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SUPPLEMENTARY MATERIALS 1 

Supplementary Methods 2 

Study design 3 

The workflow to identify and validate the TME risk score and TME subtypes in gastric cancer is 4 
depicted in Fig. S1.  We first estimated the absolute abundance levels of the major stromal and 5 
immune cell types in the TME using bulk gene expression data, and assessed the prognostic 6 
effect of these cells in a discovery cohort. Next, we constructed a TME risk score and validated it 7 
in two independent gene expression validation cohorts and three immunohistochemistry 8 
validation cohorts. Finally, we stratified patients into four TME subtypes and examined their 9 
genomic and molecular features and relation to established molecular subtypes.  10 

Gene expression data 11 

To explore the prognostic landscape of the TME, we used four gene expression profile (GEP) 12 
datasets of resected gastric cancer patients with publicly available clinical information, namely, 13 
ACRG (GSE62254) (1), GSE15459 (2), GSE84437 (3), and TCGA stomach adenocarcinoma 14 
(STAD). Specifically, the raw microarray data in the ACRG cohort and GSE15459 were retrieved 15 
from the Gene Expression Omnibus (GEO), and normalized by the RMA algorithm (package affy) 16 
using custom chip definition files (Brainarray version 23 (4)) that convert Affymetrix probesets to 17 
Entrez gene IDs. For GSE84437 dataset, which was measured by the Illumina platform, we 18 
downloaded the normalized gene expression profile from the GEO (package GEOquery (5)). The 19 
Illumina probes were also mapped to Entrez genes. For multiple probes mapping to the same 20 
Entrez gene, we selected the one with the maximum mean expression level as the surrogate for 21 
the Entrez gene using the function of collapseRows (6) (package WGCNA). The normalized gene 22 
expression data in the TCGA STAD cohort was downloaded from the TCGA PanCanAtlas data 23 
portal (https://gdc.cancer.gov/about-data/publications/pancanatlas). All gene expression levels 24 
were log2 transformed and batch effects were removed using the Combat algorithm (7) (package 25 
SVA). The clinical and treatment information for ACRG cohort was retrieved from the original 26 
publication (1). The clinical outcome data for GSE15459 and GSE84437 cohorts were 27 
downloaded from the GEO. For the TCGA STAD cohort, the clinical information and genomics 28 
features were retrieved from the PanCanAtlas data portal.  29 

Patients in the IHC cohorts 30 

For validated purposes, we analyzed IHC data for gastric cancer patients who were treated with 31 
surgical resection at the Nanfang Hospital of Southern Medical University (SMU) and the First 32 
Affiliated Hospital of Sun Yat-Sen University (SYSU), Guangzhou, China. Written-informed 33 
consent was obtained from all of the enrolled patients. All procedures were performed in 34 
accordance with the Declaration of Helsinki and approved by the Institutional Review Boards at 35 
the two participating centers. Inclusion criteria were diagnosis of primary, biopsy-confirmed GC, 36 
surgical resection, and the availability of hematoxylin and eosin (H&E) slides with invasive tumor 37 
components, follow-up data, and clinicopathologic characteristics. No patients had received 38 
previous treatment. We included three independent cohorts of 753 patients in this study, including 39 
247 and 234 consecutive patients treated at SMU between January 2005 and December 2007, 40 
January 2008 and December 2009, and 272 patients treated at SYSU from January 2005 to 41 
December 2007. The three cohorts were denoted as SMU1, SMU2 and SYSU. The patient 42 
characteristics are listed in Table S1.  43 

https://gdc.cancer.gov/about-data/publications/pancanatlas
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IHC data 44 

FFPE samples were cut into 4-μm thick sections, which were then processed for 45 
immunohistochemistry staining as previously described (8, 9). The samples were de-waxed in 46 
xylene and rehydrated in decreasing concentrations of ethanol. Prior to staining, the sections 47 
were subjected to endogenous peroxidase blocking in 1% H2O2 solution diluted in methanol for 48 
10 minutes and then heated in a microwave for 30 minutes with 10 mmol/L citrate buffer (pH 6.0). 49 
Serum blocking was performed using 10% normal rabbit serum for 30 minutes. The slides were 50 
incubated overnight with an antibody against human CD57 (1:100 dilution; NeoMarker, clone NK1) 51 
for NK cells, CD34 (1:200 dilution; Abcam, ab81289) for endothelial cells, or α-SMA (smooth 52 
muscle actin; 1:100 dilution; Abcam, ab5694) for fibroblasts at 4°C, followed by incubation with 53 
an amplification system with a labeled polymer/HRP (EnVisionTM, DakoCytomation, Denmark) at 54 
37°C for 30 min. The reaction was visualized using diaminobenzidine (DAB)+ chromogen, and 55 
nucleus was counterstained using hematoxylin. In all assays, we included negative control slides 56 
with the primary antibodies omitted. Every staining run contained a slide of positive control. And 57 
all slides were stained with DAB dyeing for the same time for each antibody. 58 

IHC staining was independently assessed by two pathologists who were blinded to patient 59 
characteristics. A third pathologist was consulted when different opinions arose between the two 60 
primary pathologists and discrepancies were resolved by consensus. Under 200 magnification, 61 
photographs of 5 representative fields were captured using an inverted research microscope 62 
(model DM IRB; Leica Germany); identical settings were used for each photograph. The 63 
nucleated stained cells in each area were quantified and expressed as the number of cells per 64 
field. For the CD57 or CD34 staining in tumor tissue, the number of positive cells or microvessels 65 
was calculated in each field and expressed as the mean value of the five fields (cells per field or 66 
microvessels per field). Intensity of fibroblast cell staining (α-SMA) was graded as 0 (negative 67 
staining), 1 (weak staining), 2 (moderate staining) and 3 (strong staining); staining extent was 68 
graded as 0 (0%–4%), 1 (5%–24%), 2 (25%–49%), 3 (50%–74%) and 4 (>75%). Values of the 69 
intensity and the extent were multiplied as the level of α-SMA. 70 

Identification of prognostic cell types in the TME 71 

For the gene expression cohorts, the absolute abundance levels of major cell types within the 72 
TME were computed for each patient by the Microenvironment Cell Populations-counter (MCP-73 
counter) algorithm (10). Here, the abundance levels were estimated for 8 immune and 2 stroma 74 
cell types by averaging pre-selected sets of marker genes (Table S2). The immune cells include 75 
T cells, CD8 T cells, cytotoxic lymphocytes, NK cells, B lineage, monocytic lineage, myeloid 76 
dendritic cells, and neutrophils. The stroma cells are fibroblasts and endothelial cells. To 77 
investigate the association of each TME cell type with overall survival (OS), we selected the 78 
ACRG cohort (n = 300) as the discovery cohort, because detailed clinical and treatment outcome 79 
information with sufficient follow-up is available. To assess robustness of the prognostic 80 
significance, we used two different methods, namely the Cox regression analysis (package 81 
survival) and random survival forest model (package randomForestSRC(11)). Specifically, we 82 
conducted univariate Cox regression analysis of each cell type with or without controlling for stage 83 
and treatment in the ACRG cohort, and examined the corresponding Wald test P values. To 84 
implement the random forest algorithm, we generated 500 stratified bootstrap resamples of 85 
approximately the same size (n = 296) of the ACRG cohort, controlling for treatment and stage. 86 
We used the ‘logrank’ metric as the splitting rule. The hyperparameter of the random forest model, 87 
namely mtry (number of cell types randomly sampled at each split) and nodesize (average 88 
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number of patients in a terminal node) were determined based on the out-of-bag error. The 89 
variable importance was calculated from the resulting model, which provided a ranking order of 90 
the features.  91 

Development and validation of a TME-based risk score 92 

Through the above analyses, NK cells, endothelial cells, and fibroblasts were identified as the 93 
most robust prognostic markers. We first explored their pairwise Pearson correlation in the ACRG 94 
cohort. Considering a high correlation and similar prognostic effects, we defined a Stroma score 95 
as the geometric mean of the estimated abundance of endothelial cells and fibroblasts to reflect 96 
the overall stromal quantity (12). To further validate the stroma score, the correlations of an EMT 97 
signature (1, 13), two fibroblast signatures (14) and the StromalScore provided by the ESTIMATE 98 
algorithm (15) were calculated regarding to proposed stroma score in each GEP cohort. The 99 
abundance of NK cells were correlated with those of T or CD8 T cells as well as a T-cell inflamed 100 
gene expression signature (16). Similarly, we assessed the correlation and prognostic 101 
independence between the NK cells and Stroma score. Given the low correlation between the NK 102 
cell and Stroma score as well as the opposite prognostic effect, we defined a TME-based risk 103 
score as the ratio of Stroma score to NK cell abundance, of which a higher value indicates an 104 
elevated risk of death.  105 

Using the same formula, we constructed the Stroma score and the TME risk score for the 106 
independent GEP and IHC validation cohorts. Again, for the two GEP validation cohorts, the 107 
Stroma and TME risk score were derived based on the absolute abundance level of NK, 108 
endothelial cells and fibroblast, which were estimated by MCPcounter algorithm. For the IHC 109 
cohorts, the Stroma and TME risk score were constructed based on the IHC staining levels of 110 
CD57 (NK cell), CD34 (endothelial cell) and α-SMA (fibroblast). By applying a bivariate Cox 111 
regression, we confirmed the prognostic independence between the NK cells and Stroma score 112 
in the merged validation GEP (GSE84437 and GSE15459) and IHC cohorts, respectively. Then, 113 
we tested the association between the continuous TME risk score and OS in each of the 114 
independent GEP and IHC validation cohorts. TCGA STAD cohort was excluded for survival 115 
analysis because of a short follow-up time (median: <2 years vs. >5 years in other cohorts).  116 

Additionally, cutoff values for TME risk scores were derived separately for the gene expression 117 
and IHC cohorts, given the different measurement platforms. For gene expression cohorts, 100 118 
quantile cut points were generated covering the 10th percentile to 90th percentile of the TME risk 119 
score in the ACRG cohort. We dichotomized patients in the ACRG cohort based on each cut point 120 
and recorded the corresponding Wald test P value of Cox regression with stage and treatment 121 
controlled as strata. We chose the cutoff value with the minimum P value as the optimal prognostic 122 
threshold to differentiate patients into high or low TME risk groups. We used the same criteria to 123 
select the cutoff value for the IHC cohort based on the SMU1 cohort. Then, we examined the OS 124 
differences between different TME risk groups in each of the GEP and IHC cohorts.  125 

Independent prognostic effect of TME risk score to clinicopathologic factors 126 

We used multivariable Cox regression to assess the independent prognostic value of the 127 
continuous TME risk score by adjusting for clinicopathologic factors including age at diagnosis, 128 
gender, pathological stage, Lauren histology, and treatment by chemotherapy in the ACRG and 129 
merged IHC cohort. In the GEP cohorts, in addition to clinicopathologic factors, the inferred MSI 130 
status (1, 17) was also included in the multivariate Cox regression. To assess the statistical 131 
significance of additive prognostic effect of TME risk score to stage, which was the strongest 132 
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prognostic clinical factor, we compared Cox regression models that included stage with or without 133 
the continuous TME risk score based on the likelihood-ratio test for nested models. The strength 134 
of the additive effect of the continuous TME risk score to pathological stage was assessed by 135 
continuous net reclassification index analyses (package survIDINRI) (18) at 5 years.  136 

We also examined the prognostic effect of the TME risk groups in relatively more homogenous 137 
sub-populations. Since the ACRG, GSE15459 and all IHC cohorts provide the patient-level stage 138 
information, we assessed the OS difference between different TME risk groups in the merged 139 
GEP (ACRG and GSE15459) and merged IHC cohorts. Similarly, since the ACRG and three IHC 140 
cohorts provide patient-level treatment information, we also examined the prognostic effect of 141 
TME risk groups in the patients who only received surgery.  142 

Identification of TME subtypes and genomic correlates 143 

To elucidate the molecular underpinnings among tumors with different TME characteristics, we 144 
stratified patients based on the median levels of NK cells and Stroma score of the merged GEP 145 
cohort. This led to four TME subtypes, namely NK low & Stroma low, NK high & Stroma low, NK 146 
low & Stroma high, and NK high & Stroma high. Similarly, TME subtypes in the IHC cohorts were 147 
defined based on the median levels of the NK cells and Stroma score of the merged IHC cohort. 148 
We assessed the survival differences among the TME subtypes in the merged GEP (except 149 
TCGA STAD) and merged IHC cohorts.  150 

We compared our TME subtypes with the molecular subtypes proposed by the ACRG (ACRG 151 
subtype) and the intrinsic subtypes for gastric cancer (19) in the GEP cohorts. To evaluate the 152 
complementary prognostic effect of our TME subtypes to the ACRG subtypes, we examined the 153 
survival differences among TME subtypes within each individual ACRG subtype in the merged 154 
GEP cohort (except TCGA STAD). Since the ACRG subtyping was only available for patients in 155 
the ACRG cohort, we generated the ACRG subtype labels for the remaining 3 cohorts (1). Briefly, 156 
we generated the signature scores for microsatellite instability (MSI), epithelial-to-mesenchymal 157 
transition (EMT) and TP53 activity by averaging the expression levels of genes in the 158 
corresponding signature gene list. The cutoff values for MSI, EMT and TP53 activity were 159 
computed by maximizing the Youden index in the ACRG cohort (package OptimalCutpoints (20)). 160 
Then, the patients without the ACRG subtype annotation were assigned to appropriate ACRG 161 
subtypes based on these derived cutoff values. We also constructed the intrinsic subtypes for 162 
gastric cancer based on the expression level of 171 genes (19) using the nearest template 163 
prediction algorithm (21).  164 

In the TCGA STAD cohort, we assessed the genomic characteristics of patients in different TME 165 
subtypes. These genomic features can be grouped into 4 major categories: 1) the genomic 166 
subtypes designed for gastrointestinal tract adenocarcinomas (GIACs); 2) status for key driver 167 
genes (the mutation status of TP53 and PIK3CA, HER2 amplification status, and the epigenetic 168 
silencing status of CDKN2A, MLH1, BRCA1 and RAD51C); 3) genome instability measurement 169 
(aneuploidy score, ploidy level, whole genome doubling status [WGD], clonal deletion score [CDS], 170 
the number of homozygous deletions, the number of arm level copy number events, the number 171 
of focal amplification copy number events, the number of focal deletion copy number events, the 172 
number of overall focal copy number events and the chromosomal instability [CIN] Focal vs Broad 173 
classification); and 4) mutational burden (SNV density, indel density, overall mutation density, and 174 
hypermutation status). Chi-squared and Mann-Whitney tests were used to assess the difference 175 
between TME subgroups regarding categorical and continuous features, respectively. The 176 
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Benjamini-Hochberg method was used to compute the false discovery rate (FDR) to adjust for 177 
multiple testing. 178 

The following is a brief description of the molecular features used in this study. The molecular 179 
subtype for GIACs (GIAC subtype) stratify patients of the TCGA STAD cohort into five groups, 180 
namely Epstein-Barr virus-positive (EBV), hypermutated-SNV (HM-SNV), MSI, CIN and genome 181 
stable (GS) subtypes (22). Mutation status for TP53 and PIK3CA were derived from the MC3 182 
mutation annotation file. HER2 amplification status was derived from the gene-level copy number 183 
data. The epigenetic silencing status of CDKN2A, MLH1, BRCA1, and RAD51C, which indicates 184 
a hyper-methylated promoter region and a reduced gene expression level, was inferred from the 185 
matched DNA methylation and gene expression profiles. The aneuploidy score, ploidy level, WGD, 186 
CDS, and the number of homozygous deletions were estimated using the ABSOLUTE algorithm. 187 
The aneuploidy scores were calculated as the sum total of amplified or deleted arms (23). The 188 
ploidy level reflects the distribution of total copy number. The presence of WGD was determined 189 
based on whether the fraction of genome with duplicated alleles was higher than 0.5. The CDS 190 
quantifies the number of clonally deleted genomic regions in each tumor’s genome. Other copy 191 
number alterations were identified from segmented data using GISTIC 2.0 algorithm. The CIN 192 
Focal classification represents a higher quantity and intensity of high-amplitude focal DNA 193 
amplifications relative to the CIN Broad classification. The mutation density was defined as the 194 
number of corresponding mutations per megabase. The hypermutation was defined as mutation 195 
density larger than 10. More details about these molecular features can be found in (22). 196 
Molecular features with FDR < 0.01 were reported. To excluding confounding effects of the MSI 197 
or EBV status, similar analyses were conducted in the subgroup of patients with CIN in the TCGA 198 
cohort. Similar analyses were conducted on the subgroups of patients with the same MSI (1, 17) 199 
or T-cell inflamed signatures (16).  200 

Identification of gene expression, molecular pathways, and cytokines correlated with NK 201 
cell abundance and stroma score 202 

We assessed the Pearson correlation between the expression levels of each individual gene with 203 
the NK cell abundance in a meta-analysis of the four GEP cohorts. Specifically, we included genes 204 
measured by at least two cohorts and removed the marker genes of NK cells in the MCPcounter 205 
algorithm, which led to 21,616 unique genes. To minimize false positive findings, we summarized 206 
the overall correlation strength over multiple cohorts for a certain gene using a fixed-effect model 207 
based on Fisher's z transformation of correlation (Package meta (24)).  208 

Next, we computed the pathway activity score of the 50 hallmark gene sets (MsigDB) for each 209 
patient in the GEP cohorts, using the single sample Gene Set Enrichment Analysis (ssGSEA) 210 
algorithm (package GSVA) (25), The correlation between pathway activity and NK cell abundance 211 
as well as Stroma score were assessed with a similar meta-analysis framework described above. 212 

Soluble factors such as cytokines are key modulating factors of TME. Thus, we analyzed the 213 
differentially expressed (DE) cytokines according to the status of NK cells and Stroma score. We 214 
focused on 171 cytokine genes in the human cytokine-cytokine receptor interaction pathway 215 
(has:04060) of the KEGG database, out of which 110 cytokine genes were measured by all the 216 
GEP platforms. We used the limma (26) package to calculate the significant DE cytokine genes 217 
in the merged GEP cohort based on the NK cell and Stroma status. Genes with FDR < 0.01 and 218 
fold change > 1.5 were defined as the DE cytokines.  219 
  220 



6 
 

References: 221 

1. Cristescu R, Lee J, Nebozhyn M, Kim KM, Ting JC, Wong SS, et al. Molecular analysis of gastric 222 
cancer identifies subtypes associated with distinct clinical outcomes. Nat Med. 223 
2015;21(5):449-56. 224 

2. Ooi CH, Ivanova T, Wu J, Lee M, Tan IB, Tao J, et al. Oncogenic pathway combinations predict 225 
clinical prognosis in gastric cancer. Plos Genet. 2009;5(10):e1000676. 226 

3. Cheong J-H, Yang H-K, Kim H, Kim WH, Kim Y-W, Kook M-C, et al. Predictive test for 227 
chemotherapy response in resectable gastric cancer: a multi-cohort, retrospective analysis. 228 
The Lancet Oncology. 2018. 229 

4. Dai M, Wang P, Boyd AD, Kostov G, Athey B, Jones EG, et al. Evolving gene/transcript 230 
definitions significantly alter the interpretation of GeneChip data. Nucleic Acids Res. 231 
2005;33(20):e175. 232 

5. Davis S, and Meltzer PS. GEOquery: a bridge between the Gene Expression Omnibus (GEO) 233 
and BioConductor. Bioinformatics. 2007;23(14):1846-7. 234 

6. Miller JA, Cai C, Langfelder P, Geschwind DH, Kurian SM, Salomon DR, et al. Strategies for 235 
aggregating gene expression data: the collapseRows R function. BMC Bioinformatics. 236 
2011;12:322. 237 

7. Johnson WE, Li C, and Rabinovic A. Adjusting batch effects in microarray expression data 238 
using empirical Bayes methods. Biostatistics. 2007;8(1):118-27. 239 

8. Jiang Y, Zhang Q, Hu Y, Li T, Yu J, Zhao L, et al. ImmunoScore Signature: A Prognostic and 240 
Predictive Tool in Gastric Cancer. Ann Surg. 2018;267(3):504-13. 241 

9. Jiang Y, Xie J, Han Z, Liu W, Xi S, Huang L, et al. Immunomarker Support Vector Machine 242 
Classifier for Prediction of Gastric Cancer Survival and Adjuvant Chemotherapeutic Benefit. 243 
Clin Cancer Res. 2018;24(22):5574-84. 244 

10. Becht E, Giraldo NA, Lacroix L, Buttard B, Elarouci N, Petitprez F, et al. Estimating the 245 
population abundance of tissue-infiltrating immune and stromal cell populations using gene 246 
expression. Genome Biol. 2016;17(1):218. 247 

11. Ishwaran H, Kogalur UB, Blackstone EH, and Lauer MS. Random survival forests. The annals 248 
of applied statistics. 2008;2(3):841-60. 249 

12. Rooney MS, Shukla SA, Wu CJ, Getz G, and Hacohen N. Molecular and genetic properties of 250 
tumors associated with local immune cytolytic activity. Cell. 2015;160(1):48-61. 251 

13. Loboda A, Nebozhyn MV, Watters JW, Buser CA, Shaw PM, Huang PS, et al. EMT is the 252 
dominant program in human colon cancer. BMC medical genomics. 2011;4(1):9. 253 

14. Elyada E, Bolisetty M, Laise P, Flynn WF, Courtois ET, Burkhart RA, et al. Cross-Species 254 
Single-Cell Analysis of Pancreatic Ductal Adenocarcinoma Reveals Antigen-Presenting 255 
Cancer-Associated Fibroblasts. Cancer Discov. 2019;9(8):1102-23. 256 

15. Yoshihara K, Shahmoradgoli M, Martinez E, Vegesna R, Kim H, Torres-Garcia W, et al. 257 
Inferring tumour purity and stromal and immune cell admixture from expression data. 258 
Nature communications. 2013;4:2612. 259 

16. Cristescu R, Mogg R, Ayers M, Albright A, Murphy E, Yearley J, et al. Pan-tumor genomic 260 
biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science. 2018;362(6411). 261 

17. Cancer Genome Atlas N. Comprehensive molecular characterization of human colon and 262 
rectal cancer. Nature. 2012;487(7407):330-7. 263 

18. Pencina MJ, D'Agostino Sr RB, and Steyerberg EW. Extensions of net reclassification 264 
improvement calculations to measure usefulness of new biomarkers. Statistics in medicine. 265 
2011;30(1):11-21. 266 

19. Tan IB, Ivanova T, Lim KH, Ong CW, Deng N, Lee J, et al. Intrinsic subtypes of gastric cancer, 267 
based on gene expression pattern, predict survival and respond differently to 268 
chemotherapy. Gastroenterology. 2011;141(2):476-85, 85 e1-11. 269 



7 
 

20. López-Ratón M, Rodríguez-Álvarez MX, Cadarso-Suárez C, and Gude-Sampedro F. 270 
OptimalCutpoints: an R package for selecting optimal cutpoints in diagnostic tests. J Stat 271 
Softw. 2014;61(8):1-36. 272 

21. Hoshida Y. Nearest template prediction: a single-sample-based flexible class prediction with 273 
confidence assessment. PloS one. 2010;5(11). 274 

22. Liu Y, Sethi NS, Hinoue T, Schneider BG, Cherniack AD, Sanchez-Vega F, et al. Comparative 275 
Molecular Analysis of Gastrointestinal Adenocarcinomas. Cancer cell. 2018;33(4):721-35 e8. 276 

23. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH, et al. The Immune 277 
Landscape of Cancer. Immunity. 2018;48(4):812-30 e14. 278 

24. Schwarzer G. meta: An R package for meta-analysis. R news. 2007;7(3):40-5. 279 
25. Hänzelmann S, Castelo R, and Guinney J. GSVA: gene set variation analysis for microarray 280 

and RNA-seq data. BMC bioinformatics. 2013;14(1):7. 281 
26. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential 282 

expression analyses for RNA-sequencing and microarray studies. Nucleic acids research. 283 
2015;43(7):e47-e. 284 

  285 



8 
 

Supplementary Tables 286 

Table S1. Marker genes to calculate absolute abundance levels of TME cell types 287 
Gene symbols Cell population ENTREZID Gene symbols Cell population ENTREZID 

CD28 T cells 940 BANK1 B lineage 55024 
CD3D T cells 915 CD19 B lineage 930 
CD3G T cells 917 CD22 B lineage 933 
CD5 T cells 921 CD79A B lineage 973 
CD6 T cells 923 CR2 B lineage 1380 

CHRM3-AS2 T cells 100506915 FCRL2 B lineage 79368 
CTLA4 T cells 1493 IGKC B lineage 3514 

FLT3LG T cells 2323 MS4A1 B lineage 931 
ICOS T cells 29851 PAX5 B lineage 5079 
MAL T cells 4118 CD160 NK cells 11126 

MGC40069 T cells 348035 KIR2DL1 NK cells 3802 
PBX4 T cells 80714 KIR2DL3 NK cells 3804 
SIRPG T cells 55423 KIR2DL4 NK cells 3805 

THEMIS T cells 387357 KIR3DL1 NK cells 3811 
TNFRSF25 T cells 8718 KIR3DS1 NK cells 3813 

TRAT1 T cells 50852 NCR1 NK cells 9437 
CD8B CD8 T cells 926 PTGDR NK cells 5729 
CD8A Cytotoxic lymphocytes 925 SH2D1B NK cells 117157 

EOMES Cytotoxic lymphocytes 8320 ADAP2 Monocytic lineage 55803 
FGFBP2 Cytotoxic lymphocytes 83888 CSF1R Monocytic lineage 1436 

GNLY Cytotoxic lymphocytes 10578 FPR3 Monocytic lineage 2359 
KLRC3 Cytotoxic lymphocytes 3823 KYNU Monocytic lineage 8942 
KLRC4 Cytotoxic lymphocytes 8302 PLA2G7 Monocytic lineage 7941 
KLRD1 Cytotoxic lymphocytes 3824 RASSF4 Monocytic lineage 83937 
CD1A Myeloid dendritic cells 909 TFEC Monocytic lineage 22797 
CD1B Myeloid dendritic cells 910 ACVRL1 Endothelial cells 94 
CD1E Myeloid dendritic cells 913 APLN Endothelial cells 8862 

CLEC10A Myeloid dendritic cells 10462 BCL6B Endothelial cells 255877 
CLIC2 Myeloid dendritic cells 1193 BMP6 Endothelial cells 654 

WFDC21P Myeloid dendritic cells 645638 BMX Endothelial cells 660 
CA4 Neutrophils 762 CDH5 Endothelial cells 1003 

CEACAM3 Neutrophils 1084 CLEC14A Endothelial cells 161198 
CXCR1 Neutrophils 3577 CXorf36 Endothelial cells 79742 
CXCR2 Neutrophils 3579 EDN1 Endothelial cells 1906 
CYP4F3 Neutrophils 4051 ELTD1 Endothelial cells 64123 
FCGR3B Neutrophils 2215 EMCN Endothelial cells 51705 

HAL Neutrophils 3034 ESAM Endothelial cells 90952 
KCNJ15 Neutrophils 3772 ESM1 Endothelial cells 11082 
MEGF9 Neutrophils 1955 FAM124B Endothelial cells 79843 

SLC25A37 Neutrophils 51312 HECW2 Endothelial cells 57520 
STEAP4 Neutrophils 79689 HHIP Endothelial cells 64399 
TECPR2 Neutrophils 9895 KDR Endothelial cells 3791 

TLE3 Neutrophils 7090 MMRN1 Endothelial cells 22915 
TNFRSF10C Neutrophils 8794 MMRN2 Endothelial cells 79812 

VNN3 Neutrophils 55350 MYCT1 Endothelial cells 80177 
COL1A1 Fibroblasts 1277 PALMD Endothelial cells 54873 
COL3A1 Fibroblasts 1281 PEAR1 Endothelial cells 375033 
COL6A1 Fibroblasts 1291 PGF Endothelial cells 5228 
COL6A2 Fibroblasts 1292 PLXNA2 Endothelial cells 5362 

DCN Fibroblasts 1634 PTPRB Endothelial cells 5787 
GREM1 Fibroblasts 26585 ROBO4 Endothelial cells 54538 
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PAMR1 Fibroblasts 25891 SDPR Endothelial cells 8436 
TAGLN Fibroblasts 6876 SHANK3 Endothelial cells 85358 

   SHE Endothelial cells 126669 
   TEK Endothelial cells 7010 
   TIE1 Endothelial cells 7075 
   VEPH1 Endothelial cells 79674 
   VWF Endothelial cells 7450 

   288 
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Table S2. Multivariable Cox regression analysis of overall survival using the TME risk 289 
score, clinicopathologic factors and MSI status 290 

Variables 
ACRG cohort GSE15459 GSE84437 

HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value 

TME risk score 1.39 (1.19 - 1.63) 4.70×10-5 *** 1.44 (1.14 - 1.83) 0.0026 ** 1.41 (1.21 - 1.64) 1.20×10-5 *** 

Age  1.03 (1.01 - 1.04) 0.0017 ** 1.01 (0.99 - 1.03) 0.23 1.02 (1.01 - 1.03) 0.0039 ** 

Gender       

Female 1.00 - 1.00 - 1.00 - 

Male 1.23 (0.87 - 1.76) 0.24 0.84 (0.52 - 1.36) 0.47 1.29 (0.95 - 1.75) 0.098 

Stage       

I 1.00 - 1.00 - - - 

II 1.49 (0.57 - 3.89) 0.42 2.47 (0.76 - 8.05) 0.13 - - 

III 3.02 (1.18 - 7.79) 0.022 * 9.10 (3.17 - 26.09) 4.00×10-5 *** - - 

IV 6.96 (2.73 - 17.74) 4.90×10-5 *** 23.64 (8.05 - 69.38) 8.50×10-9 *** - - 

Lauren classification       

Diffuse/Mixed 1.00 - 1.00 - - - 

Intestinal 0.70 (0.49 - 1.00) 0.049 * 1.22 (0.77 - 1.92) 0.41 - - 

MS status       

Stable 1.00 - 1.00 - 1.00 - 

Instable 0.75 (0.47 - 1.21) 0.23 1.51 (0.86 - 2.66) 0.15 1.07 (0.74 - 1.56) 0.72 

Chemotherapy       

No 1.00 - - - - - 

Yes 0.48 (0.34 - 0.70) 8.60×10-5 *** - - - - 

  291 
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Table S3. Top 20 genes positively correlated with NK cell abundance in a meta-analysis 292 
of the combined GEP cohorts 293 

Gene 
symbol 

Pearson’s 
correlation 

Gene name Alias 

KLRC1 0.73 killer cell lectin like receptor C1 CD159A, NKG2, NKG2A, KLRC1 

KIR3DL2 0.69 
killer cell immunoglobulin like rece
ptor, three Ig domains and long cy

toplasmic tail 2 

3DL2, CD158K, KIR-3DL2, NKAT-
4, NKAT4, NKAT4B, p140, KIR3DL2 

FASLG 0.68 Fas ligand 
ALPS1B, APT1LG1, APTL, CD178, CD95-

L, CD95L, FASL, TNFSF6, TNLG1A, FASLG 

SLA2 0.67 Src like adaptor 2 C20orf156, MARS, SLAP-2, SLAP2, SLA2 

KLRC3 0.66 killer cell lectin like receptor C3 NKG2-E, NKG2E, KLRC3 

PRF1 0.66 perforin 1 HPLH2, P1, PFP, PRF1 

KLRC2 0.64 killer cell lectin like receptor C2 CD159c, NKG2-C, NKG2C, KLRC2 

CD244 0.63 CD244 molecule 2B4, NAIL, NKR2B4, Nmrk, SLAMF4, CD244 

GZMA 0.63 granzyme A CTLA3, HFSP, GZMA 

TARP 0.62 
TCR gamma alternate reading fra

me protein 
CD3G, TCRG, TCRGC1, TCRGC2, TCRGV, TA

RP 

IFNG 0.62 interferon gamma IFG, IFI, IFNG 

APOBEC3
H 

0.62 
apolipoprotein B mRNA editing en

zyme catalytic subunit 3H 
A3H, ARP-10, ARP10, APOBEC3H 

KLRD1 0.61 killer cell lectin like receptor D1 CD94, KLRD1 

GBP5 0.61 guanylate binding protein 5 GBP-5, GBP5 

IL12RB1 0.60 
interleukin 12 receptor subunit bet

a 1 
CD212, IL-12R-

BETA1, IL12RB, IMD30, IL12RB1 

ZNF683 0.60 zinc finger protein 683 Hobit, ZNF683 

GZMB 0.60 granzyme B 
C11, CCPI, CGL-1, CGL1, CSP-

B, CSPB, CTLA1, CTSGL1, HLP, SECT, GZMB 

GNLY 0.59 granulysin D2S69E, LAG-2, LAG2, NKG5, TLA519, GNLY 

LAG3 0.59 lymphocyte activating 3 CD223, LAG3 
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Table S4. Top pathways correlated with NK cell abundance or Stroma score in a meta-295 
analysis of the combined GEP cohorts  296 
 297 

Pathways positively correlated with NK cell 
abundance 

Pathways positively correlated with stroma score 

Rank r Pathways Rank r Pathways 

1 0.52 INTERFERON_GAMMA_RESPONSE 1 0.91 
EPITHELIAL_MESENCHYMAL_TRA

NSITION 
2 0.51 ALLOGRAFT_REJECTION 2 0.85 UV_RESPONSE_DN 
3 0.48 INTERFERON_ALPHA_RESPONSE 3 0.84 APICAL_JUNCTION 
4 0.44 IL6_JAK_STAT3_SIGNALING 4 0.83 MYOGENESIS 
5 0.40 COMPLEMENT 5 0.76 ANGIOGENESIS 
6 0.38 INFLAMMATORY_RESPONSE 6 0.73 KRAS_SIGNALING_UP 
7 0.33 PI3K_AKT_MTOR_SIGNALING 7 0.68 COAGULATION 
8 0.29 APOPTOSIS 8 0.65 HYPOXIA 
9 0.29 IL2_STAT5_SIGNALING 9 0.62 IL2_STAT5_SIGNALING 

10 0.29 TNFA_SIGNALING_VIA_NFKB 10 0.62 TGF_BETA_SIGNALING 

Pathways negatively correlated with NK cell 
abundance 

Pathways positively correlated with stroma score 

Rank r Pathways Rank r Pathways 

1 -0.28 HEDGEHOG_SIGNALING 1 -0.61 E2F_TARGETS 
2 -0.27 MYOGENESIS 2 -0.61 MYC_TARGETS_V2 
3 -0.24 WNT_BETA_CATENIN_SIGNALING 3 -0.59 G2M_CHECKPOINT 
4 -0.20 UV_RESPONSE_DN 4 -0.56 DNA_REPAIR 
5 -0.20 ADIPOGENESIS 5 -0.55 MYC_TARGETS_V1 
6 -0.20 BILE_ACID_METABOLISM 6 -0.51 SPERMATOGENESIS 
7 -0.19 NOTCH_SIGNALING 7 -0.40 UNFOLDED_PROTEIN_RESPONSE 
8 -0.18 PANCREAS_BETA_CELLS 8 -0.38 MTORC1_SIGNALING 
9 -0.14 TGF_BETA_SIGNALING 9 -0.37 OXIDATIVE_PHOSPHORYLATION 

10 -0.13 
EPITHELIAL_MESENCHYMAL_TRAN

SITION 
10 -0.33 PEROXISOME 
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Supplementary Figures 299 

Figure S1. The workflow of this study.  300 

 301 
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Figure S2. Prognostic effects of the major cellular components of the TME and their 303 
pairwise correlation in the ACRG discovery cohort (A) Univariate Cox regression analysis 304 
revealed that the absolute abundance levels of NK cells, fibroblasts, and endothelial cells were 305 
prognostic of overall survival with a pre-specified statistical significance P < 0.05. (B) Univariate 306 
Cox regression analysis with stage and chemotherapy adjusted revealed that the absolute 307 
abundance levels of NK cells, endothelial cells, and fibroblasts were prognostic of overall survival 308 
with a pre-specified statistical significance P < 0.05. (C) The abundance levels of NK cells, 309 
fibroblasts and endothelial cells were the most important features in the random survival forest 310 
model for predicting overall survival. Turquoise color corresponds to positive feature importance 311 
and coral color corresponds to negative features importance. (D) Endothelial cells, fibroblasts, 312 
and the stroma score were all highly correlated with each other. By contrast, NK cells were 313 
uncorrelated to endothelial cells, fibroblasts, and the stroma score. Hazard ratios (HR), 314 
confidence intervals (CI) and P values in A and B were estimated by Cox regression.  315 
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Figure S3. Correlation of NK cells or stroma scores with T cells and other gene signatures 317 

 318 
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Figures S4. Bivariate Cox regression on the merged GEP and IHC cohorts. Bivariate Cox 320 
regression indicated that NK cell abundance and stroma score were independent prognostic 321 
factors in the merged GEP validation cohorts (GSE15459 and GSE84437) (A) and merged IHC 322 
validation cohorts (B). Hazard ratios (HR), confidence interval (CI) and P values were estimated 323 
by Cox regression. 324 
 325 
 326 
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Figure S5. Cox regression P values at different cutoffs of the TME risk score. (A) The TME 328 
risk score of 1.78 (vertical red line) was chosen as the cutoff for GEP cohorts, based on the 329 
minimal Cox regression P value in the ACRG cohort. (B) The TME risk score of 0.59 (vertical 330 
red line) was chosen as the cutoff for IHC cohorts, based on the minimal Cox regression P 331 
value in the SMU1 cohort. 332 
 333 
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Figures S6. The prognostic effects of the TME risk score in patients within each 335 
pathological stage in the combined GEP cohorts. A high TME risk score was consistently 336 
associated with worse overall survival in patients with stage I (A), stage II (B), stage III (C), and 337 
stage IV (D) GC in the merged GEP cohorts (ACRG and GSE15459). Hazard ratios (HR) and 338 
confidence intervals (CI) were estimated by Cox regression. P values were generated by log-rank 339 
test. 340 

 341 
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Figure S7. The prognostic effect of the TME risk score in patients treated with surgery only 342 
and without chemotherapy. A high TME risk score was associated with worse overall survival 343 
in patients who received surgery alone in the ACRG (A), SMU1 (B), SMU2 (C), and SYSU (D) 344 
cohorts. HR and confidence intervals were estimated by Cox regression. P values were generated 345 
by log-rank test. 346 
 347 
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Figure S8. Predictive relevance of the TME risk score for the benefit of chemotherapy in 349 
unmatched stage I-III gastric cancer. (A) Patients with a high TME risk score derived a 350 
significant survival benefit from adjuvant chemotherapy at 5 years. However, patients with a low 351 
TME risk score did not benefit from adjuvant chemotherapy (B). Hazard ratios (HR) and 352 
confidence intervals (CI) were estimated by Cox regression. P values were generated by log-rank 353 
test. The P value for the interaction between the TME risk group and adjuvant chemotherapy was 354 
0.0965. 355 
 356 

 357 
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Figure S9. Complementary prognostic value of the TME subtypes to the intrinsic subtypes 359 

for gastric cancer. P values were generated by log-rank test. 360 
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Figure S10. Genomic features significantly associated with NK cell infiltration status. 362 

 363 
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Figure S11. Differential mutation status of TP53 and PIK3CA in patients with different MSI 365 
or T-cell inflamed levels. P values were generated by Chi-squared tests. 366 

 367 
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Figure S12. Genomic features significantly associated with Stroma status. 369 
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Figure S13. Genomic features correlated with both NK and stroma status 371 
 372 
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Figure S14. Genomic features correlated with NK or stroma status in the patients with 374 
CIN from the TCGA cohort.  375 
 376 

 377 
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Figure S15. Top hallmark pathways correlated with NK cell abundance 379 
 380 
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Figure S16. Top hallmark pathways correlated with Stroma score  382 
 383 

  384 



29 
 

Figure S17. Differentially expressed cytokines in different NK (A) and Stroma (B) groups. 385 

 386 
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