DISTINCTIVE LIPID SIGNATURES OF HUMAN BRONCHIAL EPITHELIAL CELLS ASSOCIATED WITH TREATMENT WITH CYSTIC FIBROSIS DRUGS, INCLUDING THE NEWLY APPROVED TRIPLE COMBINATION (TRIKAFTA®)

Nara Liessi^{1§}, Emanuela Pesce^{2§}, Clarissa Braccia³, Sine Mandrup Bertozzi¹, Alessandro Giraudo³, Tiziano Bandiera³, Nicoletta Pedemonte^{2,#} and Andrea Armirotti^{1,#}

1) Analytical Chemistry Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy; 2) U.O.C. Genetica Medica, Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy; 3) D3PharmaChemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy

Supplementary Figures and Tables

Figure S1: Comparable lipid recovery from CFBE cells (two independent preparations) using Matyash protocol (bottom) and extraction with isopropanol (top).

Figure S2: PCA Scores Plot of the four batches

- 7 Experimental Groups (6 independent cell preparations)
- 6 Procedure blank samples added
- 25 blank runs intermixed within the samples
- Total of 97 samples, randomized then splitted into 4 batches (23-25-25-24 samples)
- 1 QC group per batch (pool of samples of that batch, including blanks)
- Clusterization of QC samples is indicated by the red circle

Scores Plot

Figure S3: PCA Score Plot of all the features observed from all the experimental groups

PC 1 Vs PC 2

PC 1 Vs PC 3

PC 2 Vs PC 3

Figure S4: PCA Score Plot of all the features observed from the five experimental groups. The principal components used for the plot are indicated.

Figure S5: Results of leave-one-out cross validation of the PLS-DA model. Positive Q2 values (0.6 and 0.8 for 1 and 2 principal component respectively) indicate that the model is not overfitted.

Figure S6: VIP Scores for PLS-DA analysis of CFBE cells lipidome treated with drugs or control DMSO. For each feature (retention time_m/z value), the relative abundance is reported for each group. The first 50 features are visualized here

Figure S7: PCA Score Plot built with the 48 annotated features deriving from PLS-DA VIP list.

Figure S8: Pathway analysis for the two clusters observed in the correlation analysis of the 48 annotated lipids in the experimental groups. Glycerophospholipid metabolism is mostly enriched in Cluster 1 (Panel A); sphingolipid metabolism in Cluster 2 (Panel B).

	Average FC Vs control (downregulation)						
Putative Lipid ID	VX-445/661/770	VX-770	VX-809/770				
Cer(d18:1/16:0)	2.26	1.96	1.92				
PC(32:2)	1.76	1.78	1.52				
PC(36:5)	2.26	1.89	1.63				
PC(38:7)	1.84	2.18	1.65				
PC(42:10)	1.72	4.94	2.96				
PC(P-36:4)	1.89	2.08	1.95				
PC(P-36:5)	1.90	2.54	3.05				
PC(P-38:6)	2.26	2.79	2.35				

Table S1: 8 lipid species downregulated in all VX-770 groups.

				ID	Class	FC	P-value			
ID	Class	FC	P-value	Cer(d18:0/24:0)	Ceramide	0.50994	0.031223			
Cer(d18:1/16:0)	Ceramide	2.2554	0.006237	LacCer(d18:1/14:0)	Ceramide	0.59577	0.003834			
Cer(d18:1/18:0)	Ceramide	2.195	0.020879	Cer(m18:0/18:0)	Deoxyceramide	0.57443	0.004351			
Cer(d18:1/20:0)	Ceramide	2.9017	0.020337	Cer(m18:0/24:0)	Deoxyceramide	0.52914	0.035616			
Cer(d18:1/22:0)	Ceramide	2.4049	0.027552	DG(38:2)	Diacylglycerol	0.63285	0.006117			
Cer(d18:1/22:1)	Ceramide	2.9989	0.010648	DG(42:7)	Diacylglycerol	0.63904	5.00E-05			
Cer(d18:1/23:0)	Ceramide	2.6228	0.014493	DG(44:7)	Diacylglycerol	0.63033	0.006567			
Cer(d18:1/24:0)	Ceramide	1.6589	0.043204	PC(42:1)	Phosphatidylcholine	0.53134	0.014274			
Cer(d18:1/24:1)	Ceramide	2.37	0.034133	PC(44:1)	Phosphatidylcholine	0.37005	0.033365			
HexCer(d18:1/16:0)	Ceramide	1.8749	0.005312	PC(P-32:0)	Phosphatidylcholine	0.63285	3.38E-05			
DG(32:0)	Diacylglycerol	2.0746	0.000426	PC(P-32:1)	Phosphatidylcholine	0.54456	0.04927			
DG(32:1)	Diacylglycerol	2.2496	0.049531	PC(P-40:3)	Phosphatidylcholine	0.44135	0.003321			
DG(34:1)	Diacylglycerol	1.6163	0.045091	PC(P-40:4)	Phosphatidylcholine	0.49386	9.59E-05			
DG(34:2)	Diacylglycerol	1.6895	0.003433	PC(P-40:5)	Phosphatidylcholine	0.63025	3.07E-05			
DG(38:4)	Diacylglycerol	2.1839	0.00296	PC(P-40:6)	Phosphatidylcholine	0.5771	0.003113			
DG(38:6)	Diacylglycerol	2.1133	0.028234	PE(36:1)	Phosphatidylethanolamine	0.61834	0.023646			
DG(O-34:1)	Diacylglycerol	2.0957	0.030244	PE(P-33:0)	Phosphatidylethanolamine	0.61089	2.56E-05			
LysoPC(16:0)	Lysophosphatidylcholine	1.8371	0.022976	PE(P-35:1)	Phosphatidylethanolamine	0.6073	0.000751			
LysoPC(18:0)	Lysophosphatidylcholine	1.6363	0.032615	SM(d18:0/22:0)	Sphingomyelin	0.53482	0.004552			
LysoPC(18:1)	Lysophosphatidylcholine	2.3612	0.037291	SM(d18:0/24:0)	Sphingomyelin	0.41493	0.002416			
PC(32:2)	Phosphatidylcholine	1.759	3.77E-05	SM(d18:1/24:0)	Sphingomyelin	0.53277	0.002383			
PC(34:4)	Phosphatidylcholine	1.5838	0.008845	TG(56:4)	Triacylglycerol	0.57384	0.038547			
PC(36:4)	Phosphatidylcholine	1.5373	0.000494							
PC(36:5)	Phosphatidylcholine	2.2619	0.000306	Ur	pregulated with triple of	combination				
PC(36:6)	Phosphatidylcholine	1.8339	0.00171							
PC(37:6)	Phosphatidylcholine	2.4602	0.026803							
PC(38:7)	Phosphatidylcholine	1.8418	0.002183							
PC(42:10)	Phosphatidylcholine	1.7173	0.048486							
PC(P-30:0)	Phosphatidylcholine	1.9132	0.016953							
PC(P-36:4)	Phosphatidylcholine	1.886	0.001822							
PC(P-36:5)	Phosphatidylcholine	1.9008	0.023852							
PC(P-38:6)	Phosphatidylcholine	2.259	0.017276	Table S2: Significantly up and downregulated lipid species in						
PE(36:5)	Phosphatidylethanolamine	4.3202	0.000972	triple combination group compared to control (Fold change >1.5,						
PE(40:5)	Phosphatidylethanolamine	1.5512	0.007548							
PE(P-38:6)	Phosphatidylethanolamine	2.2888	0.008116	p-value <0.	.05 in 2 tails t-test)					
PS(40:6)	Phosphatidylserine	1.5643	0.017872	·	-					
SM(d18:1/14:0)	Sphingomyelin	1.8875	0.03763							
SM(d18:1/15:0)	Sphingomyelin	2.7142	0.031264							

Downregulated with triple combination

Figure S9: Results of a t-test comparison between control and Trikafta[®] groups done using the untargeted dataset. All the changes reported in the plot have a p-value ranging from 0.019 to 0.035.

SUPPLEMENTARY INFORMATION: SYNTHESIS OF VX-445

Compound **VX-445** was synthesized following a modified procedure reported by Haseltine, E. L. *et al.* (WO 2019/018395 Al).

Solvents and reagents were obtained from commercial suppliers and were used without further purification. Automated column chromatography purifications were performed on Teledyne ISCO apparatus (CombiFlash® Rf) with pre-packed silica gel columns of different sizes (Redisep). NMR experiments were run on a Bruker Avance III 400 system (400.13 MHz for ¹H, and 100.62 MHz for ¹³C), equipped with a BBI probe and Z-gradients and Bruker FT NMR Avance III 600 MHz spectrometer equipped with a 5 mm CryoProbeTM QCI ¹H/¹⁹F-¹³C/¹⁵N-D quadruple resonance, a shielded z-gradient coil and the automatic sample changer SampleJetTM NMR system (600 MHz for ¹H, 151 MHz for ¹³C and 565 MHz for ¹⁹F). Chemical shifts for ¹H and ¹³C spectra were recorded in parts per million using the residual non-deuterated solvent as the internal standard (for CDCl₃: 7.26 ppm, ¹H and 77.16 ppm, ¹³C; for DMSO-d₆: 2.50 ppm, ¹H; 39.52 ppm, ¹³C; for D₂O: 4.79 ppm, ¹H). The specific rotation was measured by using an Autopol II automatic polarimeter (Rudolph Research Analytical). The analyses by UPLC/MS were run on a Waters ACQUITY UPLC/MS system consisting of a SQD (Single Quadrupole Detector) Mass Spectrometer equipped with an Electrospray Ionization interface and a Photodiode Array Detector. The PDA range was 210-400nm. Electrospray ionization in positive and negative mode was applied in the mass scan range 100-650Da or 150-750Da. The analyses were performed on either an ACQUITY UPLC HSS T3 C_{18} column (50x2.1mmID, particle size 1.8µm) with a VanGuard HSS T3 C_{18} pre-column (5x2.1mmID, particle size 1.8µm) (LogD<1: Polar method) or an ACQUITY UPLC BEH C₁₈ column (50x2.1mmID, particle size 1.7µm) with a VanGuard BEH C₁₈ pre-column (5x2.1mmID, particle size 1.7µm) (LogD>1: Generic and Apolar methods). The mobile phase was 10mM NH₄OAc in H₂O at pH 5 adjusted with AcOH (A) and 10mM NH₄OAc in MeCN-H₂O (95:5) at pH 5 (B) with 0.5mL/min as flow rate. Different linear gradients were applied depending on LogD of the compounds. *Polar method* (*LogD*<1): 0-0.2min: 0%B, 0.2-2.7min: 0-50%B, 2.7-2.8min: 50-100%B, 2.8-3.0min: 100%B; Generic method (LogD>1): 0-0.2 min: 5%B, 0.2-2.7 min: 5-95%B, 2.7-2.8 min: 95-100%B, 2.8-3.0 min: 100%B; Apolar method (LogD>1): 0-0.2 min: 50%B, 0.2-2.7 min: 50-100%B, 2.7-3.0 min: 100%B.

Compounds (R)-6 and (S)-6 were obtained by semi-preparative chiral HPLC on a Waters HPLC instrument consisting of a 1525 Binary HPLC Pump, 2998 Photodiode Array Detector and a

Waters Fraction Collector III. The separation was performed on a Daicel ChiralCel ODH column $(250\times10\text{mmID}, \text{ particle size }5\mu\text{m})$ using Heptane/EtOH (95:5 v/v) as mobile phase at a flow rate of 5 mL/min. Determination of enantiomeric excess (ee) for compounds (*R*)-6 and (*S*)-6 was performed on a Waters Alliance HPLC instrument consisting of an e2695 Separation Module and a 2998 Photodiode Array Detector using a Daicel ChiralCel ODH column (250×4.6 mmID, particle size 5µm) and Heptane/EtOH (95:5 v/v) as mobile phase with a flow rate of 1 mL/min.

Determination of enantiomeric excess (ee) for **VX-445** was performed on the HPLC system described above using a Daicel ChiralPak AD column ($250 \times 4.6 \text{ mmID}$, particle size $10 \mu \text{m}$) and Heptane/EtOH (95:5 v/v) as mobile phase at a flow rate of 1 mL/min.

The absolute configuration of **VX-445** was determined by comparison of $[\alpha]_D$ and chiral HPLC t_R with a standard compound purchased from Selleck Chemicals LLC.

Synthesis of intermediate 4.

Scheme 1. Reagents and conditions: (a) Boc anhydride, Et₃N, CH₂Cl₂, rt; (b) 3,3,3-Trifluoro-2,2-dimethyl-propan-1-ol, PPh₃, DIAD, toluene, 110 $^{\circ}$ C; (c) 4M HCl in dioxane, 45 $^{\circ}$ C.

tert-Butyl 3-hydroxypyrazole-1-carboxylate (2). To a solution of 1H-pyrazol-3-ol (1, 0.50 g, 5.95 mmol) in anhydrous CH₂Cl₂ (5.0 mL) were added di-*tert*-butyl dicarbonate (1.43 g, 6.54 mmol) and triethylamine (0.91 mL, 6.54 mmol). The resulting mixture was stirred at rt for 24 h. The solution was diluted with CH₂Cl₂ (20 mL), NH₄Cl saturated solution (20 mL) was added and the biphasic solution was partitioned. The water phase was extracted with CH₂Cl₂ (2 × 20 mL), and EtOAc (2 × 20 mL). The combined organic phase was dried over Na₂SO₄ and concentrated. Purification by flash chromatography (CH₂Cl₂/MeOH, 99:1 v/v) afforded **2** (0.656 g, 60%) as off-white solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.90 (s, 1H), 7.96 (d, *J* = 2.9 Hz, 1H), 5.88 (d, *J* = 2.9 Hz, 1H), 1.53 (s, 9H). UPLC-MS: *t*_R = 1.47 min (Generic method). MS (ESI) m/z calcd for C₈H₁₁N₂O₃ [M-1]⁻: 183.1, found: 183.1.

tert-Butyl 3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazole-1-carboxylate (3). To a solution of 2 (0.292 g, 1.58 mmol), and 3,3,3-trifluoro-2,2-dimethyl-propan-1-ol (0.225 g, 1.58 mmol) in anhydrous toluene (9.0 mL) was added triphenylphosphine (0.457 g, 1.74 mmol) followed by diisopropyl azodicarboxylate (0.343 mL, 1.74 mmol). The resulting mixture was stirred at 110 °C for 24 h. The solution was evaporated, heptane (10 mL) was added followed by heptane/toluene 4:1 (10 mL). The insoluble was removed by filtration, washed with heptane/toluene 4:1 v/v (4 × 10 mL) and the combined filtrate was evaporated. Purification of the residue by flash chromatography (cyclohexane/EtOAc, 95:5 v/v) afforded 3 (0.305 g, 62%) as white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, *J* = 2.9 Hz, 1H), 5.89 (d, *J* = 2.9 Hz, 1H), 4.26 (s, 2H), 1.62 (s, 9H), 1.23 (s, 6H). UPLC-MS: *t*_R = 1.57 min (Apolar method). MS (ESI) m/z calcd for C₁₃H₂₀F₃N₂O₃ [M+1]⁺: 309.1, found: 309.1.

3-(3,3,3-Trifluoro-2,2-dimethyl-propoxy)-1H-pyrazole (4). Compound **3** (0.61 g, 1.97 mmol) was dissolved in 4 M HCl in dioxane (5.0 mL) and stirred at 45 °C. After 2.5 h the solution was evaporated and the residue was taken in EtOAc (50 mL) and H₂O (50 mL). The layers were partitioned and the water phase was extracted with EtOAc (2 × 50 mL). The combined organic phase was washed with brine, dried over Na₂SO₄, and evaporated to give **4** (0.41 g, 99%) as white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, *J* = 2.5 Hz, 1H), 5.76 (d, *J* = 2.5 Hz, 1H), 4.13 (s, 2H), 1.26 (s, 6H). UPLC-MS: *t*_R = 0.60 min (Apolar method). MS (ESI) m/z calcd for C₈H₁₂F₃N₂O [M+1]⁺: 209.1, found: 209.0.

Synthesis of intermediate (S)-7.

Scheme 2. Reagents and conditions: (a) Fmoc chloride, Na₂CO₃, H₂O, dioxane, rt; (b) chiral semi-preparative HPLC; (c) 2M NaOH, dioxane, rt.

9H-Fluoren-9-ylmethyl 2,2,4-trimethylpyrrolidine-1-carboxylate (6). A solution of Na₂CO₃ (0.276 g, 2.61 mmol) in H₂O (12 mL) was added to a mixture of 2,2,4-trimethylpyrrolidine hydrochloride (5, 0.355 g, 2.37 mmol) in dioxane (12 mL). The resulting mixture was cooled at 0 °C, 9-fluorenylmethoxycarbonyl (Fmoc) chloride (0.675 g, 2.61 mmol) was added and stirring was continued at rt for 24 h. The residue was taken in Et₂O (50 mL) and 0.5 M HCl (50 mL). The phase were partitioned and the water phase extracted with Et₂O (2×50 mL). The combined organic phase was washed with 0.5 M HCl (2 × 25 mL), brine (25 mL), dried over Na₂SO₄ and evaporated. Purification by flash chromatography (cyclohexane/EtOAc, 9:1 v/v) afforded 6 (0.62 g, 77%) as colorless sticky oil, as a 2:1 mixture of two rotamers. ¹H NMR (400 MHz, CDCl₃) δ 7.81 – 7.71 (m, 2H), 7.65 - 7.55 (m, 2H), 7.44 - 7.27 (m, 4H), 4.66 (d, J = 4.5 Hz, 1H, major rotamer), 4.33(d, J = 4.6 Hz, 1H, minor rotamer), 4.39 - 4.28 (m, 1H), 4.28 - 4.19 (m, 1H), 3.77 - 3.68 (m, 2H), 3.77 - 3.68 (m, 2H)major rotamer), 3.68 - 3.59 (m, 1H, minor rotamer), 2.94 (t, J = 10.5 Hz, 1H, major rotamer), 2.82(t, J = 10.7 Hz, 1H, minor rotamer), 2.28 (ddq, J = 17.9, 12.2, 6.5 Hz, 1H, major rotamer), 2.11 (ddt, J = 17.9, 12.1, 6.5 Hz, 1H, minor rotamer), 1.91 (dd, J = 12.3, 6.2 Hz, 1H, major rotamer),1.73 (dd, J = 12.4, 6.1 Hz, 1H minor rotamer), 1.49 (s, 3H, major rotamer), 1.47 – 1.42 (m, 1H, major rotamer), 1.35 (s, 3H, major rotamer), 1.33 - 1.28 (m, 1H, minor rotamer), 1.06 (d, J = 6.5Hz, 3H, major rotamer), 0.94 (d, J = 6.4 Hz, 1H, minor rotamer), 0.84 (s, 3H, minor rotamer), 0.79 (s, 3H, minor rotamer). UPLC-MS: $t_{\rm R} = 2.19$ min (Apolar method). MS (ESI) m/z calcd for C₂₂H₂₆NO₂ [M+1]⁺: 336.2, found: 336.3.

9H-Fluoren-9-ylmethyl (*4R*)-2,2,4-trimethylpyrrolidine-1-carboxylate ((*R*)-6) and **9H-fluoren-9-ylmethyl** (*4S*)-2,2,4-trimethylpyrrolidine-1-carboxylate ((*S*)-6). Compound 6 (0.32 g, 0.96 mmol) was purified under the chiral semi-preparative HPLC conditions described above (*please refer to synthetic materials and methods section*). The fractions containing the pure enantiomers were evaporated in vacuo affording (*R*)-6 (first eluted) and (*S*)-6 (second eluted) as white solids. (*R*)-6 (0.133 g, 41%): > 99.5% ee. t_R 27.62 min. (*S*)-6 (0.115 g, 36%): > 99.5% ee. t_R 39.05 min. ¹H NMR, and UPLC-MS analyses were identical to those of the racemic mixture.

(*4R*)-2,2,4-Trimethylpyrrolidine hydrochloride ((*R*)-7). Compound (*R*)-6 (0.13 g, 0.387 mmol) was dissolved in dioxane (4.2 mL) and 2 M NaOH (0.58 mL, 1.16 mmol) was added. The resulting mixture was stirred at rt for 21 h. 1 M HCl (25 mL) was added to the reaction mixture and the water phase was washed with Et₂O (3×25 mL). The organic phases were discarded and the water phase was evaporated affording (*R*)-7 (0.12 g, quant.) as white solid. The product containing inorganic salts was used in the next step without any further purification. ¹H NMR (600 MHz, D₂O) δ 3.50 (dd, *J* = 11.8, 8.0 Hz, 1H), 2.91 (dd, *J* = 11.8, 9.5 Hz, 1H), 2.68 – 2.52 (m, 1H), 2.14 (dd, *J* = 13.2, 7.5 Hz, 1H), 1.54 (dd, *J* = 13.2, 10.4 Hz, 1H), 1.49 (s, 3H), 1.42 (s, 3H), 1.11 (d, *J* = 6.7 Hz, 3H).

(4S)-2,2,4-Trimethylpyrrolidine hydrochloride ((S)-7). Compound (S)-6 (0.11 g, 0.331 mmol) was dissolved in dioxane (3.6 mL) and 2 M NaOH (0.50 mL, 0.993 mmol) was added. The resulting mixture was stirred at rt for 17 h. 1 M HCl (25 mL) was added to the reaction mixture and the water phase was washed with Et₂O (3 × 25 mL). The organic phases were discarded and the water phase was evaporated affording (S)-7 (0.11 g, quant.) as white solid. The product containing inorganic salts was used in the next step without any further purification. ¹H NMR (600 MHz, D₂O) δ 3.50 (dd, *J* = 11.8, 8.0 Hz, 1H), 2.91 (dd, *J* = 11.8, 9.5 Hz, 1H), 2.68 – 2.52 (m, 1H), 2.14 (dd, *J* = 13.2, 7.5 Hz, 1H), 1.54 (dd, *J* = 13.2, 10.4 Hz, 1H), 1.49 (s, 3H), 1.42 (s, 3H), 1.11 (d, *J* = 6.7 Hz, 3H).

Synthesis of VX-445.

Scheme 3. Reagents and conditions: (a) Boc anhydride, DMAP, THF, rt; (b) **4**, K₂CO₃, DABCO, DMF, rt; (c) 6M HCl, dioxane, 85 °C; (d) 1,3-Dimethylpyrazole-4-sulfonamide, CDI, DBU, THF, rt; (e) (*S*)-7, K₂CO₃, DMSO, 130 °C.

tert-Butyl 2,6-dichloropyridine-3-carboxylate (9). To a solution of 2,6-dichloropyridine-3carboxylic acid (8, 1.0 g, 5.21 mmol) in tetrahydrofuran (20 mL) were added di-*tert*-butyl dicarbonate (1.70 g, 7.81 mmol) and 4-(dimethylamino)pyridine (0.32 g, 2.60 mmol). The mixture was stirred at rt for 24 h. 1 M HCl (40 mL) was added and the mixture stirred vigorously for 10 min. The product was extracted EtOAc (3 × 20 mL), washed with H₂O (20 mL), brine (20 mL), dried over Na₂SO₄ and concentrated. Purification by flash chromatography (cyclohexane/EtOAc, 98:2 v/v) afforded **9** (1.12 g, 86%) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 8.0 Hz, 1H), 7.32 (d, *J* = 8.1 Hz, 1H), 1.60 (s, 9H). UPLC-MS: *t*_R = 2.49 min (Generic method). MS (ESI) m/z calcd for C₁₀H₁₂Cl₂NO₂ [M+1]⁺: 248.0, found: 247.9.

tert-Butyl 2-chloro-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-1-yl]pyridine-3carboxylate (10). To a solution of 4 (0.20 g, 0.97 mmol) and 9 (0.24 g, 0.97 mmol) in *N*,*N*dimethylformamide (4.0 mL) were added K₂CO₃ (0.17 g, 1.26 mmol) and 1,4diazabicyclo[2.2.2]octane (0.016 g, 0.145 mmol). The resulting mixture was stirred at rt for 72 h. The solution was poured into H₂O (50 mL) and extracted in EtOAc (5 × 50 mL). The combined organic phase was washed with H₂O (2 × 15 mL), brine (20 mL), dried over Na₂SO₄, and evaporated. Heptane (3 mL) was added to the crude product and evaporated four times. Purification by flash chromatography (cyclohexane/EtOAc, 98:2 v/v) afforded **10** (0.34 g, 84%) as white solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.43 (d, *J* = 2.8 Hz, 1H), 8.31 (d, *J* = 8.4 Hz, 1H), 7.76 (d, *J* = 8.4 Hz, 1H), 6.25 (d, *J* = 2.8 Hz, 1H), 4.27 (s, 2H), 1.56 (s, 9H), 1.24 (s, 6H). UPLC-MS: *t*_R = 2.55 min (Apolar method). MS (ESI) m/z calcd for C₁₈H₂₂ClF₃N₃O₃ [M+1]⁺: 420.1, found: 420.0.

2-Chloro-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-1-yl]pyridine-3-carboxylic

acid (11). 6 M HCl (2.7 mL) was added to a solution of 10 (0.68 g, 1.63 mmol) in 1,4-dioxane (15 mL) and stirred at 85 °C for 13 h. The solution was poured into H₂O (75 mL) and a precipitate occurred. The product was extracted with EtOAc (3 × 50 mL). The combined organic phase was washed with brine (25 mL), dried over Na₂SO₄, and evaporated to give 11 (0.58 g, 97%) as white solid. The product was used in the next step without any further purification. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.44 (d, *J* = 2.8 Hz, 1H), 8.39 (dd, *J* = 8.4, 1.1 Hz, 1H), 7.76 (d, *J* = 8.4 Hz, 1H), 6.25 (d, *J* = 2.8 Hz, 1H), 4.27 (s, 2H), 1.24 (s, 6H). UPLC-MS: *t*_R = 1,73 min (Generic method). MS (ESI) m/z calcd for C₁₄H₁₄ClF₃N₃O₃ [M+1]⁺: 364.1, found: 363.9.

2-Chloro-N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-(3,3,3-trifluoro-2,2-dimethyl-

propoxy)pyrazol-1-yl]pyridine-3-carboxamide (12). A flame-dried flask was charged with a solution of **11** (0.57 g, 1.58 mmol) and 1,1'-carbonyldiimidazole (0.31 g, 1.90 mmol) in anhydrous tetrahydrofuran (7.0 mL) under nitrogen and stirred for 1 h. 1,3-dimethylpyrazole-4-sulfonamide (0.33 g, 1.90 mmol) and 1,8-diazabicyclo[5.4.0]undec-7-ene (0.28 mL, 1.90 mmol) were added and the reaction mixture was stirred overnight at rt. The volatiles were evaporated. The residue was taken in EtOAc (50 mL), washed with 0,5 M HCl (50 mL) and the water phase was further extracted with EtOAc (2×50 mL). The combined organic phase was washed with brine (30 mL), dried over Na₂SO₄ and evaporated. Purification by flash chromatography (CH₂Cl₂ and then CH₂Cl₂ /MeOH 97:3 v/v) afforded **12** (0.73 g, 88%) as white solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.71 (s, 1H), 8.42 (d, *J* = 2.9 Hz, 1H), 8.37 (s, 1H), 8.09 (d, *J* = 8.4 Hz, 1H), 7.73 (d, *J* = 8.3 Hz, 1H), 6.24 (d, *J* = 2.9 Hz, 1H), 4.26 (s, 2H), 3.83 (s, 3H), 2.34 (s, 3H), 1.23 (s, 6H). UPLC-MS: *t*_R = 1,81 min (Generic method). MS (ESI) m/z calcd for C₁₉H₂₁ClF₃N₆O₄S [M+1]⁺: 521.1, found: 520.9.

N-(1,3-Dimethylpyrazol-4-yl)sulfonyl-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-1yl]-2-[(4S)-2,2,4-trimethylpyrrolidin-1-yl]pyridine-3-carboxamide (VX-445). Compound 12 (0.057 g, 0.11 mmol), (S)-7 (0.33 mmol), and K_2CO_3 (0.091 g, 0.66 mmol) were combined in anhydrous DMSO (0.4 mL) under nitrogen and stirred at 130 °C for 20 h. The reaction mixture was poured into H₂O (30 mL), the pH was adjusted to 3-4 by adding 2 M HCl and extraction with Et₂O (3 × 25 mL) was performed. The combined organic phase was washed with brine (2 × 20 mL), dried over Na₂SO₄ and evaporated. Purification by flash chromatography (cyclohexane/EtOAc, 7:3 v/v) afforded an impure product, which was further purified by flash chromatography (CH₂Cl₂/MeOH 99:1 v/v) to give pure **VX-445** (0.030 g, 46%) as white solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.33 (s, 1H), 8.34 (s, 1H), 8.21 (d, *J* = 2.7 Hz, 1H), 7.73 (d, *J* = 8.2 Hz, 1H), 6.93 (d, *J* = 8.2 Hz, 1H), 6.16 (d, *J* = 2.7 Hz, 1H), 4.23 (s, 2H), 3.80 (s, 3H), 2.57 (t, *J* = 10.4 Hz, 1H), 2.48 – 2.39 (m, 1H), 2.32 (s, 3H), 2.25 – 2.08 (m, 1H), 1.87 (dd, *J* = 12.0, 5.6 Hz, 1H), 1.56 (s, 3H), 1.53 (s, 3H), 1.42 (t, *J* = 12.1 Hz, 1H), 1.23 (s, 6H), 0.81 (d, *J* = 6.3 Hz, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 165.2, 164.0, 152.3, 148.9, 146.7, 141.5, 136.4, 128.6 (q, *J* = 285.4 Hz), 128.4, 117.3, 111.2, 96.2, 95.3, 70.9, 64.0, 57.7, 50.8, 40.8 (q, *J* = 24.3 Hz), 38.7, 29.7, 26.4, 25.0, 18.1, 16.4, 12.0. UPLC-MS: *t*_R = 2,51 min (Generic method). MS (ESI) m/z calcd for C₂₆H₃₅F₃N₇O₄S [M+1]⁺: 598.2, found: 598.4. [α]_D²⁷ – 45.682 (c 0.199, CHCl₃). Chiral HPLC: > 99.4% ee, *t*_R = 24.25 min.