Supplementary Material for:

Title: Longitudinal analysis of naturally acquired PfEMP1 CIDR domain variant antibodies identifies associations with malaria protection

Authors: Nyamekye Obeng-Adjei^{1,2*}, Daniel B. Larremore^{3,4*}, Louise Turner⁵, Aissata Ongoiba⁶, Shanping Li¹, Safiatou Doumbo⁶, Takele B. Yazew⁷, Kassoum Kayentao⁶, Louis H. Miller⁸, Boubacar Traore⁶, Susan K. Pierce⁷, Caroline O. Buckee⁹, Thomas Lavstsen⁵, Peter D. Crompton¹, Tuan M. Tran^{1,10,11}

*Both authors contributed equally.

Affiliations:

- 1. Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
- 2. Innate Immunity Research Unit, GlaxoSmithKline, Collegeville, Pennsylvania, USA
- 3. Department of Computer Science, University of Colorado Boulder, Boulder, Colorado, USA
- 4. BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, 80303, USA
- 5. Centre for Medical Parasitology, Department of Immunology & Microbiology, University of Copenhagen and Department of Infectious Diseases, Rigshospitalet, 1017 Copenhagen, Denmark
- 6. Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
- 7. Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
- 8. Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
- 9. Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
- 10. Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- 11. Ryan White Center for Pediatric Infectious Disease and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA

Original Antigen Labels	Figure Labels	Group	Binding Phenotype	Genome/ Isolate	Domain Class	Name used in figures of Rambathla et al PMID. 30365003	
HB3var03	CIDRα1.4 (a)	А	EPCR	HB3	CIDRa1	α1.4 (a)	
IT4var7	CIDRa1.4 (b)	А	EPCR	IT4	CIDRa1	α1.4 (b)	
X1965_2	CIDRα1.5a (a)	А	EPCR	1965	CIDRa1	α1.5a (a)	
ERS010323	CIDRa1.5a (b)	А	EPCR	GA013	CIDRa1	α1.5a (b)	
ERS01002	CIDRα1.5a (c)	А	EPCR	GA014	CIDRa1	α1.5a (c)	
X198_5	CIDRα1.5b (a)	А	unknown	1918	CIDRa1	α1.5b (a)	
X198313	CIDRa1.5b (b)	А	unknown	1983	CIDRa1	α1.5b (b)	
HB3var02	CIDR _{α1.6a}	А	EPCR	HB3	CIDRa1	α1.6a	
ERS01057	CIDRα1.6b (a)	А	EPCR	GA018	CIDRa1	α1.6b (a)	
ERS01003	CIDRa1.6b (b)	А	EPCR	GA019	CIDRa1	α1.6b (b)	
X1965_8	CIDRa1.7 (a)	А	EPCR	1965	CIDRa1	α1.7 (a)	
X1918_3	CIDRa1.7 (b)	А	EPCR	1918	CIDRa1	α1.7 (b)	
ERS01043	CIDRa1.7 (c)	А	EPCR	GA024	CIDRa1	α1.7 (c)	
IT4var08	CIDRy3	А	unknown	IT4	CIDRy	γ	
HB3var05	CIDR _δ (a)	А	unknown	HB3	CIDRδ	δ (a)	
HB3var35	CIDR _δ (b)	Α	unknown	HB3	CIDRδ	δ (b)	
IT4var02	CIDR _δ (c)	А	unknown	IT4	CIDRδ	δ (c)	
IT4var30	CIDRa2.10	В	CD36	IT4	CIDRa2-6	α2.10	
IT4var24	CIDRa2.2	В	CD36	IT4	CIDRa2-6	α2.2	
IT4var33	CIDRa2.4	В	CD36	IT4	CIDRa2-6	α2.4	
IT4var61	CIDRa2.7	В	CD36	IT4	CIDRa2-6	α2.7	
IT4var45	CIDRa2.9	В	CD36	IT4	CIDRa2-6	α2.9	
DD2var01	CIDRα3.1 (a)	В	CD36	DD2	CIDRa2-6	α3.1 (a)	
HB3var27	CIDRa3.1 (b)	В	CD36	HB3	CIDRa2-6	α3.1 (b)	
IT4var21	CIDRa3.1 (c)	В	CD36	IT4	CIDRa2-6	α3.1 (c)	
IT4var26	CIDRa3.3	В	CD36	IT4	CIDRa2-6	α3.3	
IT4var15	CIDRa3.5	В	CD36	IT4	CIDRa2-6	α3.5	
IT4var14	CIDRa5	В	CD36	IT4	CIDRa2-6	α5	
IT4var12	CIDRa6	В	CD36	IT4	CIDRa2-6	α6	
IT4var20	CIDRα1.1 (a)	B/A	EPCR	IT4	CIDRa1	α1.1 (a)	
igh_var19	CIDRa1.1 (b)	B/A	EPCR	IGH	CIDRa1	α1.1 (b)	
raj116_var	CIDRα1.1 (c)	B/A	EPCR	raj116	CIDRa1	α1.1 (c)	
ERS010178_NODE_17	CIDR _{α1.8a}	B/A	EPCR	GA026	CIDRa1	α1.8a	
X2053_3	CIDRα1.8b (a)	B/A	EPCR	GA027	CIDRa1	α1.8b (a)	
ERS010532_NODE_326	CIDRa1.8b (c)	B/A	EPCR	GA029	CIDRa1	α1.8b (c)	
AMA1	AMA1	non-var	N/A	N/A	AMA1	N/A	
BSA	BSA	non-var	N/A	N/A	BSA	N/A	
CSP	CSP	non-var	N/A	N/A	CSP	N/A	
MSP1	MSP1	non-var	N/A	N/A	MSP1	N/A	
tetanus toxoid	tetanus toxoid	non-var	N/A	N/A	tetanus	N/A	

Table S1. Antigens tested in multiplex immunoassay.

Listed antigens were used in a multiplex bead-based immunoassay to determine antigen-specific IgG reactivity of plasma from participants in the Kalifabougou chort. Bovine serum albumin (BSA) and tetanus toxoid were used as controls for non-specific cross-reactivity and the predictable response to tetanus vaccination, respectively.

Domain Class	n	PfEMP1 group	Binding Phenotype	Slope for domain class	Coefficient (age:domain class interaction term)	Standard error	t	P value	BH- adjusted P value
CIDRy	340	А	unknown	0.224	0.0485	0.0134	3.63	0.000283	0.00141
CIDRδ	340	А	unknown	0.209	0.0357	0.00796	4.49	<0.0001	< 0.0001
CIDRa1	340	А	EPCR	0.208	0.0682	0.00435	15.7	<0.0001	< 0.0001
CIDRa2-6	340	В	CD36	0.115	-0.0935	0.00446	-21.0	<0.0001	< 0.0001

Table S2. Differential acquisition of CIDR domain class-specific IgG antibodies with age and/or malaria exposure.

Refers to Figure 3B. To determine CIDR domain classes for which specific IgG was acquired more rapidly than the other variants, the change in variant-specific IgG reactivity with age was compared between all variants within each CIDR domain class and all other variants. Specifically, for each CIDR domain class, a linear regression model was performed for children <8 years of age, which represents the linear portion of the plot. The dependent variable was log-transformed antigen-specific IgG reactivity; the independent variables were presence of *P. falciparum* parasitemia (determined by PCR), age, and PfEMP-1 variant type dichotomized as the PfEMP-1 domain class of interest or variants in all other domain classes with the latter being the reference level. An interaction between age and CIDR class was included in the model. Tabulated coefficient and statistics are for the age:domain class interaction term. P values were adjusted for multiple testing (5 coefficients per model times 4 domain classes) using the Benjamini-Hochberg (BH) method. Non-PfEMP-1 antigens were not included in the analysis.

Table S3. Pairwise comparison of slopes between CIDR classes.

Domain class 1	Domain class 2	F statistic	P value	
CIDRa1	CIDRy	1.3852	0.2393	
CIDRa2-6	CIDRy	88.663	< 2.2e-16	
CIDRδ	CIDRy	0.816	0.3665	
CIDRa1	CIDRδ	0.0333	0.8552	
CIDRa2-6	CIDRδ	164.38	< 2.2e-16	
CIDRa2-6	CIDRa1	415.19	< 2.2e-16	

Refers to Figure 3B. To determine if the slopes for IgG reactivity between each CIDR domain classes were significantly different from each other in a pairwise manner, we compared a simple linear model in which the slopes of any two CIDR domain classes were parallel to a more complex linear model that included an interaction between age and CIDR domain class using analysis of variance tables. For these models, the predictor variable was IgG reactivity (as log_{10} arbitrary units) and independent variables were age, *P. falciparum* PCR status at baseline, and domain class as two-level factor variable. Analysis was limited to children <8 years of age (n = 340). A P value < 0.05 indicates that the slopes for the two domain classes are significantly different.

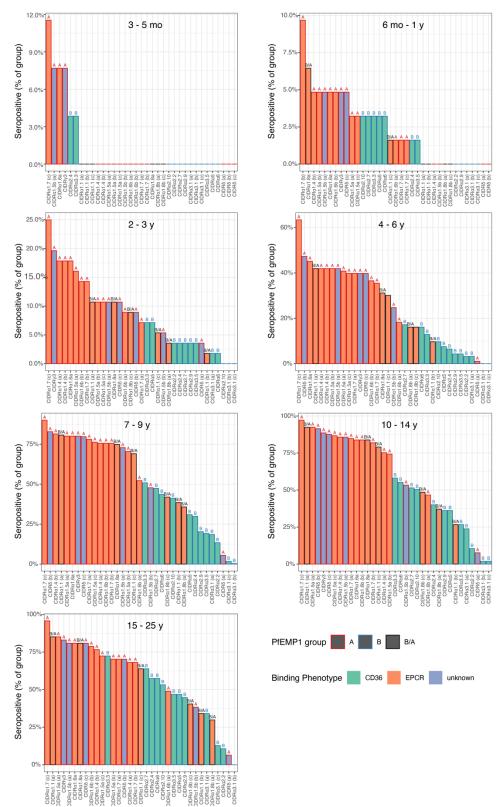


Fig. S1. Antibodies specific for group A and EPCR-binding phenotypes are acquired earlier in life.

Antigens were ranked by seroprevalence to determine the dominant antibody responses for each age group. A response was considered seropositive if the antigen-specific IgG reactivity was greater than the mean reactivity of 20 malaria-naive US donors plus 3 standard deviations.

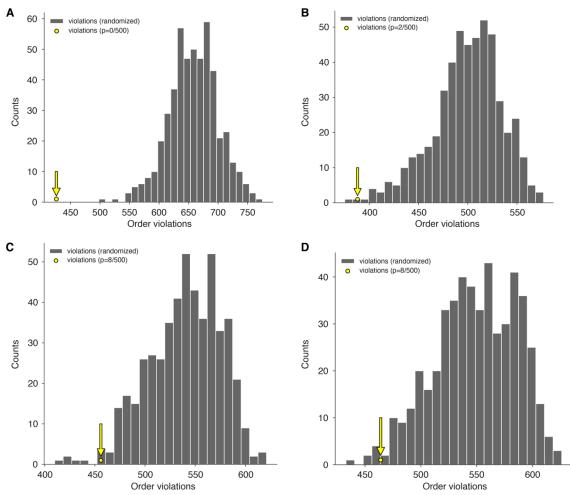


Fig. S2. Significance testing for consensus ordering.

Related to Fig. 5. Observed consensus ordering was compared against 200 independent procedures in which the seroconversion orders for each subject was randomized and consensus ordering was carried out in the same manner, using the total count of consensus-violating seroconversions as a test-statistic (right panel). Fewer consensus violations in real data than in randomized data implies the reported seroconversion ordering is statistically significant. Analysis was performed at the level of **A** individual variants, **B** CIDR domain class, **C** upstream sequence group, and **D** binding phenotype.

Table S4. Relationship between CIDRy3 seropositivity and protection from febrile malaria with inclusion of blood group O as a co-variate.

	without group O covariate				with group O covariate			
Covariate	HR	LCI	UCI	P value	HR	LCI	UCI	P value
Age	1.07	0.998	1.14	0.0582	1.07	0.999	1.14	0.055
CIDRy3	0.411	0.276	0.613	1.26E-05	0.407	0.274	0.605	8.73E-06
group O blood type					0.963	0.678	1.37	0.831
Male	0.858	0.605	1.22	0.39	0.859	0.606	1.22	0.395
presence of HbS allele	0.53	0.311	0.903	0.0196	0.529	0.311	0.902	0.0194

Results of Cox regression models assessing CIDRy3-specific IgG on the risk of febrile malaria after incident *P. falciparum* infection in which covariates were age, gender, presence of the HbS allele, and AMA1-specific IgG reactivity without or with group O blood type. Analysis was restricted to children within the cohort who were at least 6 months of age, began the study negative for *P. falciparum* infection by PCR, and had ABO blood typing performed (218 subjects; 140 malaria events). Malaria risk was determined based on time to clinical malaria, defined as axillary temperature >37.5° C and any parasitemia, once parasitemia was detected by PCR. Results are ordered by increasing significance values.