| Genes                | Forward primer (5'-3')  | Reverse primer (5'-3')      |
|----------------------|-------------------------|-----------------------------|
| 18s                  | ACGGAAGGGCACCACCAGGA    | CACCACCACCGGAATCG           |
| Ly6g                 | TGCGTTGCTCTGGAGATAGA    | CAGAGTAGTGGGGCAGATGG        |
| F4/80                | CTTTGGCTATGGGCTTCCAGTC  | GCAAGGAGGACAGAGTTTATCGTG    |
| Bak                  | AGACCTCCTCTGTGTCCTGG    | AAAATGGCATCTGGACAAGG        |
| Bax                  | GATCAGCTCGGGCACTTTAG    | TTGCTGATGGCAACTTCAAC        |
| Bim                  | GCTCCTGTGCAATCCGTATC    | GCCCCTACCTCCCTACAGAC        |
| Chop                 | GACCAGGTTCTGCTTTCAGG    | CAGCGACAGAGCCAGAATAA        |
| Gadd34               | GGAGATAGAAGTTGTGGGCG    | TTTTGGCAACCAGAACCG          |
| Ero1a                | CACAGGTACAGTCGTCCAGGT   | CTTGCTCGTTGGACTCCTG         |
| Ero1b                | TGACAAAAAGGGGGCCAAGT    | TATCGCACCCAACACAGTCC        |
| Pdi                  | CCCCGTGTGTGGAAAAGAGA    | AGCCACAGAGTAATGTGCCC        |
| ll1b                 | TCGCTCAGGGTCACAAGAAA    | CATCAGAGGCAAGGAGGAAAAC      |
| 116                  | TCCATCCAGTTGCCTTCTTG    | TTCCACGATTTCCCAGAGAAC       |
| Tnfa                 | AGGCTGCCCCGACTACGT      | GACTTTCTCCTGGTATGAGATAGCAAA |
| Vcam1                | TGAACCCAAACAGAGGCAGAGT  | GGTATCCCATCACTTGAGCAGG      |
| lcam1                | CAATTTCTCATGCCGCACAG    | AGCTGGAAGATCGAAAGTCCG       |
| Mcp1                 | TCTGGACCCATTCCTTCTTGG   | TCAGCCAGATGCAGTTAACGC       |
| Mip1a                | TGAGAGTCTTGGAGGCAGCGA   | TGTGGCTACTTGGCAGCAAACA      |
| Mip1b                | AACACCATGAAGCTCTGCGT    | AGAAACAGCAGGAAGTGGGA        |
| p47 <sup>phox</sup>  | TCCTCTTCAACAGCAGCGTA    | CTATCTGGAGCCCCTTGACA        |
| p67 <sup>phox</sup>  | TCTATCAGCTGGTTCCCACG    | CTATCTGGAGCCCCTTGACA        |
| p40 <sup>phox</sup>  | ATCGTCTGGAAGCTGCTCAA    | CCCATCCATCTGCTTTTCTG        |
| p22 <sup>phox</sup>  | ATGGAGCGATGTGGACAGAAG   | TAGATCACACTGGCAATGGCC       |
| gp91 <sup>phox</sup> | GACCATTGCAAGTGAACACCC   | AAATGAAGTGGACTCCACGCG       |
| Mt1                  | AAGAGTGAGTTGGGACACCTT   | CGAGACAATACAATGGCCTCC       |
| Mt2                  | GCCTGCAAATGCAAACAATGC   | AGCTGCACTTGTCGGAAGC         |
| Rab11a               | TGGGAAAACAATAAAGGCACAGA | ATGTGAGATGCTTAGCAATGTCA     |
| Rab11b               | ATTCAAAGTGGTGCTTATTGGGG | TCCGATGGTACTCTTGCTCTC       |
| Rab35                | CCACAATCGGAGTGGATTTCA   | CGTCGTAAACCACAATGACCC       |
| Rab5b                | TGGGTAAAGGAACTACAGCGG   | GGCCACCTTACTTCATACTCCA      |
| Rab27a               | TCGGATGGAGATTACGATTACCT | TTTTCCCTGAAATCAATGCCCA      |
| Rab27b               | CGTCAGGAAAAGCGTTTAAGGT  | AGAAGCTCTGTTGACTGGTGA       |
| Vamp7                | GACAACTTACGGTTCAAGAGCA  | TCTCCACGTTGAGCAACTAAATC     |
| Vamp8                | AGTGGGAGTGCCGGAAATG     | TGAAGTGTTCAGACGTGGCTT       |
| Hgs                  | TTCGAGCGTCTCCTAGACAAA   | GCTTGTGTGTCCCCCTGAC         |
| Pdcd61p              | TAGTGTTTGCACGGAAGACAG   | GGGAGGACTGATAGGCTGGA        |
| Tsg101               | TCTAACCGTCCGTCAAACTGT   | TTGTACCAGTGAGGTTCACCA       |
| Stam1                | ACCCCTTCGACCAGGATGTT    | CCACAGTTTGATACACATGCTCC     |
| Vta1                 | AAGAGCATACAGCACCATTTGA  | GCTTCATTATCCCCCAACTGTTT     |
| Ykt6                 | AGTCAACTGATTGTGGAACGC   | TCTGGAAGGGTATTCGCTGTC       |
| nSmase2              | ACACGACCCCCTTTCCTAATA   | GGCGCTTCTCATAGGTGGTG        |
| Bcl2                 | GTCGCTACCGTCGTGACTTC    | CAGACATGCACCTACCCAGC        |
| Bclxl                | GACAAGGAGATGCAGGTATTGG  | TCCCGTAGAGATCCACAAAAGT      |



**Supporting Fig. S1:** *Mt* expression in different alcohol injury models. (A) C57BL6 N mice were pair-fed or fed an ethanol diet for 10 days or one binge (1B). *Mt1* and *Mt2* levels in liver tissue were examined by RT-qPCR. (B) C57BL6 N mice were fed chow diet for 3 months, chow diet for 3 months plus one binge, high fat diet (HFD) for 3 months or HFD for 3 months plus binge. *Mt1* and *Mt2* levels in liver tissue were examined by RT-qPCR. (C) Different tissues from control, maltose or one binge groups were subjected to RT-qPCR for *Mt1* expression. (D) Different tissues from control, maltose or one binge groups were subjected to RT-qPCR for *Mt2* expression. Values represent mean±SEM. Statistical evaluation was performed by Student's t-test or one-way ANOVA with Tukey's post hoc test for multiple comparisons. (\*\*p<0.01)



**Supporting Fig. S2:** Infiltration of neutrophils and macrophages in the liver of  $Mt1/2^{-/-}$  mice subjected to E10d+1B treatment. Mice were subjected to chronic-plus-binge ethanol feeding or pair-feeding. Mice were euthanatized 9 hours post gavage. Liver tissues from WT and  $Mt1/2^{-/-}$  were subjected to immunostaining with an anti-MPO or anti-F4/80 antibody. Representative photographs are shown (scale bar:100µm).



**Supporting Fig. S3:** Representative images of oxidative stress and stress kinase activation staining in the livers of E10+1B model (scale bar:200µm). C57BL6N mice were pair-fed or ethanol diet for 10 day (E10d) or 10 day plus one binge (E10d+1B) and were euthanized 9 hours after gavage. (A) Liver tissues were subjected to immunostaining with anti-MDA and anti-4-HNE antibodies. (B) Liver tissues were subjected to immunostaining with anti-p-ASK1 and p-p38 antibodies.





**Supporting Fig. S4:** Deletion of *Ask1* ameliorates chronic-plus-binge ethanol-induced liver injury. WT and *Ask1*<sup>-/-</sup> mice were subjected to E10d+1B feeding and were euthanized 9 hours after gavage. (A) Liver tissues were subjected to western blot analysis of p-p38, p38, p-JNK, JNK, p-STAT3 and STAT3 and  $\beta$ -actin; (B) Circulating neutrophil numbers were counted. (C) Liver tissues were subjected to immunostaining of MPO and F4/80. Representative photographs are shown on the left (scale bar:100µm). The number of MPO<sup>+</sup> cells and the percentage of F4/80<sup>+</sup> area were quantified on the right. Hepatic *Ly6g* and *F4/80* were detected by real-time PCR and were shown on the right; (D, E, F) Liver tissues were subjected to RT-qPCR analyses of inflammatory cytokine genes (panel D), ROS-associated genes (panel E), ER-stress-associated genes (panel F). (G) Liver tissues were subjected to TUNEL staining. Representative images are shown. Values represent mean ± SEM. Statistical evaluation was performed by Student's t-test. (\*p<0.05; \*\*p<0.01; \*\*\*p<0.001)





**Supporting Fig. S5:** Inhibition of ASK1 ameliorates chronic-plus-binge ethanol-induced liver injury. C57BL/6J mice were subjected to E10d+1B feeding and received i.p. injection of ASK1 inhibitors (GS-4997 at 3mg/kg; NQDI-1 at 4mg/kg) 30min before gavage. Mice were euthanized 9 hours after gavage. (A) Western blot analysis of p-ASK1, ASK1, p-p38, p38 and  $\beta$ -Actin. (B, C, D) Liver tissues were subjected to RT-qPCR analyses of inflammatory genes (panel B), reactive oxygen speices (ROS)-associated genes (panel C), and ER-stress-associated genes (panel D). (E) Liver tissues were subjected to TUNEL staining. Representative images are shown. Values represent mean ± SEM. Statistical evaluation was performed by Student's t-test or one-way ANOVA with Tukey's post hoc test for multiple comparisons. (\*p<0.05; \*\*p<0.01; \*\*\*p<0.001).





Supporting Fig. S6: Hepatocyte-specific deletion of p38a gene ameliorates chronicplus-binge ethanol-induced liver injury. WT and p38aHep-/- mice were subjected to E10d+1B feeding and were euthanized 9 hours after gavage. Liver tissues were subjected to RT-gPCR analyses of ROS-associated genes (panel A) and ER-stress-associated genes (panel B). Values represent mean ± SEM. Statistical evaluation was performed by Student's t-test. (\*\*p<0.01).

Α



**Supporting Fig. S7:** Inhibition of p38 ameliorates chronic-plus-binge ethanolinduced liver injury. C57BL/6J mice were subjected to E10d+1B feeding and received i.p. injection of p38 inhibitors (LY2228820 at 3mg/kg, PH797804 at 12mg/kg and SB239063 at 10mg/kg) 30min before gavage. Mice were euthanized 9 hours after gavage. (A) Liver tissues were subjected to western blot analysis of p-ASK1, ASK1, pp38, p38 and  $\beta$ -actin; (B, C) Liver tissues were subjected to RT-PCR analyses of ROSassociated genes (panel B) and ER-stress-associated genes (panel C). Values represent mean  $\pm$  SEM. Statistical evaluation was performed by Student's t-test or one-way ANOVA with Tukey's post hoc test for multiple comparisons. (\*p<0.05; \*\*p<0.01; \*\*\* p<0.001).



**Supporting Fig. S8:** EVs derived from E10d+1B treated WT but not  $Ask1^{-/-}$  mice induce neutrophilia in E10d-treated mice. E10d-fed B6J mice were i.v. injected with EVs isolated from either E10d + 1B treated WT or  $Ask1^{-/-}$  mice. Mice were euthanized 9 hours after injection. (A) Serum ALT levels and (B) the numbers and percentage of peripheral neutrophils were measured (n = 5 per group). Student's t test was performed. \*\*\*p< 0.001.



**Supporting Fig. S9:** Inhibition of ASK1 and p38 kinases attenuates the expression of EV biogenesis induced by ethanol in AML12 cells. AML12 cells were pretreated with GS-4997 (30 $\mu$ M, 1 hr) or LY2228820 (2  $\mu$ M, 1 hr) and then exposed to ethanol (100mM) for 24h. AML12 cells were collected for western blot analysis of nSMase2, ALIX, Rab27A and  $\beta$ -Actin. Statistical evaluation was performed by Student's t-test. (\*p<0.05; \*\*\*p<0.001). PBS: phosphate-buffered solution.