DISTINCTIVE LIPID SIGNATURES OF HUMAN BRONCHIAL EPITHELIAL CELLS ASSOCIATED WITH TREATMENT WITH CYSTIC FIBROSIS DRUGS, INCLUDING THE NEWLY APPROVED TRIPLE COMBINATION (TRIKAFTA ${ }^{\circledR}$)

Nara Liessi ${ }^{18}$, Emanuela Pesce ${ }^{2 \S}$, Clarissa Braccia ${ }^{3}$, Sine Mandrup Bertozzi ${ }^{1}$, Alessandro Giraudo ${ }^{3}$, Tiziano Bandiera ${ }^{3}$, Nicoletta Pedemonte ${ }^{2, \#}$ and Andrea Armirotti ${ }^{1, \#}$

1) Analytical Chemistry Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy; 2) U.O.C. Genetica Medica, Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy; 3) D3PharmaChemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy

Supplementary Figures and Tables

Figure S1: Comparable lipid recovery from CFBE cells (two independent preparations) using Matyash protocol (bottom) and extraction with isopropanol (top).

Scores Plot

Figure S2: PCA Scores Plot of the four batches

- 7 Experimental Groups (6 independent cell preparations)
- 6 Procedure blank samples added
- 25 blank runs intermixed within the samples
- Total of 97 samples, randomized then splitted into 4 batches (23-25-25-24 samples)
- 1 QC group per batch (pool of samples of that batch, including blanks)
- Clusterization of QC samples is indicated by the red circle

Scores Plot

Figure S3: PCA Score Plot of all the features observed from all the experimental groups

PC 1 Vs PC 2

PC 1 Vs PC 3

PC 2 Vs PC 3

Figure S4: PCA Score Plot of all the features observed from the five experimental groups. The principal components used for the plot are indicated.

Figure S5: Results of leave-one-out cross validation of the PLS-DA model. Positive Q2 values (0.6 and 0.8 for 1 and 2 principal component respectively) indicate that the model is not overfitted.

Figure S6: VIP Scores for PLS-DA analysis of CFBE cells lipidome treated with drugs or control DMSO. For each feature (retention time_m/z value), the relative abundance is reported for each group. The first 50 features are visualized here

Figure S7: PCA Score Plot built with the 48 annotated features deriving from PLS-DA VIP list.

Figure S8: Pathway analysis for the two clusters observed in the correlation analysis of the 48 annotated lipids in the experimental groups. Glycerophospholipid metabolism is mostly enriched in Cluster 1 (Panel A); sphingolipid metabolism in Cluster 2 (Panel B).

	Average FC Vs control (downregulation)		
Putative Lipid ID	VX-445/661/770	VX-770	VX-809/770
Cer(d18:1/16:0)	2.26	1.96	1.92
$\operatorname{PC}(32: 2)$	1.76	1.78	1.52
$\operatorname{PC}(36: 5)$	2.26	1.89	1.63
$\operatorname{PC}(38: 7)$	1.84	2.18	1.65
$\operatorname{PC}(42: 10)$	1.72	4.94	2.96
$\operatorname{PC}(\mathrm{P}-36: 4)$	1.89	2.08	1.95
$\operatorname{PC}(\mathrm{P}-36: 5)$	1.90	2.54	3.05
$\operatorname{PC}(\mathrm{P}-38: 6)$	2.26	2.79	2.35

Table S1: 8 lipid species downregulated in all VX-770 groups.

ID	Class	FC	P-value
Cer(d18:1/16:0)	Ceramide	2.2554	0.006237
Cer(d18:1/18:0)	Ceramide	2.195	0.020879
Cer(d18:1/20:0)	Ceramide	2.9017	0.020337
Cer(d18:1/22:0)	Ceramide	2.4049	0.027552
Cer(d18:1/22:1)	Ceramide	2.9989	0.010648
Cer(d18:1/23:0)	Ceramide	2.6228	0.014493
Cer(d18:1/24:0)	Ceramide	1.6589	0.043204
Cer(d18:1/24:1)	Ceramide	2.37	0.034133
HexCer(d18:1/16:0)	Ceramide	1.8749	0.005312
DG(32:0)	Diacylglycerol	2.0746	0.000426
DG(32:1)	Diacylglycerol	2.2496	0.049531
DG(34:1)	Diacylglycerol	1.6163	0.045091
DG(34:2)	Diacylglycerol	1.6895	0.003433
DG(38:4)	Diacylglycerol	2.1839	0.00296
DG(38:6)	Diacylglycerol	2.1133	0.028234
DG(O-34:1)	Diacylglycerol	2.0957	0.030244
LysoPC(16:0)	Lysophosphatidylcholine	1.8371	0.022976
LysoPC(18:0)	Lysophosphatidylcholine	1.6363	0.032615
LysoPC(18:1)	Lysophosphatidylcholine	2.3612	0.037291
PC(32:2)	Phosphatidylcholine	1.759	$3.77 \mathrm{E}-05$
PC(34:4)	Phosphatidylcholine	1.5838	0.008845
PC(36:4)	Phosphatidylcholine	1.5373	0.000494
PC(36:5)	Phosphatidylcholine	2.2619	0.000306
PC(36:6)	Phosphatidylcholine	1.8339	0.00171
PC(37:6)	Phosphatidylcholine	2.4602	0.026803
PC(38:7)	Phosphatidylcholine	1.8418	0.002183
PC(42:10)	Phosphatidylcholine	1.7173	0.048486
PC(P-30:0)	Phosphatidylcholine	1.9132	0.016953
PC(P-36:4)	Phosphatidylcholine	1.886	0.001822
PC(P-36:5)	Phosphatidylcholine	1.9008	0.023852
PC(P-38:6)	Phosphatidylcholine	2.259	0.017276
PE(36:5)	Phosphatidylethanolamine	4.3202	0.000972
PE(40:5)	Phosphatidylethanolamine	1.5512	0.007548
PE(P-38:6)	Phosphatidylethanolamine	2.2888	0.008116
PS(40:6)	Phosphatidylserine	1.5643	0.017872
SM(d18:1/14:0)	Sphingomyelin	0.03763	
	Sphingomyelin	0.031264	
(d18:1/15:0)			

Table S2: Significantly up and downregulated lipid species in triple combination group compared to control (Fold change >1.5, p-value <0.05 in 2 tails t-test)

$\operatorname{Cer}(\mathrm{d} 18: 1 / 16: 0)$

$\operatorname{Cer}(\mathrm{d} 18: 1 / 22: 0)$

LysoPC(16:0)

Cer(d18:1/18:0)

$\operatorname{Cer}(\mathrm{d} 18: 1 / 24: 0)$

LysoPC(18:1)

LysoPC(18:0)

Figure S9: Results of a t-test comparison between control and Trikafta ${ }^{\circledR}$ groups done using the untargeted dataset. All the changes reported in the plot have a p-value ranging from 0.019 to 0.035 .

SUPPLEMENTARY INFORMATION: SYNTHESIS OF VX-445

Compound VX-445 was synthesized following a modified procedure reported by Haseltine, E. L. et al. (WO 2019/018395 Al).

Solvents and reagents were obtained from commercial suppliers and were used without further purification. Automated column chromatography purifications were performed on Teledyne ISCO apparatus (CombiFlash ${ }^{\circledR}$ Rf) with pre-packed silica gel columns of different sizes (Redisep). NMR experiments were run on a Bruker Avance III 400 system (400.13 MHz for ${ }^{1} \mathrm{H}$, and 100.62 MHz for ${ }^{13} \mathrm{C}$), equipped with a BBI probe and Z-gradients and Bruker FT NMR Avance III 600 MHz spectrometer equipped with a 5 mm CryoProbeTM QCI ${ }^{1} \mathrm{H} /{ }^{19} \mathrm{~F}-{ }^{13} \mathrm{C} /{ }^{15} \mathrm{~N}-\mathrm{D}$ quadruple resonance, a shielded z-gradient coil and the automatic sample changer SampleJet ${ }^{\mathrm{TM}}$ NMR system (600 MHz for ${ }^{1} \mathrm{H}, 151 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$ and 565 MHz for ${ }^{19} \mathrm{~F}$). Chemical shifts for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra were recorded in parts per million using the residual non-deuterated solvent as the internal standard (for $\mathrm{CDCl}_{3}: 7.26 \mathrm{ppm},{ }^{1} \mathrm{H}$ and $77.16 \mathrm{ppm},{ }^{13} \mathrm{C}$; for DMSO- $\mathrm{d}_{6}: 2.50 \mathrm{ppm},{ }^{1} \mathrm{H} ; 39.52 \mathrm{ppm},{ }^{13} \mathrm{C}$; for $\mathrm{D}_{2} \mathrm{O}$: $\left.4.79 \mathrm{ppm},{ }^{1} \mathrm{H}\right)$. The specific rotation was measured by using an Autopol II automatic polarimeter (Rudolph Research Analytical). The analyses by UPLC/MS were run on a Waters ACQUITY UPLC/MS system consisting of a SQD (Single Quadrupole Detector) Mass Spectrometer equipped with an Electrospray Ionization interface and a Photodiode Array Detector. The PDA range was $210-400 \mathrm{~nm}$. Electrospray ionization in positive and negative mode was applied in the mass scan range $100-650 \mathrm{Da}$ or $150-750 \mathrm{Da}$. The analyses were performed on either an ACQUITY UPLC HSS T3 C_{18} column ($50 \times 2.1 \mathrm{mmID}$, particle size $1.8 \mu \mathrm{~m}$) with a VanGuard HSS T3 C_{18} pre-column $(5 \times 2.1 \mathrm{mmID}$, particle size $1.8 \mu \mathrm{~m})\left(\operatorname{LogD}<1\right.$: Polar method) or an ACQUITY UPLC BEH C_{18} column ($50 \times 2.1 \mathrm{mmID}$, particle size $1.7 \mu \mathrm{~m}$) with a VanGuard BEH C C_{18} pre-column ($5 \times 2.1 \mathrm{mmID}$, particle size $1.7 \mu \mathrm{~m}$) (LogD>1: Generic and Apolar methods). The mobile phase was 10 mM $\mathrm{NH}_{4} \mathrm{OAc}$ in $\mathrm{H}_{2} \mathrm{O}$ at pH 5 adjusted with $\mathrm{AcOH}(\mathrm{A})$ and $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ in $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}$ (95:5) at pH 5 (B) with $0.5 \mathrm{~mL} / \mathrm{min}$ as flow rate. Different linear gradients were applied depending on LogD of the compounds. Polar method ($\log D<1$): 0-0.2min: 0% B, $0.2-2.7 \mathrm{~min}: 0-50 \%$ B, $2.7-2.8 \mathrm{~min}$: $50-100 \%$ B, $2.8-3.0 \mathrm{~min}: 100 \% \mathrm{~B}$; Generic method (LogD>1): 0-0.2 min: 5% B, $0.2-2.7 \mathrm{~min}: 5-$ 95\%B, 2.7-2.8 min: 95-100\%B, 2.8-3.0 min: 100\%B; Apolar method (LogD>1): 0-0.2 min: 50\%B, $0.2-2.7 \mathrm{~min}: 50-100 \%$ B, $2.7-3.0 \mathrm{~min}: 100 \%$ B.

Compounds $(R)-6$ and $(S)-6$ were obtained by semi-preparative chiral HPLC on a Waters HPLC instrument consisting of a 1525 Binary HPLC Pump, 2998 Photodiode Array Detector and a

Waters Fraction Collector III. The separation was performed on a Daicel ChiralCel ODH column ($250 \times 10 \mathrm{mmID}$, particle size $5 \mu \mathrm{~m}$) using Heptane/EtOH ($95: 5 \mathrm{v} / \mathrm{v}$) as mobile phase at a flow rate of $5 \mathrm{~mL} / \mathrm{min}$. Determination of enantiomeric excess (ee) for compounds (R)-6 and (S)-6 was performed on a Waters Alliance HPLC instrument consisting of an e2695 Separation Module and a 2998 Photodiode Array Detector using a Daicel ChiralCel ODH column ($250 \times 4.6 \mathrm{mmID}$, particle size $5 \mu \mathrm{~m}$) and Heptane $/ \mathrm{EtOH}(95: 5 \mathrm{v} / \mathrm{v}$) as mobile phase with a flow rate of $1 \mathrm{~mL} / \mathrm{min}$. Determination of enantiomeric excess (ee) for VX-445 was performed on the HPLC system described above using a Daicel ChiralPak AD column ($250 \times 4.6 \mathrm{mmID}$, particle size $10 \mu \mathrm{~m}$) and Heptane/EtOH ($95: 5 \mathrm{v} / \mathrm{v}$) as mobile phase at a flow rate of $1 \mathrm{~mL} / \mathrm{min}$.

The absolute configuration of VX-445 was determined by comparison of $[\alpha]_{D}$ and chiral HPLC t_{R} with a standard compound purchased from Selleck Chemicals LLC.

Synthesis of intermediate 4.

Scheme 1. Reagents and conditions: (a) Boc anhydride, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt; (b) 3,3,3-Trifluoro-2,2-dimethyl-propan-1-ol, PPh_{3}, DIAD, toluene, $110^{\circ} \mathrm{C}$; (c) 4 M HCl in dioxane, $45^{\circ} \mathrm{C}$.
tert-Butyl 3-hydroxypyrazole-1-carboxylate (2). To a solution of 1 H -pyrazol-3-ol (1, 0.50 g , $5.95 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ were added di-tert-butyl dicarbonate ($1.43 \mathrm{~g}, 6.54$ mmol) and triethylamine ($0.91 \mathrm{~mL}, 6.54 \mathrm{mmol}$). The resulting mixture was stirred at rt for 24 h . The solution was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}), \mathrm{NH}_{4} \mathrm{Cl}$ saturated solution (20 mL) was added and the biphasic solution was partitioned. The water phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$, and EtOAc $(2 \times 20 \mathrm{~mL})$. The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Purification by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 99: 1 \mathrm{v} / \mathrm{v}\right)$ afforded $2(0.656 \mathrm{~g}, 60 \%)$ as offwhite solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 10.90(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~d}, J=$ $2.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.53(\mathrm{~s}, 9 \mathrm{H})$. UPLC-MS: $t_{\mathrm{R}}=1.47 \mathrm{~min}$ (Generic method). MS (ESI) m/z calcd for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{3}$ [M-1]: : 183.1, found: 183.1.
tert-Butyl 3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazole-1-carboxylate (3). To a solution of $2(0.292 \mathrm{~g}, 1.58 \mathrm{mmol})$, and 3,3,3-trifluoro-2,2-dimethyl-propan-1-ol ($0.225 \mathrm{~g}, 1.58 \mathrm{mmol}$) in anhydrous toluene $(9.0 \mathrm{~mL})$ was added triphenylphosphine $(0.457 \mathrm{~g}, 1.74 \mathrm{mmol})$ followed by diisopropyl azodicarboxylate ($0.343 \mathrm{~mL}, 1.74 \mathrm{mmol}$). The resulting mixture was stirred at $110^{\circ} \mathrm{C}$ for 24 h . The solution was evaporated, heptane $(10 \mathrm{~mL})$ was added followed by heptane/toluene 4:1 (10 mL). The insoluble was removed by filtration, washed with heptane/toluene $4: 1 \mathrm{v} / \mathrm{v}(4 \times$ 10 mL) and the combined filtrate was evaporated. Purification of the residue by flash chromatography (cyclohexane/EtOAc, $95: 5 \mathrm{v} / \mathrm{v}$) afforded $\mathbf{3}\left(0.305 \mathrm{~g}, 62 \%\right.$) as white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~s}, 2 \mathrm{H}), 1.62(\mathrm{~s}, 9 \mathrm{H})$, $1.23(\mathrm{~s}, 6 \mathrm{H})$. UPLC-MS: $t_{\mathrm{R}}=1.57 \mathrm{~min}$ (Apolar method). $\mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}$ $[\mathrm{M}+1]^{+}: 309.1$, found: 309.1.

3-(3,3,3-Trifluoro-2,2-dimethyl-propoxy)-1H-pyrazole (4). Compound $\mathbf{3}$ ($0.61 \mathrm{~g}, 1.97 \mathrm{mmol}$) was dissolved in 4 M HCl in dioxane $(5.0 \mathrm{~mL})$ and stirred at $45^{\circ} \mathrm{C}$. After 2.5 h the solution was evaporated and the residue was taken in $\operatorname{EtOAc}(50 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$. The layers were partitioned and the water phase was extracted with EtOAc $(2 \times 50 \mathrm{~mL})$. The combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to give $4(0.41 \mathrm{~g}, 99 \%)$ as white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~s}$, $2 H$), $1.26(\mathrm{~s}, 6 \mathrm{H})$. UPLC-MS: $t_{\mathrm{R}}=0.60 \mathrm{~min}$ (Apolar method). MS (ESI) m / z calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}$ $[\mathrm{M}+1]^{+}: 209.1$, found: 209.0.

Synthesis of intermediate (\boldsymbol{S})-7.

Scheme 2. Reagents and conditions: (a) Fmoc chloride, $\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{H}_{2} \mathrm{O}$, dioxane, rt; (b) chiral semi-preparative HPLC; (c) 2 M NaOH , dioxane, rt.

9H-Fluoren-9-ylmethyl 2,2,4-trimethylpyrrolidine-1-carboxylate (6). A solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ $(0.276 \mathrm{~g}, 2.61 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(12 \mathrm{~mL})$ was added to a mixture of 2,2,4-trimethylpyrrolidine hydrochloride ($5,0.355 \mathrm{~g}, 2.37 \mathrm{mmol}$) in dioxane $(12 \mathrm{~mL})$. The resulting mixture was cooled at 0 ${ }^{\circ} \mathrm{C}$, 9-fluorenylmethoxycarbonyl (Fmoc) chloride ($0.675 \mathrm{~g}, 2.61 \mathrm{mmol}$) was added and stirring was continued at rt for 24 h . The residue was taken in $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ and $0.5 \mathrm{M} \mathrm{HCl}(50 \mathrm{~mL})$. The phase were partitioned and the water phase extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 50 \mathrm{~mL})$. The combined organic phase was washed with $0,5 \mathrm{M} \mathrm{HCl}(2 \times 25 \mathrm{~mL})$, brine (25 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. Purification by flash chromatography (cyclohexane/EtOAc, 9:1 v/v) afforded $6(0.62 \mathrm{~g}, 77 \%)$ as colorless sticky oil, as a $2: 1$ mixture of two rotamers. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81-7.71$ $(\mathrm{m}, 2 \mathrm{H}), 7.65-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.27(\mathrm{~m}, 4 \mathrm{H}), 4.66(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}$, major rotamer), 4.33 (d, $J=4.6 \mathrm{~Hz}, 1 \mathrm{H}$, minor rotamer), $4.39-4.28(\mathrm{~m}, 1 \mathrm{H}), 4.28-4.19(\mathrm{~m}, 1 \mathrm{H}), 3.77-3.68(\mathrm{~m}, 1 \mathrm{H}$, major rotamer), $3.68-3.59(\mathrm{~m}, 1 \mathrm{H}$, minor rotamer), $2.94(\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}$, major rotamer), 2.82 ($\mathrm{t}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}$, minor rotamer), $2.28(\mathrm{ddq}, J=17.9,12.2,6.5 \mathrm{~Hz}, 1 \mathrm{H}$, major rotamer), 2.11 (ddt, $J=17.9,12.1,6.5 \mathrm{~Hz}, 1 \mathrm{H}$, minor rotamer), 1.91 (dd, $J=12.3,6.2 \mathrm{~Hz}, 1 \mathrm{H}$, major rotamer), $1.73(\mathrm{dd}, J=12.4,6.1 \mathrm{~Hz}, 1 \mathrm{H}$ minor rotamer), $1.49(\mathrm{~s}, 3 \mathrm{H}$, major rotamer), $1.47-1.42(\mathrm{~m}, 1 \mathrm{H}$, major rotamer), $1.35(\mathrm{~s}, 3 \mathrm{H}$, major rotamer), $1.33-1.28(\mathrm{~m}, 1 \mathrm{H}$, minor rotamer), $1.06(\mathrm{~d}, J=6.5$ $\mathrm{Hz}, 3 \mathrm{H}$, major rotamer), $0.94(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}$, minor rotamer), 0.84 ($\mathrm{s}, 3 \mathrm{H}$, minor rotamer), 0.79 ($\mathrm{s}, 3 \mathrm{H}$, minor rotamer). UPLC-MS: $t_{\mathrm{R}}=2.19 \mathrm{~min}$ (Apolar method). MS (ESI) m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{NO}_{2}[\mathrm{M}+1]^{+}: 336.2$, found: 336.3.

9H-Fluoren-9-ylmethyl (4R)-2,2,4-trimethylpyrrolidine-1-carboxylate (\boldsymbol{R})-6) and 9H-fluoren-9-ylmethyl (4S)-2,2,4-trimethylpyrrolidine-1-carboxylate ((S)-6). Compound 6 (0.32 $\mathrm{g}, 0.96 \mathrm{mmol}$) was purified under the chiral semi-preparative HPLC conditions described above (please refer to synthetic materials and methods section). The fractions containing the pure enantiomers were evaporated in vacuo affording $(R)-6$ (first eluted) and (S)-6 (second eluted) as white solids. $(R)-6(0.133 \mathrm{~g}, 41 \%)$: > 99.5\% ee. $t_{\mathrm{R}} 27.62 \mathrm{~min} .(S)-6(0.115 \mathrm{~g}, 36 \%): ~>99.5 \%$ ee. t_{R} $39.05 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR, and UPLC-MS analyses were identical to those of the racemic mixture.
(4R)-2,2,4-Trimethylpyrrolidine hydrochloride ((R)-7). Compound (R)-6 ($0.13 \mathrm{~g}, 0.387 \mathrm{mmol}$) was dissolved in dioxane $(4.2 \mathrm{~mL})$ and $2 \mathrm{M} \mathrm{NaOH}(0.58 \mathrm{~mL}, 1.16 \mathrm{mmol})$ was added. The resulting mixture was stirred at rt for $21 \mathrm{~h} .1 \mathrm{M} \mathrm{HCl}(25 \mathrm{~mL})$ was added to the reaction mixture and the water phase was washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 25 \mathrm{~mL})$. The organic phases were discarded and the water phase was evaporated affording $(R)-7(0.12 \mathrm{~g}$, quant.) as white solid. The product containing inorganic salts was used in the next step without any further purification. ${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta 3.50(\mathrm{dd}, J=11.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{dd}, J=11.8,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.68-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.14$ (dd, $J=13.2,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{dd}, J=13.2,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~d}, J=$ $6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
(4S)-2,2,4-Trimethylpyrrolidine hydrochloride ((S)-7). Compound (S)-6 (0.11 g, 0.331 mmol) was dissolved in dioxane (3.6 mL) and $2 \mathrm{M} \mathrm{NaOH}(0.50 \mathrm{~mL}, 0.993 \mathrm{mmol})$ was added. The resulting mixture was stirred at rt for $17 \mathrm{~h} .1 \mathrm{M} \mathrm{HCl}(25 \mathrm{~mL})$ was added to the reaction mixture and the water phase was washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 25 \mathrm{~mL})$. The organic phases were discarded and the water phase was evaporated affording (S)-7 (0.11 g , quant.) as white solid. The product containing inorganic salts was used in the next step without any further purification. ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 3.50(\mathrm{dd}, J=11.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{dd}, J=11.8,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.68-2.52(\mathrm{~m}, 1 \mathrm{H})$, $2.14(\mathrm{dd}, J=13.2,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{dd}, J=13.2,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.11$ $(\mathrm{d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.

Synthesis of VX-445.

Scheme 3. Reagents and conditions: (a) Boc anhydride, DMAP, THF, rt; (b) 4, $\mathrm{K}_{2} \mathrm{CO}_{3}$, DABCO, DMF, rt; (c) 6 M HCl , dioxane, $85^{\circ} \mathrm{C}$; (d) 1,3-Dimethylpyrazole-4-sulfonamide, CDI, DBU, THF, rt; (e) (S)-7, K $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{DMSO}, 130{ }^{\circ} \mathrm{C}$.
tert-Butyl 2,6-dichloropyridine-3-carboxylate (9). To a solution of 2,6-dichloropyridine-3carboxylic acid ($8,1.0 \mathrm{~g}, 5.21 \mathrm{mmol}$) in tetrahydrofuran (20 mL) were added di-tert-butyl dicarbonate ($1.70 \mathrm{~g}, 7.81 \mathrm{mmol}$) and 4-(dimethylamino) pyridine ($0.32 \mathrm{~g}, 2.60 \mathrm{mmol}$). The mixture was stirred at rt for $24 \mathrm{~h} .1 \mathrm{M} \mathrm{HCl}(40 \mathrm{~mL})$ was added and the mixture stirred vigorously for 10 min. The product was extracted EtOAc ($3 \times 20 \mathrm{~mL}$), washed with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$, brine (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Purification by flash chromatography (cyclohexane/EtOAc, $98: 2 \mathrm{v} / \mathrm{v})$ afforded $9(1.12 \mathrm{~g}, 86 \%)$ as colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.04(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{~s}, 9 \mathrm{H})$. UPLC-MS: $t_{\mathrm{R}}=2.49 \mathrm{~min}$ (Generic method). MS (ESI) m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{NO}_{2}[\mathrm{M}+1]^{+}: 248.0$, found: 247.9 .
tert-Butyl 2-chloro-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-1-yl]pyridine-3carboxylate (10). To a solution of $4(0.20 \mathrm{~g}, 0.97 \mathrm{mmol})$ and $9(0.24 \mathrm{~g}, 0.97 \mathrm{mmol})$ in $N, N-$ dimethylformamide (4.0 mL) were added $\mathrm{K}_{2} \mathrm{CO}_{3}(0.17 \mathrm{~g}$, 1.26 mmol$)$ and 1,4diazabicyclo[2.2.2]octane ($0.016 \mathrm{~g}, 0.145 \mathrm{mmol})$. The resulting mixture was stirred at rt for 72 h . The solution was poured into $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and extracted in EtOAc $(5 \times 50 \mathrm{~mL})$. The combined organic phase was washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 15 \mathrm{~mL})$, brine $(20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. Heptane (3 mL) was added to the crude product and evaporated four times. Purification by flash chromatography (cyclohexane/EtOAc, $98: 2 \mathrm{v} / \mathrm{v}$) afforded 10 ($0.34 \mathrm{~g}, 84 \%$) as white solid.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 8.43(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~s}, 2 \mathrm{H}), 1.56(\mathrm{~s}, 9 \mathrm{H}), 1.24(\mathrm{~s}, 6 \mathrm{H})$. UPLC-MS: $t_{\mathrm{R}}=$ 2.55 min (Apolar method). MS (ESI) m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{ClF}_{3} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+1]^{+}: 420.1$, found: 420.0.

2-Chloro-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-1-yl]pyridine-3-carboxylic acid (11). $6 \mathrm{M} \mathrm{HCl}(2.7 \mathrm{~mL})$ was added to a solution of $\mathbf{1 0}(0.68 \mathrm{~g}, 1.63 \mathrm{mmol})$ in 1,4-dioxane (15 $\mathrm{mL})$ and stirred at $85^{\circ} \mathrm{C}$ for 13 h . The solution was poured into $\mathrm{H}_{2} \mathrm{O}(75 \mathrm{~mL})$ and a precipitate occurred. The product was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic phase was washed with brine (25 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to give $\mathbf{1 1}(0.58 \mathrm{~g}, 97 \%)$ as white solid. The product was used in the next step without any further purification. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSO- d_{6}) $\delta 8.44(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.39(\mathrm{dd}, J=8.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.25$ $(\mathrm{d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~s}, 2 \mathrm{H}), 1.24(\mathrm{~s}, 6 \mathrm{H})$. UPLC-MS: $t_{\mathrm{R}}=1,73 \mathrm{~min}$ (Generic method). MS (ESI) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{ClF}_{3} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+1]^{+}: 364.1$, found: 363.9.

2-Chloro- N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-(3,3,3-trifluoro-2,2-dimethyl-

propoxy)pyrazol-1-yl]pyridine-3-carboxamide (12). A flame-dried flask was charged with a solution of $11(0.57 \mathrm{~g}, 1.58 \mathrm{mmol})$ and $1,1^{\prime}$-carbonyldiimidazole $(0.31 \mathrm{~g}, 1.90 \mathrm{mmol})$ in anhydrous tetrahydrofuran (7.0 mL) under nitrogen and stirred for $1 \mathrm{~h} .1,3$-dimethylpyrazole-4-sulfonamide $(0.33 \mathrm{~g}, 1.90 \mathrm{mmol})$ and 1,8-diazabicyclo[5.4.0]undec-7-ene ($0.28 \mathrm{~mL}, 1.90 \mathrm{mmol}$) were added and the reaction mixture was stirred overnight at rt . The volatiles were evaporated. The residue was taken in EtOAc (50 mL), washed with $0,5 \mathrm{M} \mathrm{HCl}(50 \mathrm{~mL})$ and the water phase was further extracted with EtOAc $(2 \times 50 \mathrm{~mL})$. The combined organic phase was washed with brine (30 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. Purification by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ and then $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $/ \mathrm{MeOH} 97: 3 \mathrm{v} / \mathrm{v}$) afforded $12(0.73 \mathrm{~g}, 88 \%)$ as white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) δ $12.71(\mathrm{~s}, 1 \mathrm{H}), 8.42(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{~s}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.24(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~s}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 6 \mathrm{H})$. UPLC-MS: t_{R} $=1,81 \mathrm{~min}$ (Generic method). $\mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{ClF}_{3} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+1]^{+}: 521.1$, found: 520.9.
N-(1,3-Dimethylpyrazol-4-yl)sulfonyl-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-1-yl]-2-[(4S)-2,2,4-trimethylpyrrolidin-1-yl]pyridine-3-carboxamide (VX-445). Compound 12 $(0.057 \mathrm{~g}, 0.11 \mathrm{mmol}),(S)-7(0.33 \mathrm{mmol})$, and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.091 \mathrm{~g}, 0.66 \mathrm{mmol})$ were combined in anhydrous DMSO (0.4 mL) under nitrogen and stirred at $130^{\circ} \mathrm{C}$ for 20 h . The reaction mixture
was poured into $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$, the pH was adjusted to $3-4$ by adding 2 M HCl and extraction with $\mathrm{Et}_{2} \mathrm{O}(3 \times 25 \mathrm{~mL})$ was performed. The combined organic phase was washed with brine $(2 \times 20$ mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. Purification by flash chromatography (cyclohexane/EtOAc, 7:3 v/v) afforded an impure product, which was further purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 99: 1 \mathrm{v} / \mathrm{v}\right)$ to give pure VX-445 $(0.030 \mathrm{~g}, 46 \%)$ as white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 12.33(\mathrm{~s}, 1 \mathrm{H}), 8.34(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.73$ (d, $J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{t}$, $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.25-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.87(\mathrm{dd}, J=12.0,5.6$ $\mathrm{Hz}, 1 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{t}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.23(\mathrm{~s}, 6 \mathrm{H}), 0.81(\mathrm{~d}, J=6.3 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 165.2,164.0,152.3,148.9,146.7,141.5,136.4,128.6(\mathrm{q}$, $J=285.4 \mathrm{~Hz}), 128.4,117.3,111.2,96.2,95.3,70.9,64.0,57.7,50.8,40.8(\mathrm{q}, J=24.3 \mathrm{~Hz}), 38.7$, 29.7, 26.4, 25.0, 18.1, 16.4, 12.0. UPLC-MS: $t_{\mathrm{R}}=2,51 \mathrm{~min}$ (Generic method). MS (ESI) m/z calcd for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{~F}_{3} \mathrm{~N}_{7} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+1]^{+}: 598.2$, found: 598.4. $[\alpha]_{\mathrm{D}}{ }^{27}-45.682$ (c $0.199, \mathrm{CHCl}_{3}$). Chiral HPLC: $>99,4 \%$ ee, $t_{\mathrm{R}}=24.25 \mathrm{~min}$.

