate results obtained from multiplex transcriptomic analysis. A/C ligand increased expression of Fzd7 (P=0.03), Zic2 (P<0.001), VEGFA (P<0.001), Smad9 (P=0.03), and CDK2 (P=0.03). n=3/group. \*P<0.05, \*\*P<0.01, \*\*\*P<0.001.

**Supplemental Figure 2. Confirming that mammospheres express breast cancer stem cell genes. Related to Figure 1E.** Use of qPCR to verify that mammospheres derived from MDA-MB-231 breast cancer cells expressed breast cancer stem cell genes at higher levels than adherent MDA-MB-231 cells. Shown are individual results from the five stem cell genes. n=3/group. \*P<0.05; \*\*P<0.01; \*\*\*P<0.001.



**Supplemental Figure 3.** Assessment of c-Met/β1 complex formation in MCF7-iDimerize-c-Met-β1 cells. **Related to Figure 1G. (A)** Co-Immunoprecipitation showing gradual increase in complex formation upon addition of Ac ligand. Exogenous ITGB1 was pulled down using HA. (B) Endogenous Immunoprecipitation of ITGB1 shows gradual increase in complex formation.





Supplemental Figure 4. Induction of c-Met/ $\beta$ 1 complex formation in MCF-7 cells does not promote intravasation of breast cancer cells. Related to Figure 2B. Shown are immunostainings of CMRA-labeled luminal A MCF-7 breast cancer cells which were incubated in a cell culture intravasation assay for 48 hours in the absence or presence of A/C ligand. n=3/group. Scale bar, 50  $\mu$ m.



Control

Supplemental Figure 5. Increased c-Met/ $\beta$ 1 complexes detected in brain metastases derived form triplenegative versus luminal breast cancer. Related to Figure 2B. Shown are example PLA results for patient breast cancer brain metastases, revealing more c-Met/ $\beta$ 1 complex in brain metastases from triple-negative versus luminal breast cancer (P=0.02; n=7).



PLA comparison between breast cancer types



**Supplemental Figure 6. Mammosphere conditioned media promotes intravasation of breast cancer cells. Related to Figure 2D.** Shown are immunostainings of CMRA-labeled MDA-MB-231 breast cancer cells which were incubated in a cell culture intravasation assay for 48 hours in the absence or presence of mammosphere-conditioned media (MCM). Results are quantified in **Figure 2D**. n=3/group. Scale bar, 200 μm.



Supplemental Figure 7. Bevacizumab increases c-Met/ $\beta$ 1 complex formation in breast cancer cells. Related to Figs. 2E-F. Immunoprecipitation to pull down  $\beta$ 1 integrin revealed more c-Met/ $\beta$ 1 complex formation after treating MDA-MB-231 breast cancer cells with 2.5 mg/mL bevacizumab for 24 hours.

MDA-MB-231 treated with 2.5mg/mL Bevacizumab for 24h IP:B1 c-Met



Supplemental Figure 8. Bevacizumab increases intravasation of breast cancer cells. Related to Figure 2F. Shown are immunostainings of CMRA-labeled MDA-MB-231 breast cancer cells and CMFDA-labeled HUVEC cells with DAPI nuclear staining in blue at the 48 hour time point after intravasation assays. n=3/group. Results are quantified in Figure 2F. Scale bar, 20  $\mu$ m.



MDA ctrl

MDA + 2.5mg/mL Bevacizumab Supplemental Figure 9. c-Met/ $\beta$ 1 complex does not alter extravasation of breast cancer cells. Related to Fig. 2. Induction of Shown are immunostainings of CMRA-labeled MDA-MB-231 cells at the 48 hour time point after a cell culture extravasation assay.



Supplemental Figure 10. Proximity-ligation assays of patient samples reveal c-Met/ $\beta$ 1 complexes in different types of metastases. Related to Figure 3G. Shown are PLA immunostainings of breast, renal cell cancer (RCC), and prostate cancer metastases to brain versus bony structures. Results were quantified in Figure 3G.







Prostate



Supplemental Figure 11. Immunoprecipitation of patient samples reveals c-Met/ $\beta$ 1 complexes in different types of metastases. Related to Fig. 3G. Shown are immunoprecipitations of human tumors in which c-Met is precipitated and blotted for  $\beta$ 1 integrin. The ratio of  $\beta$ 1 integrin to c-Met quantified band intensity was higher in patient bony metastases (n=11) relative to brain metastases (n=12) from different patients (left two bars; P<0.01) and in paired bone metastases relative to brain metastases from the same patients (n=3; right panel; P<0.001). \*P<0.05; \*\*P<0.01; \*\*\*P<0.001.



Supplemental Figure 12.  $\beta$ 1 integrin knockdown via CRISPRi in breast cancer cells. Related to Fig. 4. MDA-MB-231 breast cancer cells were engineered to express KRAB CAS, followed by guide RNAs targeting  $\beta$ 1 integrin. Western blot revealed loss of  $\beta$ 1 integrin expression in the resulting cells.



Supplemental Figure 13. Immunoprecipitation reveals point mutations that lower binding of  $\beta$ 1 integrin to c-Met. Related to Fig. 4. Shown are results when immunoprecipitating for  $\beta$ 1 integrin and blotting for c-Met as well as confirmatory blot for  $\beta$ 1 integrin in MDA-MB-231 cells engineered for  $\beta$ 1 integrin loss via CRISPR followed by restoration of wild-type  $\beta$ 1 integrin (ctrl) or restoring  $\beta$ 1 integrin with point mutations D246A and D287A which we previously demonstrated to reduce binding to c-Met in glioblastoma cells. Results confirmed reduced binding to c-Met in MDA-MB-231 breast cancer cells.



MDA-MB-231 B1 integrin mutants IP:B1 **Supplemental Figure 14. Individual mesenchymal transcription factors do not change in expression after OS2966 treatment of MDA-MB-231 iDim cells. Related to Figure 5B.** Shown are qPCR results for six mesenchymal transcription factors in MDA-MB-231-iDimerize-c-Met-β1 cells after 24 hours of OS2966 treatment (n=3/group). \*P<0.05; \*\*P<0.01; \*\*\*P<0.001.



### Mesenchymal Gene Expression in MDA-MB-231 iDim

Supplemental Figure 15. Bone and lung-seeking breast cancer cells have elevated expression of mesenchymal genes compared to brain-seeking and parental breast cancer cells. Related to Figure 5D. Shown are relative expression of seven mesenchymal genes in MDA-MB-231 parental breast cancer cells and MDA-MB-231-BR brain-seeking, MDA-MB-231-BO bone-seeking, and MDA-MB-231-LM2 lung-seeking cells derived from the parental MDA-MB-231 cells. \*P<0.05; \*\*P<0.01; \*\*\*P<0.001.



**Supplemental Figure 16. Individual mesenchymal transcription factors do not change in expression after OS2966 treatment of MDA-MB-231 breast cancer cells. Related to Figure 5D.** Shown are qPCR results for six mesenchymal transcription factors in MDA-MB-231 lines after 48 hours of OS2966 treatment (n=3/group). \*P<0.05; \*\*P<0.01; \*\*\*P<0.001.



## Mesenchymal Gene Expression in MDA-MB-231

Supplemental Figure 17. Individual mesenchymal transcription factors do not change in expression after OS2966 treatment of MDA-MB-231-BR brain-seeking breast cancer cells. Related to Figure 5D. Shown are qPCR results for six mesenchymal transcription factors in MDA-MB-231 BR lines after 48 hours of OS2966 treatment (n=3/group). \*P<0.05; \*\*P<0.01; \*\*\*P<0.001.



# MDA-MB-231-BR Brain-Seeking

Supplemental Figure 18. Individual mesenchymal transcription factors do not change in expression after OS2966 treatment of lung-seeking MDA-MB-231 breast cancer cells. Related to Figure 5D. Shown are qPCR results for six mesenchymal transcription factors in MDA-MB-231 lung lines after 48 hours of OS2966 treatment (n=3/group). \*P<0.05; \*\*P<0.01; \*\*\*P<0.001.



MDA-MB-231-LM2 Lung-Seeking

|            | Log2 fold chas | td error (log L | ower confid U | pper confid Li | inear fold cł Lo | wer confid U | pper confid P | -value  | BY.p.value method | probe.ID            |
|------------|----------------|-----------------|---------------|----------------|------------------|--------------|---------------|---------|-------------------|---------------------|
| ZIC2-mRNA  | -0.38          | 0.0503          | -0.479        | -0.282         | 0.768            | 0.718        | 0.823         | 0.00164 | 1 loglinear       | NM_007129.2:1849    |
| CASP3-mRN/ | -0.13          | 0.0196          | -0.168        | -0.0913        | 0.914            | 0.89         | 0.939         | 0.00272 | 1 loglinear       | NM_032991.2:685     |
| VEGFA-mRN/ | -0.636         | 0.122           | -0.876        | -0.397         | 0.643            | 0.545        | 0.76          | 0.00649 | 1 lm.nb           | NM_001025366.1:1325 |
| CDK2-mRNA  | 0.1            | 0.0205          | 0.0598        | 0.14           | 1.07             | 1.04         | 1.1           | 0.0082  | 1 loglinear       | NM_001798.2:220     |
| WNT7B-mRN  | -0.744         | 0.14            | -1.02         | -0.471         | 0.597            | 0.494        | 0.722         | 0.0129  | 1 Wald            | NM_058238.1:1535    |
| FZD7-mRNA  | -0.422         | 0.103           | -0.624        | -0.221         | 0.746            | 0.649        | 0.858         | 0.0148  | 1 loglinear       | NM_003507.1:1890    |
| CDKN1A-mRI | -0.587         | 0.148           | -0.877        | -0.298         | 0.666            | 0.545        | 0.813         | 0.0165  | 1 lm.nb           | NM_000389.2:1975    |
| SPRY2-mRNA | -0.334         | 0.0883          | -0.507        | -0.16          | 0.794            | 0.704        | 0.895         | 0.0195  | 1 loglinear       | NM_005842.2:85      |
| EFNA5-mRN/ | -0.367         | 0.0993          | -0.562        | -0.172         | 0.775            | 0.677        | 0.887         | 0.0209  | 1 loglinear       | NM_001962.2:5035    |
| HMGA2-mRN  | -0.342         | 0.0999          | -0.538        | -0.147         | 0.789            | 0.689        | 0.903         | 0.0266  | 1 loglinear       | NM_003484.1:328     |
| RIN1-mRNA  | -0.218         | 0.0651          | -0.346        | -0.0905        | 0.86             | 0.787        | 0.939         | 0.0285  | 1 loglinear       | NM_004292.2:2572    |
| PTEN-mRNA  | -0.247         | 0.0776          | -0.399        | -0.0952        | 0.842            | 0.758        | 0.936         | 0.0333  | 1 loglinear       | NM_000314.3:1675    |
| SMAD9-mRN  | -0.44          | 0.124           | -0.683        | -0.196         | 0.737            | 0.623        | 0.873         | 0.0386  | 1 Wald            | NM_005905.2:1595    |
| LAMC2-mRN  | -0.496         | 0.166           | -0.822        | -0.171         | 0.709            | 0.566        | 0.889         | 0.0405  | 1 loglinear       | NM_005562.2:2819    |
| FGFR1-mRN/ | -0.389         | 0.133           | -0.649        | -0.129         | 0.764            | 0.638        | 0.915         | 0.0428  | 1 loglinear       | NM_015850.2:1335    |
| LTBP1-mRNA | -0.448         | 0.156           | -0.755        | -0.142         | 0.733            | 0.593        | 0.906         | 0.0456  | 1 lm.nb           | NM_000627.3:4124    |
| NBN-mRNA   | -0.144         | 0.0503          | -0.242        | -0.0453        | 0.905            | 0.845        | 0.969         | 0.0459  | 1 loglinear       | NM_001024688.1:1105 |

Supplementary Table S1. Genes related to canonical cancer pathways that are upregulated by c-Met/b1 compelx formation.

|                | Ununected i Dir | etteu meai |
|----------------|-----------------|------------|
| Cell Cycle - A | 1.293           | 0.949      |
| Chromatin N    | 1.14            | 0.988      |
| DNA Damage     | 0.901           | 0.432      |
| Driver Gene    | 1.072           | 0.862      |
| Hedgehog       | 2.742           | 2.742      |
| JAK-STAT       | 1.121           | 1.115      |
| MAPK           | 1.224           | 1.203      |
| Notch          | 1.151           | 1.151      |
| РІЗК           | 1.376           | 1.095      |
| Ras            | 1.245           | 1.225      |
| TGF-beta       | 1.218           | 1.139      |
| Transcriptior  | 1.153           | 0.966      |
| Wnt            | 1.474           | 1.432      |
|                |                 |            |

Undirected T Directed Treatment: differential expression in AC vs. baseline of Ctrl

# Supplemental Table S2. Pathways activated by c-Met/ $\beta$ 1 complex induction in breast cancer cells. Shown are the pathways activated when MDA-MB-231-iDimerize-c-Met- $\beta$ 1 cells were treated with AP21967 based on assessed in the NanoString nCounter platform

using a 770 gene multiplex related to 13 cancer-associated canonical pathways

|            | Log2 fold chast | td error (log Lo | ower confid U | Ipper confid L | inear fold cł L | ower confid L | Jpper confid | P-value | BY.p.value method | Gene.sets probe.ID                 |
|------------|-----------------|------------------|---------------|----------------|-----------------|---------------|--------------|---------|-------------------|------------------------------------|
| PGK1-mRNA  | 0.296           | 0.0663           | 0.166         | 0.426          | 1.23            | 1.12          | 1.34         | 0.0111  | 1 loglinear       | HIF1A Signali NM_000291.2:1030     |
| AKAP2-mRN  | -0.246          | 0.0566           | -0.357        | -0.135         | 0.843           | 0.781         | 0.911        | 0.0122  | 1 loglinear       | Epithelial to INM_001004065.4:4956 |
| FBN1-mRNA  | -0.38           | 0.0877           | -0.552        | -0.208         | 0.768           | 0.682         | 0.866        | 0.0123  | 1 loglinear       | Basement M NM_000138.3:6420        |
| ROCK1-mRN  | -0.141          | 0.0331           | -0.205        | -0.0758        | 0.907           | 0.867         | 0.949        | 0.0132  | 1 loglinear       | Cell Adhesior NM_005406.1:2660     |
| TGFBR2-mRM | 0.194           | 0.0483           | 0.0997        | 0.289          | 1.14            | 1.07          | 1.22         | 0.0158  | 1 loglinear       | Cell Prolifera NM_001024847.1:1760 |
| BMPR2-mRN  | -0.215          | 0.0563           | -0.325        | -0.105         | 0.862           | 0.798         | 0.93         | 0.0188  | 1 loglinear       | Cell Prolifera NM_001204.5:1875    |
| ARAP2-mRN  | -0.212          | 0.0557           | -0.321        | -0.103         | 0.863           | 0.8           | 0.931        | 0.019   | 1 loglinear       | Epithelial to NM_015230.2:4875     |
| NAP1L3-mRM | 0.855           | 0.19             | 0.482         | 1.23           | 1.81            | 1.4           | 2.34         | 0.0205  | 1 Wald            | Epithelial to NM_004538.4:1070     |
| VAMP8-mRN  | 0.421           | 0.121            | 0.183         | 0.659          | 1.34            | 1.14          | 1.58         | 0.0257  | 1 loglinear       | Epithelial to NM_003761.3:260      |
| AGR2-mRNA  | 1.46            | 0.424            | 0.625         | 2.29           | 2.74            | 1.54          | 4.88         | 0.0264  | 1 lm.nb           | Epithelial to NM_006408.3:580      |
| ENO2-mRNA  | 0.228           | 0.067            | 0.0962        | 0.359          | 1.17            | 1.07          | 1.28         | 0.0274  | 1 loglinear       | HIF1A Signali NM_001975.2:1855     |
| COL7A1-mRM | -0.516          | 0.134            | -0.779        | -0.253         | 0.7             | 0.583         | 0.839        | 0.0311  | 1 Wald            | Basement M NM_000094.2:390         |
| CDH11-mRN  | 0.386           | 0.119            | 0.153         | 0.62           | 1.31            | 1.11          | 1.54         | 0.0315  | 1 loglinear       | Cell Adhesior NM_001797.2:1835     |
| CXCR4-mRN/ | -0.214          | 0.0665           | -0.344        | -0.084         | 0.862           | 0.788         | 0.943        | 0.0321  | 1 loglinear       | Epithelial to NM_003467.2:1335     |
| EPAS1-mRNA | 0.474           | 0.158            | 0.165         | 0.783          | 1.39            | 1.12          | 1.72         | 0.0397  | 1 lm.nb           | Angiogenesis NM_001430.3:4246      |
| RPS6KB2-mR | 0.186           | 0.0624           | 0.0634        | 0.308          | 1.14            | 1.04          | 1.24         | 0.0409  | 1 loglinear       | Cellular Grov NM_003952.2:980      |
| MED1-mRNA  | -0.154          | 0.0544           | -0.26         | -0.0469        | 0.899           | 0.835         | 0.968        | 0.0477  | 1 loglinear       | Angiogenesis NM_004774.3:806       |

Supplemental Table S3. Genes whose expression is altered when β1 integrin cannot bind c-Met in breast cancer cells. Shown are the genes whose expression is altered when MDA-MB-231 breast cancer cells undergo CRISPRi knockdown of β1 integrin followed by lentiviral transduction of the β1D246A mutant vs. wild-type β1 integrin, as assessed in the NanoString nCounter platform using a 770 gene multiplex related to each step in the cancer progression process. **Supplementary Table S4. Primers used for qPCR.** Shown are primers used for qPCR to assess expression of genes in breast cancer cells.

| Gene            | Forward                  | Reverse                  |  |  |  |  |  |
|-----------------|--------------------------|--------------------------|--|--|--|--|--|
| Target          |                          |                          |  |  |  |  |  |
| STEM CELL PANEL |                          |                          |  |  |  |  |  |
| с-Мус           | 5'- CAT CGT AAA CAC CAA  | 5'- CCG CGT TCA TGT CGT  |  |  |  |  |  |
| -               | CGT GC-3'                | AAT AG- 3'               |  |  |  |  |  |
| Klf4            | 5' –CAC CAT GCC GAT GTT  | 5' –TTA GGC GAA GGT GGA  |  |  |  |  |  |
|                 | CAT CGT AAA - 3'         | GTT GT - 3'              |  |  |  |  |  |
| Oct4            | 5' – CTT GCC TTG CTG CTC | 5' – CAC ACA GGA TGG CTT |  |  |  |  |  |
|                 | TAC CT – 3'              | GAA GA – 3'              |  |  |  |  |  |
| Sox2            | 5' – CAG CCA GAT GCA     | 5-GCA CTG AGA TCT TCC    |  |  |  |  |  |
|                 | ATC AAT GC-3'            | TAT TGG TGA A-3'         |  |  |  |  |  |
| Nanog           | 5'- GAC AAG CCA CAA GCT  | 5'- GAG CCC ACA ATG GGA  |  |  |  |  |  |
|                 | GAA CA-3'                | GAGT A-3'                |  |  |  |  |  |
| NANOSTRIN       | G VALIDATION             |                          |  |  |  |  |  |
| Wnt7B           | 5'-AGC CAA CAT CAT CTG   | 5'-CTG GTA CTG GCA CTC   |  |  |  |  |  |
|                 | CAA CA-3'                | GTT GA-3'                |  |  |  |  |  |
| Fzd7            | 5'-CGC CTC TGT TCG TCT   | 5'-CCA TGA GCT TCT CCA   |  |  |  |  |  |
|                 | ACC TC-3'                | GCT TC-3'                |  |  |  |  |  |
| Zic2            | 5'-AAT CCC AAG AAG AGC   | 5'-ACA CTC CTC CCA GAA   |  |  |  |  |  |
|                 | TGC AA-3'                | GCA GA-3'                |  |  |  |  |  |
| VEGFA           | 5'-AGG CCA GCA CAT AGG   | 5'-TTT CTT GCG CTT TCG   |  |  |  |  |  |
|                 | AGA GA-3'                | TTT TT-3'                |  |  |  |  |  |
| CDKN1A          | 5'-GAC ACC ACT GGA GGG   | 5'-CCA CAT GGT CTT CCT   |  |  |  |  |  |
|                 | TGA CT-3'                | CTG CT-3'                |  |  |  |  |  |
| CDK2            | 5'-TTG TCA AGC TGC TGG   | 5'-TGA TGA GGG GAA GAG   |  |  |  |  |  |
|                 | ATG TC-3'                | GAA TG-3'                |  |  |  |  |  |
| CASP3           | 5'-TTT TTC AGA GGG GAT   | 5'-CGG CCT CCA CTG GTA   |  |  |  |  |  |
|                 | CGT TG-3'                | TTT TA-3'                |  |  |  |  |  |
| LAMC2           | 5'-GGC TGG TCT TAC TGG   | 5'-CAT CAG CCA GAA TCC   |  |  |  |  |  |
|                 | AGC AG-3'                | CAT CT-3'                |  |  |  |  |  |
| SMAD9           | 5'-CCA CAG AAG CCT CTG   | 5'-CCC AAC TCG GTT GTT   |  |  |  |  |  |
|                 | AGA CC-3'                | CAG TT-3'                |  |  |  |  |  |
| EFNA5           | 5'-ATG TGT GTG TTC AGC   | 5'-GGG CAG AAA ACA TCC   |  |  |  |  |  |
|                 | CAG GA-3'                | AGG TA-3'                |  |  |  |  |  |
| FGFR1           | 5'-CGA TGT GCA GAG CAT   | 5'-TGC TGG TTA CGC AAG   |  |  |  |  |  |
|                 | CAA CT-3'                | CAT AG-3'                |  |  |  |  |  |
| HMGA2           | 5'-CCT AAG AGA CCC AGG   | 5'-AAC TTG TTG TGG CCA   |  |  |  |  |  |
|                 | GGA AG-3'                | TTT CC-3'                |  |  |  |  |  |
| PTEN            | 5'-CGA CGG GAA GAC AAG   | 5'-AGG TTT CCT CTG GTC   |  |  |  |  |  |
|                 | TTC AT-3'                | CTG GT-3'                |  |  |  |  |  |
| RIN1            | 5'-CCC AGA CCT AGT CCA   | 5'-GGA GCT CCA GAA CTC   |  |  |  |  |  |
|                 | GCT CA-3'                | AAT GC-3'                |  |  |  |  |  |
| SPRY2           | 5'-ATC AGA GCC ATC CGA   | 5'-CAG ACC GTG GAG TCT   |  |  |  |  |  |
|                 | AAC AC-3'                | CTC GT-3'                |  |  |  |  |  |

| MESENCHYMAL TRANSCRIPTION FACTOR PANEL |                        |                            |  |  |  |  |
|----------------------------------------|------------------------|----------------------------|--|--|--|--|
| GSC                                    | 5'-TCT CAA CCA GCT GCA | 5'-GGC GGT TCT TAA ACC     |  |  |  |  |
|                                        | CTG TC                 | AGA CC-3'                  |  |  |  |  |
| FOXC1                                  | 5'-CAT CCG CCA CAA CCT | 5'-GTG CAG CCT GTC CTT     |  |  |  |  |
|                                        | CTC GCT-3'             | CTC CTC C-3'               |  |  |  |  |
| FOXC2                                  | 5'-GCC TAA GGA CCT GGT | 5'-TTG ACG AAG CAC TCG     |  |  |  |  |
|                                        | GAA GC-3'              | TTG AG-3'                  |  |  |  |  |
| ZEB1                                   | 5'-GCA CCT GAA GAG GAC | 5'-TGC ATC TGG TGT TCC     |  |  |  |  |
|                                        | CAG AG-5'              | ATT TT-3'                  |  |  |  |  |
| ZEB2                                   | 5' GAC AGA TCA GCA CCA | 5'-GCT GAT GTG CGA ACT     |  |  |  |  |
|                                        | AAT GC-3'              | GTA GG-3'                  |  |  |  |  |
| SLUG                                   | 5'-CAC TAT GCC GCG CTC | 5'-GGT CGT AGG GCT GCT     |  |  |  |  |
|                                        | TTC-3'                 | GGA A-3'                   |  |  |  |  |
| SNAIL                                  | 5'-TGG TTG CTT CAA GGA | 5'-GTT GCA GTG AGG GCA     |  |  |  |  |
|                                        | CAC AT-3'              | AGA A-3'                   |  |  |  |  |
| TWIST                                  | 5'-GGA GTC CGC AGT CTT | 5'-TCT GGA GGA CCT GGT     |  |  |  |  |
|                                        | ACG AG-3'              | AGA GG-3'                  |  |  |  |  |
| ANALYZING TISSUES FOR MICROMETASTASES  |                        |                            |  |  |  |  |
| Luciferase                             | 5'-GTG GTG TGC AGC GAG | 5'-CGC TCG TTG TAG ATG TCG |  |  |  |  |
|                                        | AAT AG-3'              | TTA G -3'                  |  |  |  |  |
| STANDARDS                              |                        |                            |  |  |  |  |
| GAPDH                                  | 5'-CAA TGA CCC CTT CAT | 5'-TTG ATT TTG GAG GGA     |  |  |  |  |
|                                        | TGA CC-3'              | TCT CG-3'                  |  |  |  |  |
| ACTB                                   | 5'-GAG CAC AGA GCC TCG | 3'-ACA TGC CGG AGC CGT     |  |  |  |  |
|                                        | CCT TT-3'              | TGT C-3'                   |  |  |  |  |

#### Supplemental Table 5: Antibodies used in this manuscript

| Antigen    | Species Source | <u>Vendor</u>   | Catalog/Clone Number | Dilution Used | Fluorochrome Conjugation | Application              |
|------------|----------------|-----------------|----------------------|---------------|--------------------------|--------------------------|
| ITGB1      | Mouse          | Abcam           | ab30394              | 1:250         | N/A                      | Proximity Ligation Assay |
| ITGB1      | Rabbit         | Abcam           | ab52971              | 1:40          | N/A                      | Immunoprecipitation      |
| ITGB1      | Rabbit         | Abcam           | ab52971              | 1:1000        | N/A                      | Western Blot             |
| C-met      | Rabbit         | Abcam           | ab51067              | 1:1000        | N/A                      | Western Blot             |
| C-met      | Rabbit         | Abcam           | ab51067              | 1:250         | N/A                      | Proximity Ligation Assay |
| Rabbit IgG | Donkey         | Sigma-Aldrich   | DUO92002             | 1:5           | Duolink PLUS Probe       | Proximity Ligation Assay |
| Mouse IgG  | Donkey         | Sigma-Aldrich   | DUO92004             | 1:5           | Duolink MINUS Probe      | Proximity Ligation Assay |
| HA tag     | Rabbit         | Cell Signalling | 3724                 | 1:40          | N/A                      | Immunoprecipitation      |
| HA tag     | Rabbit         | Cell Signalling | 3724                 | 1:1000        | N/A                      | Western Blot             |
| Rabbit IgG | Goat           | Cell Signalling | 7074                 | 1:8000        | N/A                      | Western Blot             |
| CD44       | Mouse          | Biolegend       | 338806               | 1:20          | APC                      | Flow Cytometry           |
| CD24       | Mouse          | Biolegend       | 311104               | 1:20          | FITC                     | Flow Cytometry           |