
Reactive astrocyte-driven epileptogenesis is induced by microglia initially activated following status epilepticus

Fumikazu Sano, Eiji Shigetomi, Youichi Shinozaki, Haruka Tsuzukiyama, Kozo Saito, Katsuhiko Mikoshiba, Hiroshi Horiuchi, Dennis Lawrence Cheung, Junichi Nabekura, Kanji Sugita, Masao Aihara, Schuichi Koizumi

JCI Insight. 2021. <https://doi.org/10.1172/jci.insight.135391>.

Research In-Press Preview **Neuroscience**

Graphical abstract

Find the latest version:

<https://jci.me/135391/pdf>

1 **Reactive astrocyte-driven epileptogenesis is induced by microglia initially**
2 **activated following status epilepticus**

3

4 Fumikazu Sano^{1,2, 3}, Eiji Shigetomi^{1,3}, Youichi Shinozaki^{1,3}, Haruka
5 Tsuzukiyama¹, Kozo Saito^{1,3,4}, Katsuhiko Mikoshiba⁵, Hiroshi Horiuchi⁶, Dennis
6 Lawrence Cheung⁶, Junichi Nabekura⁶, Kanji Sugita², Masao Aihara², Schuichi
7 Koizumi^{1,3*}

8

9 1 Department of Neuropharmacology, Interdisciplinary Graduate School of
10 Medicine, University of Yamanashi, Yamanashi, Japan,

11 2 Department of Pediatrics, Faculty of Medicine, University of Yamanashi,
12 Yamanashi, Japan,

13 3 GLIA Center, Interdisciplinary Graduate School of Medicine, University of
14 Yamanashi, Yamanashi, Japan,

15 4 Department of Neurology, Graduate School of Medical Science, Kyoto
16 Prefectural University of Medicine, Kyoto, Japan,

17 5 Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech
18 University, Shanghai, China

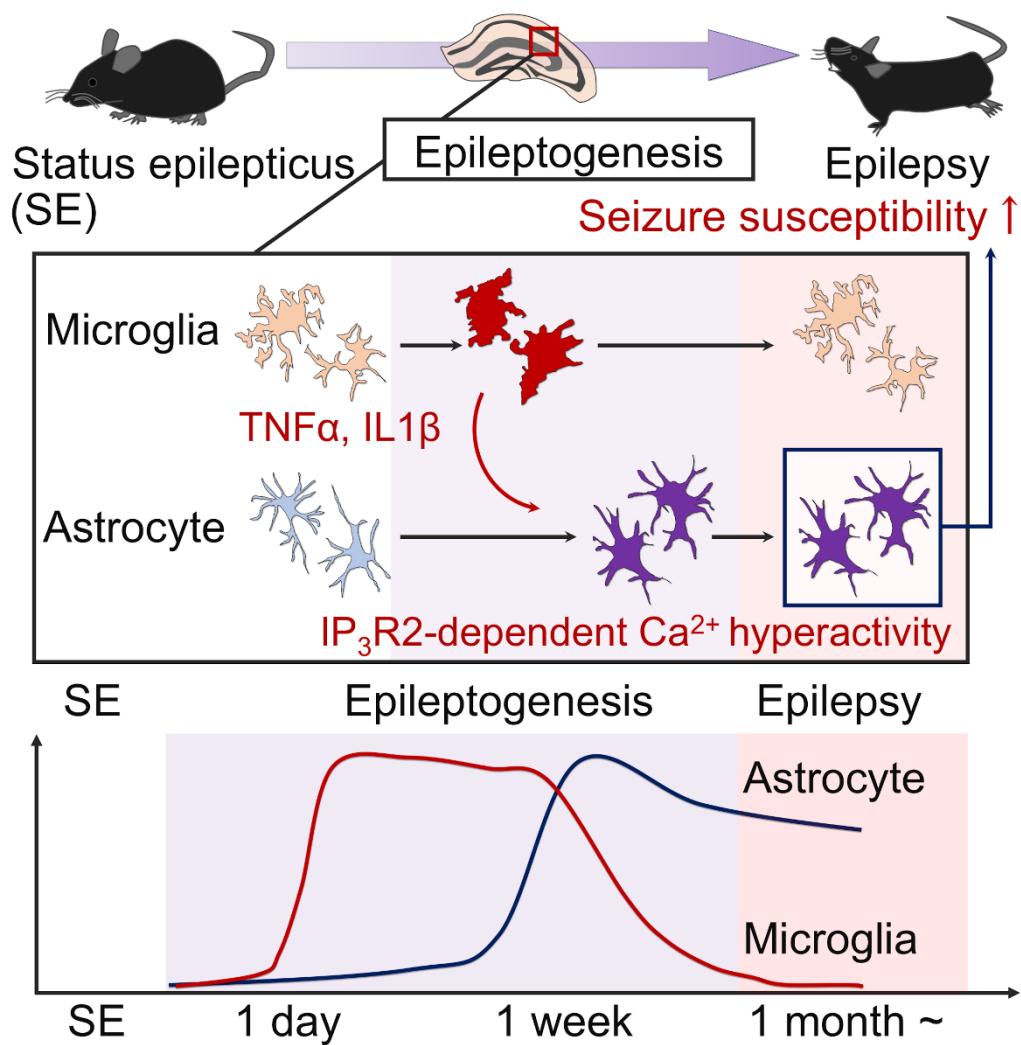
19 6 Division of Homeostatic Development, National Institute for Physiological
20 Sciences, Okazaki, Japan

21

22 *Corresponding Author: Schuichi Koizumi, University of Yamanashi, 1110 Chuo,
23 Yamanashi, 409-3898, Japan.

24 Phone: +81-55-273- 9503; Email: skoizumi@yamanashi.ac.jp.

25


26 **Conflicts of interest:** The authors have declared that no conflict of interest
27 exists.

28

29 **Abstract**

30 Extensive activation of glial cells during a latent period has been well
31 documented in various animal models of epilepsy. However, it remains unclear
32 whether activated glial cells contribute to epileptogenesis; i.e., the chronically
33 persistent process leading to epilepsy. Particularly, it is not clear whether inter-
34 glial communication between different types of glial cells contributes to
35 epileptogenesis, as past literature mainly focused on one type of glial cell. Here,
36 we show that temporally distinct activation profiles of microglia and astrocytes
37 collaboratively contribute to epileptogenesis in a drug-induced status epilepticus
38 model. We found that reactive microglia appeared first, followed by reactive
39 astrocytes and increased susceptibility to seizures. Reactive astrocytes
40 exhibited larger Ca^{2+} signals mediated by $\text{IP}_3\text{R}2$, whereas deletion of this type
41 of Ca^{2+} signaling reduced seizure susceptibility after status epilepticus.
42 Immediate, but not late, pharmacological inhibition of microglial activation
43 prevented subsequent reactive astrocytes, aberrant astrocyte Ca^{2+} signaling,
44 and the enhanced seizure susceptibility. These findings indicate that the
45 sequential activation of glial cells constitutes a cause of epileptogenesis after
46 status epilepticus. Thus, our findings suggest that the therapeutic target to

47 prevent epilepsy after status epilepticus should be shifted from microglia (early
 48 phase) to astrocytes (late phase).

49
 50

51 **Introduction**

52 Epileptogenesis; i.e., the process leading to epilepsy, is a common sequel of
53 brain insults such as brain injury, cerebrovascular disease, or status epilepticus
54 (SE) (1,2). Such brain insults are typically followed by a latent period, during
55 which the brain undergoes a cascade of morphological and functional changes
56 over month to years prior to the onset of chronic epilepsy (3,4). Extensive
57 activation of glial cells, including microglia and astrocytes, has been well
58 documented during this latent period in various animal models of epilepsy (5–7).
59 Although the association of pathology with reactive glial cells is widely
60 recognized, it is unclear whether such microglial and astrocytic activation
61 constitutes primary causes of epilepsy or rather represents the results of
62 repeated seizures. Moreover, the potential for these reactive glial cells to
63 comprise candidates for epileptogenesis raises the further mechanistic question
64 regarding whether activated glial cells might contribute to epileptogenesis
65 independently or collaboratively.

66 In chemoconvulsant-induced epilepsy models, microglia are activated and
67 produce pro-inflammatory mediators immediately following seizure onset (8).
68 Activated microglia can decrease the seizure threshold in animal models by
69 releasing pro-inflammatory molecules with neuromodulatory properties (9).

70 Notably, the extent of microglial activation correlates with the seizure frequency
71 in human drug-resistant epilepsy (10). Alternatively, such microglial activation
72 may not persist chronically. For example, pro-inflammatory molecules are
73 detectable in microglia following a seizure but the expression diminishes after
74 several hours (11). Furthermore, although the activation of microglia is well
75 characterized, it is unclear whether these activated microglia affect developing
76 epileptogenic processes directly or through the modulation of other cells, such
77 as subsequent astrocytic activation.

78 Reactive astrogliosis is also one of the most common pathological features
79 in epilepsy and other brain insults (12,13). Although reactive astrogliosis is
80 considered the consequence of repetitive seizures, some evidence that reactive
81 astrocytes may be responsible for repetitive seizures is available. In the
82 epileptic brain, reactive astrocytes exhibit physiological and molecular changes,
83 such as reduced inward rectifying K^+ current (14), changes in transporters (15),
84 release of gliotransmitters (16), or uncoupling of gap junction (17), that may
85 underlie neuronal hyperexcitability (18). Although astrocytes do not exhibit
86 prominent electrical excitability as observed in neurons, they are able to
87 dynamically regulate calcium using internal stores (19,20). Calcium transients in

88 astrocytes are thought to modulate the release of a number of gliotransmitters
89 that could influence synaptic function, synapse formation (21–24), and neural
90 circuit excitability (25-27). In particular, several previous studies showed that
91 astrocyte calcium activity could contribute to excitotoxic neuronal death through
92 glutamate release following SE (28,29). However, the functional changes
93 including Ca^{2+} signaling of reactive astrocytes after SE and their causal roles in
94 epileptogenesis remain largely uncertain.

95 To evaluate the role of inter-glial communication between different types of
96 glial cells in the process of epileptogenesis, we assessed the spatiotemporal
97 dynamics of glial activation following SE. Using cell-type specific manipulation,
98 we show that relative alterations of both, microglia and astrocytes, play causal
99 roles in epileptogenesis. Moreover, reactive glia are temporally distinct and
100 collaboratively contribute to epileptogenesis. Reactive microglia appear first and
101 induce reactive astrocytes in the hippocampus after SE. These reactive
102 astrocytes present larger $\text{IP}_3\text{R2}$ -mediated Ca^{2+} signals, which are essential for
103 induction of the increased seizure susceptibility after SE. We clearly
104 demonstrate that inhibition of microglial activation reduces astrogliosis, aberrant
105 astrocytic Ca^{2+} signaling, and seizure susceptibility. We therefore conclude that

106 the sequential activation of glial cells; i.e., the initial activation of microglia
107 followed by astrocytic activation, is a cause of epileptogenesis after SE.

108

109 **Results**

110 **Astrocytic activation follows microglial activation after SE**
111 To determine the contributions of glial cells to epileptogenesis, we used the
112 pilocarpine model of epilepsy in mice, a model known to be highly isomorphic
113 with human temporal lobe epilepsy (30,31). Repeated low doses of pilocarpine
114 (100 mg kg^{-1}) were injected intraperitoneally (i.p.) until the onset of SE (Fig 1A).
115 This ramping protocol has been shown to reduce mortality after SE (32,33). To
116 investigate how glial cell activation affects the epileptogenic process, we first
117 examined the spatiotemporal pattern of microglial and astrocytic activation in
118 the hippocampus following SE. We initially assessed microglial and astrocytic
119 activation with immunohistochemistry using cell-type-specific activation markers
120 at 1, 3, 7, and 28 days after SE (Fig 1B and 1D). The area of Iba1-positive
121 microglia was significantly increased in CA1 from 1 to 7 days after SE, which
122 was followed by an increase in the area of GFAP-positive astrocytes in CA1
123 from 3 to 28 days after SE (Fig 1C and 1E).

124 Out of the twenty-nine animals treated with pilocarpine, ten survived the
125 treatment and received a second treatment, 4 weeks after the first SE, to
126 examine whether the first SE increased seizure susceptibility (the lethality in the
127 first SE was 55.2%). A lower dose of pilocarpine was required for the induction
128 of the second SE in mice with prior exposure to pilocarpine-induced SE at 8
129 weeks of age (PP) compared to those without such exposure (SP) (Fig 1F). In
130 addition, a lower dose of pilocarpine was required for the induction of the
131 second SE compared to the first SE (Fig 1G). To measure the ictal and the
132 interictal epileptiform activity, we performed EEG recordings of the left CA1 area
133 of the dorsal hippocampus. Interictal spikes significantly increased 7 and 28
134 days after SE (S1 Fig A, B, C, and F). These data indicated that the first SE
135 increased seizure susceptibility even 4 weeks after the first SE. A comparison
136 with the results in Fig 1 suggested that the temporal pattern of astrocyte
137 activation, rather than that of microglia, correlates well with the increase of
138 seizure susceptibility.

139

140 **Ca²⁺ hyperactivity via IP₃R2 in reactive astrocytes after SE**
141 To examine the SE-induced functional changes in astrocytes, Ca²⁺ imaging was

142 performed from hippocampal slices prepared from wild-type (WT) and Glast-
143 CreERT2::flx-GCaMP3 mice (34,35). Astrocytes displayed significantly larger
144 Ca²⁺ signals approximately 4 weeks after SE in somata (Fig 2J, 2K, and 2L) (S1
145 Movie). To test whether hyperactivity of astrocytes is influenced by neuronal
146 hyperactivity, we blocked neuronal transmission by topically applying the
147 voltage-gated sodium channel blocker tetrodotoxin (TTX; 1 μM). TTX did not
148 affect the amplitude of astrocytic Ca²⁺ signals (Fig 2A, 2D, and 2E) (S2 Movie).
149 To elucidate the molecular mechanisms involved in astrocytic Ca²⁺
150 hyperactivity, we applied cyclopiazonic acid (CPA; 20 μM) to deplete
151 intracellular calcium stores. CPA significantly reduced the amplitude of
152 astrocytic Ca²⁺ signals after SE (Fig 2B, 2F, and G) (S2 Movie). Then, we
153 applied the membrane-permeable IP₃ receptor antagonist 2-
154 aminoethoxydiphenyl borate (2-APB; 100 μM). 2-APB also significantly reduced
155 the amplitude of astrocytic Ca²⁺ signals after SE (Fig 2C, 2H, and 2I) (S4
156 Movie). To confirm that astrocytic Ca²⁺ hyperactivity is completely dependent on
157 the IP₃ receptor, we performed Ca²⁺ imaging in IP₃R2 knockout (KO) mice (36).
158 The amplitude of astrocytic Ca²⁺ signals after SE was significantly decreased in
159 IP₃R2KO mice compared with that in WT (Fig 2J, 2K, 2L, 2M, and 2N). The

160 frequency of astrocytic Ca^{2+} signals after SE was also significantly decreased in
161 $\text{IP}_3\text{R2KO}$ mice (Fig 2M and 2N) (S1 Movie). These results suggested that
162 astrocytic Ca^{2+} hyperactivity after SE should be dependent on $\text{IP}_3\text{R2}$ -mediated
163 Ca^{2+} release from internal stores.

164

165 **$\text{IP}_3\text{R2KO}$ mice exhibit rescue of the increased seizure susceptibility**
166 To clarify the role of astrocytic Ca^{2+} hyperactivity after SE in epileptogenesis, we
167 investigated seizure susceptibility after SE in $\text{IP}_3\text{R2KO}$ mice (36). No
168 differences in the dose of pilocarpine required for the induction of the first SE
169 were observed between $\text{IP}_3\text{R2KO}$ and WT mice (Fig 1F and 2O). These data
170 indicated that $\text{IP}_3\text{R2}$ -mediated Ca^{2+} signaling in astrocytes does not alter the
171 acute responses to pilocarpine.

172 In $\text{IP}_3\text{R2KO}$ mice, the area of Iba1-positive microglia was significantly
173 increased in CA1 at 1 day after SE, suggesting that microglial activation after
174 SE was comparable in $\text{IP}_3\text{R2KO}$ and WT mice (S2 Fig). However, there was no
175 significant change in the dose of pilocarpine required for the induction of the
176 second SE in SP compared with PP mice (Fig 2O). Sixteen animals were
177 treated with pilocarpine, out of which ten survived, and received the second

178 treatment, (the lethality in the first SE was 37.5%).) There was no significant
179 change in the dose of pilocarpine required for the induction of the first and
180 second SE in IP₃R2KO mice (Fig 2P). In controlled conditions, there was no
181 significant change in the number of interictal spikes in IP₃R2KO mice when
182 compared with WT mice (S1 Fig F). In addition, interictal spikes were
183 significantly reduced 28 days after SE in IP₃R2KO mice, compared with WT
184 mice (S1 Fig E and F). These results suggested that IP₃R2-mediated astrocytic
185 Ca²⁺ hyperactivity is essential for the induction of the increased seizure
186 susceptibility after SE.

187

188 **Microglia inhibition reduces activated astrocyte morphology**

189 Our data indicated temporal differences between activation of microglia and
190 astrocytes; i.e., earlier and later onset after SE, respectively. To reveal features
191 of the activated microglia after SE, we investigated the changes in mRNA levels
192 of pro-inflammatory cytokines that are relevant to microglial activation by
193 quantitative reverse transcription-polymerase chain reaction (RT-PCR) (Fig 3A,
194 3B, and 3C). SE increased *Tnf* and *Il1b* mRNA in the hippocampus at 1 day
195 after SE (Fig 3B and 3C). To explore the microglia-triggered astrocyte

196 activation, we investigated microglial functional changes after SE. Among
197 several molecules tested, we found that *Tnf* and *Il1b* mRNAs were also
198 significantly upregulated in the isolated hippocampal microglia at 1 day after SE
199 (Fig 3A).

200 To clarify whether microglial activation is required for astrogliosis, we
201 investigated the effect of post-treatment with the inhibitor, minocycline (Fig 3D)
202 (37–39). To confirm the efficacy of minocycline in this protocol, microglial
203 activation was assessed by immunohistochemistry and quantitative RT-PCR.
204 Minocycline post-treatment prevented the increase in the area of Iba1-positive
205 cells in CA1 at 3 days after the first SE (Fig 3E and 3G) along with an increase
206 in *Tnf* but not *Il1b* mRNA in the hippocampus at 1 day after the first SE (Fig 3I
207 and 3J). Notably, microglia inhibition with minocycline post-treatment prevented
208 the increase in the area of GFAP-positive cells in CA1 at 28 days after the first
209 SE (Fig 3F and 3H).

210 To further confirm that acute microglial activation plays an important role in
211 the morphological activation of astrocytes after SE, we applied PLX5622, a
212 CSF1R antagonist, to deplete microglia (Fig 3K) (40–42). PLX5622 treatment
213 prevented the increase in the area of Iba1-positive cells in CA1 from 1 to 7 days

214 after the first SE (Fig 3L and 3N). In addition, *Aif1* and *Tnf* mRNA levels were
215 significantly decreased at 1 day after SE with PLX5622 treatment compared
216 with those in the control diet group (Fig 3P). Similarly, the increased area of
217 GFAP-positive astrocytes in CA1 from 7 to 28 days after SE in control diet (AIN-
218 76A) mice was prevented in PLX5622 treated mice (Fig 3M and 3O). To identify
219 the optimal timing of microglial inhibition to prevent astrogliosis, we applied
220 PLX5622 from 3 weeks after SE (Fig 4A). This later PLX5622 treatment
221 decreased the area of Iba1-positive cells in CA1 at 28 days after the first SE
222 (Fig 4B and 4D) but did not prevent the increased area of GFAP-positive
223 astrocytes (Fig 4C and 4E). These findings showed that the initial reactive
224 microglia are required to induce morphological activation of astrocytes after SE.

225

226 **Microglia inhibition reduces astrocytic Ca^{2+} hyperactivity**

227 We then investigated whether microglial activation is required for astrocytic Ca^{2+}
228 hyperactivity after SE. We also used a pharmacological approach to inhibit the
229 early microglial activation after SE. Microglia inhibition with minocycline reduced
230 the larger and frequent Ca^{2+} signals of astrocytes (S5 Movie) (Fig 5A, 5B, 5C,
231 5D, and 5E). Similarly, the amplitude and frequency of fluo-4AM-labeled

232 astrocytic Ca^{2+} signaling after SE were significantly increased in control diet
233 (AIN-76A) mice (Fig 5F, 5H, 5I, 5J, and 5K) (S6 Movie). Conversely, the larger
234 and frequent Ca^{2+} signals after SE were significantly reduced by the PLX5622
235 treatment (Fig 5G, 5L, 5M, 5N, and 5O) (S7 Movie). These results indicated that
236 acute microglial activation is essential for the changes of astrocytic Ca^{2+} activity
237 after SE.

238

239 **Microglia inhibition rescues enhanced seizure susceptibility**

240 Finally, we tested whether microglia inhibition rescued the increased seizure
241 susceptibility following SE. Eighteen animals were treated with pilocarpine and
242 minocycline, ten mice survived the treatment, and received a second treatment
243 (the lethality in the first SE was 44.4%). Post-treatment with minocycline
244 following the first SE prevented the increased seizure susceptibility (Fig 6A and
245 6B). No difference was observed between control diet and PLX5622-treated
246 mice in the dose of pilocarpine required for the induction of the first SE (Fig 6C).
247 Furthermore, there was no significant change in the number of interictal spikes
248 in PLX5622-treated mice when compared with WT mice (S1 Fig F). These
249 results indicated that microglia inhibition does not alter the acute responses to

250 pilocarpine. In contrast, a lower dose of pilocarpine was required for the
251 induction of the second SE in control mice compared with that in PLX5622-
252 treated mice (Fig 6D). Consistent with this, unlike the enhanced seizure
253 susceptibility observed in control mice following the first SE (as indicated by the
254 reduced dose of pilocarpine required to induce the second vs. the first SE),
255 there was no significant change in the dose of pilocarpine required for the
256 induction of the first or second SE in PLX5622-treated mice (Fig 6E and 6F)
257 Fifteen animals were treated with pilocarpine and control diet, and the ten
258 surviving mice received a second treatment (the lethality in the first SE was
259 33.3%). Twenty animals were treated with pilocarpine and PLX5622, and ten
260 survived, and received a second treatment (the lethality in the first SE was
261 60.0%). In addition, interictal spikes were significantly reduced 7 and 28 days
262 after SE in PLX5622-treated mice, compared with WT mice (S1 Fig D and F). In
263 contrast, a lower dose of pilocarpine was required for the induction of the
264 second SE in later PLX5622 treatment mice, similar to that in control diet mice
265 (Fig 6G, 6H, 6I, and 6J). Twenty-four animals were treated with pilocarpine and
266 control diet, and the ten surviving mice received a second treatment. The
267 lethality in the first SE was 58.3%. Seventeen animals were treated with

268 pilocarpine and PLX5622 later phase, and ten survived, receiving a second
269 treatment. The lethality in the first SE was 41.2%. These data suggested that
270 the inhibition of initial microglial activation rescues the increased seizure
271 susceptibility.

272

273 **Discussion**

274 Here, we demonstrate that SE induces sequential activation of glial cells; i.e.,
275 the initial activation of microglia, followed by astrocytic activation, which is
276 essential for seizure susceptibility or epileptogenesis. The main findings in the
277 present study are as follows: 1. Microglia are activated and pro-inflammatory
278 cytokines of microglia are increased immediately after SE; 2. Reactive
279 astrocytes, which exhibit larger IP₃R2-mediated Ca²⁺ signals, appear following
280 microglial activation after SE; 3. Genetic deletion of IP₃R2 rescues both the
281 aberrant Ca²⁺ signals in astrocytes and the increased seizure susceptibility; 4.
282 Pharmacological inhibition of microglial activation or deletion of microglia at
283 early phase after SE reduces astrogliosis along with aberrant Ca²⁺ signals of
284 astrocytes, and rescues the increased seizure susceptibility. These findings
285 indicate that initially activated microglia are responsible for the subsequent

286 induction of epileptogenic reactive astrocytes in vivo. The limitation of this study
287 is that the severity of epilepsy was not evaluated by spontaneous recurrent
288 seizures, but was evaluated by changes in the threshold of pilocarpine-induced
289 seizures and interictal spikes. However, overall our findings suggest that the
290 therapeutic target to prevent epilepsy after status epilepticus should be shifted
291 from microglia (early phase) to astrocytes (late phase).

292 Microglial and astrocytic activation is a common feature of various central
293 nervous system (CNS) disorders including epilepsy (43–46). However, the
294 pathological significance and spatiotemporal pattern of microglial and astrocytic
295 activation in the epileptogenic process have not been carefully addressed.

296 Microglial response to SE occurs immediately, with reactive microglia playing
297 both detrimental and beneficial roles during acute seizures (47). Although
298 activated microglia exhibit a neuroprotective role via the P2Y12 receptor in the
299 acute phase, they exert proconvulsive effects through the production of pro-
300 inflammatory cytokines such as IL-1 β (11), TNF (48), and IL-6 (49,50). However,
301 such increase of purinergic receptors and pro-inflammatory cytokines after SE
302 may be transient (11), and it is unknown how this transient microglial activation
303 including pro-inflammatory cytokines causes long-term epileptic potential. Here,

304 we found that inhibiting microglia at the acute phase (0 to 7 days after SE) but
305 not the late phase (21 to 28 days after SE) reduced susceptibility to the second
306 SE, suggesting that activated microglia trigger the epileptogenic process
307 including astrocytic activation, but do not exert a direct proconvulsive effect on
308 the later phase after SE.

309 In the present study, we demonstrate that astrocytic activation develops
310 slowly starting 7 days after SE, is long lasting, and still observed when mice
311 show increased seizure susceptibility. Astrogliosis is thought to contribute to the
312 pathophysiology of epilepsy (51–53). Some previous reports show dysregulation
313 of astrocyte functions, such as K^+ ion homeostasis (14), neurotransmitter
314 buffering (15), gliotransmission (16), or purinergic signaling (54, 55), can
315 actively contribute to hyperexcitation of neuronal networks and progression of
316 seizures. However, the role of astrogliosis in epileptogenesis is largely
317 unknown. In particular, it is important to determine whether activated astrocytes
318 play a proconvulsive or anticonvulsive role in the epileptic brain. It has been
319 proposed that astrocytic Ca^{2+} signaling contributes to the induction of epileptic
320 seizures and neuronal cell loss by seizures (24,31,32,56). In this study, we
321 observed larger Ca^{2+} signals in the somatic regions of astrocytes in the latent

322 phase of epileptogenesis. Analysis of the Ca^{2+} signals in astrocytes suggests
323 that these Ca^{2+} signals are mediated by $\text{IP}_3\text{R}2$. Notably, we found that genetic
324 deletion of $\text{IP}_3\text{R}2$ is sufficient to rescue the increased seizure susceptibility and
325 reduce astrogliosis. Our study thus suggests that $\text{IP}_3\text{R}2$ -mediated Ca^{2+}
326 signaling in reactive astrocytes plays a proconvulsive role in the epileptic brain
327 and can contribute to epileptogenesis.

328 Astrocytic Ca^{2+} signals may contribute to epileptogenesis through several
329 mechanisms. Astrocytes impact neural circuit excitability directly by releasing
330 “gliotransmitters”, such as glutamate (25,57,58). Astrocytes also increase
331 neuronal excitability by forming new circuits through the release of synaptogenic
332 molecules (23,59). However, the functional consequences of these changes in
333 the context of epileptogenesis remain to be determined. As Ca^{2+} ions serve as a
334 ubiquitous intracellular signal in the regulation of numerous cellular processes,
335 including exocytosis, proliferation, and gene expression, it is also likely to
336 regulate many processes in the induction or maintenance of reactive astrocytes
337 (60,61). Since it has been reported that the Ca^{2+} signals in astrocytes could
338 contribute to ictogenesis (27,29), we cannot disregard the possibility that $\text{IP}_3\text{R}2$
339 may contribute to neural excitability and microglial activation after SE. We

340 demonstrate that SE induces neither an increase in Ca^{2+} excitation in astrocytes
341 nor proconvulsive effects in $\text{IP}_3\text{R2KO}$ mice, suggesting that enhanced Ca^{2+}
342 signals in astrocytes are likely responsible for epileptogenesis.

343 In animal models of epilepsy, reactive astrocytes undergo extensive
344 physiological changes involving not only Ca^{2+} signaling but also ion and
345 neurotransmitter homeostasis along with intracellular and extracellular water
346 content, which can cause neuronal hyperexcitability (17,62–64). The relative
347 importance of such functional changes of astrocytes to epileptogenesis will be
348 investigated in future studies. Recently, it has been reported that activated
349 microglia can induce neurotoxic reactive astrocytes (i.e., A1 astrocytes), which
350 release unidentified neurotoxic factors (41,65). Thus, whether astrogliosis after
351 SE results in a similar phenotype to A1 astrocytes and whether IP_3 -mediated
352 Ca^{2+} signals contribute to the induction of neurotoxic phenotype (61) represent
353 relevant issues to be addressed in future investigations. However, it was also
354 reported that these functional changes of astrocytes, including gap junction
355 dysfunction (17), could occur before the increase is observed in GFAP
356 immunostaining, astrocytic Ca^{2+} signals, or Iba1 immunostaining, investigated in
357 this study. Although whether the astrocytes induced by activated microglia are

358 in a primarily neurotoxic or neuroprotective state remains largely unknown, our
359 data suggest that the reactive astrocytes induced by activated microglia after
360 SE exert proconvulsive effects in the epileptic brain.

361 In this study, we also demonstrate that pro-inflammatory cytokines of
362 microglia are increased prior to astrocytic activation, suggesting the importance
363 of microglial activation as an initial process of epileptogenesis. Pharmacological
364 inhibition and depletion of microglia significantly blocked the activation of
365 astrocytes and decreased the seizure threshold after SE. Our findings identify
366 that activated microglia likely promote epileptogenesis by inducing the
367 proconvulsive phenotype of astrocytes. Although it has been recognized that
368 microglial activation occurs before reactive astrogliosis in various CNS diseases
369 (66-68), little was known prior to the present study regarding how microglial-
370 astrocytic interactions contribute to the pathophysiology of epilepsy. For
371 example, several previous studies using chemoconvulsant-induced epilepsy
372 models have shown that activated microglia were present immediately after SE
373 and that functional changes occurred, such as upregulation of pro-inflammatory
374 cytokines (8,69,70), purinergic receptors (43), and phagocytosis (44).
375 Previous reports also revealed that microglia modulate astrocyte activation

376 via various molecules, especially pro-inflammatory cytokines (71,72). Consistent
377 with this, we found that TNF and IL-1 β are significantly upregulated in
378 hippocampal microglia at 1 day after SE. Conversely, microglia inhibition by
379 minocycline prevents the increased mRNA of TNF in the hippocampus at 1 day
380 after the first SE along with subsequent reactive astrogliosis, suggesting a
381 potential role of pro-inflammatory cytokines from microglia in reactive
382 astrogliosis after SE. As the effect of minocycline may not be restricted to
383 microglia, we depleted microglia using a CSF-1 receptor antagonist and found
384 similar results, suggesting that microglial activation occurs through cytokine
385 release. CSF1 receptor antagonist may affect not only microglia, but also
386 peripheral macrophages (73,74), which could contribute to pathophysiology of
387 epilepsy (75-77). Thus, despite the potential problem of specificity owing to the
388 use of pharmacological inhibition of microglia, we clearly show that initial
389 activation of microglia and microglia-derived proinflammatory cytokines likely
390 underlie the subsequent astrogliosis-mediated epileptogenesis. Nevertheless,
391 because the molecular mechanisms underlying the activation of astrocytes
392 triggered by activated microglia have not been fully clarified, other chemical
393 mediators such as ATP may also contribute to activate microglia-mediated

394 astrogliosis (78). Further investigations using more specific interventions are
395 required to elucidate the precise molecular mechanisms underlying the
396 interaction between microglia and astrocytes.

397 In summary, our findings identify a sequence of glial activation in the
398 hippocampus that contributes to the epileptogenic process. In this process,
399 microglial activation is identified as a crucial event to induce reactive astrocytes.
400 In turn, astrocytic Ca^{2+} activation, mediated by $\text{IP}_3\text{R}2$, plays an important role in
401 the induction of epileptogenesis. Our findings add to the emerging view that
402 reactive astrocytes triggered by microglia have a central role in the
403 pathogenesis of epilepsy and, given the limited progress of neuron-centered
404 epilepsy research over the past several years, suggest reactive glial cells as
405 promising new targets for the development of alternative and more specific
406 antiepileptic drugs.

407 **Methods**

408 **Animals**

409 All studies used male C57BL/6J mice (SLC Japan, Shizuoka, Japan). IP₃R2KO
410 mice on a C57BL/6 background were available from a previous study (36); their
411 generation and maintenance have been previously described in detail. Glast-
412 CreERT2::flx-GCaMP3 mice on a C57BL/6 background were also available from
413 a previous study (34,35); their generation and maintenance have been previously
414 described in detail. In the present study, we performed immunohistochemistry
415 and confirmed that GCaMP3 was co-localized with GFAP, an astrocyte marker,
416 but not with Iba1 or NeuN (S3 Fig and S1 Table). Overall, Ca²⁺ signals detected
417 by GCaMP3 were mainly detected from astrocytes.

418 Mice were housed on a 12 h light (6 am)/dark (6 pm) cycle with ad libitum
419 access to water and rodent chow. The animals were allowed to adapt to
420 laboratory conditions for at least 1 week before starting the experiments.

421

422 **Animal treatments**

423 The first SE was induced in 8-week-old male mice by the administration of
424 pilocarpine and the second SE was induced 4 weeks after the first SE. A low dose

425 of 100 mg kg⁻¹ pilocarpine (Wako, 161-07201) per injection was administered i.p.
426 every 20 min until the onset of Racine scale stage 5 seizures. Scoporamin methyl
427 bromide (1 mg kg⁻¹, i.p., Wako, 198-07971) was administered 30 min prior to
428 pilocarpine injection to reduce its peripheral effects (32,33). Seizures were
429 terminated with pentobarbital (20 mg kg⁻¹, i.p., Kyoritu Seiyaku) when mice
430 experienced stage 5 seizures for 30 min. Behavior of pilocarpine-treated mice
431 was observed for 1 h after SE. To examine whether the first SE increased seizure
432 susceptibility, the second SE was induced 4 weeks after the first SE using the
433 same protocol.

434 To establish whether minocycline inhibits acute seizure-induced microglial
435 activation, mice were administered i.p. with saline or minocycline (25 mg kg⁻¹) 1
436 h after pilocarpine-SE induction and for the following two consecutive days (37–
437 39). Microglia were also depleted from mice by treatment with the CSF1R
438 antagonist, PLX5622 (Plexxikon), formulated in AIN-76A rodent chow (Research
439 Diets). Mice were treated with PLX5622 (1200 mg kg⁻¹ Chow) or a matched
440 control diet (AIN-76A) for seven days before SE and for the following seven
441 consecutive days (40–42).

442

443 **EEG acquisition**

444 The mice were deeply anesthetized with isoflurane. For EEG recordings, a bipolar
445 electrode was implanted at the left CA1 area of the dorsal hippocampus (AP = -
446 1.8 mm, ML = +1.6 mm, DV = -2.0 mm). The electrode was fixed to the skull with
447 dental cement. Animals were allowed to recover for 5 to 7 days before EEG
448 recording. EEGs were recorded in freely moving mice using a digital acquisition
449 system (PowerLab 26T, ADInstruments), for at least 2 hour per day. EEG data
450 were collected at a sampling rate of 2000 Hz. Data were acquired, digitized, and
451 analyzed off-line using Labchart 8 software (ADInstruments). The artifacts in the
452 raw EEG traces were manually identified and excluded from the analyses of
453 interictal spikes.

454

455 **Immunohistochemistry**

456 The mice were deeply anesthetized with pentobarbital and perfused
457 transcardially with phosphate buffered saline (PBS), followed by 4% (w/v)
458 paraformaldehyde in PBS. The brains were removed, postfixed overnight, then
459 cryoprotected with 30% (w/v) sucrose in PBS for two days. The brains were
460 frozen and coronal sections (20 μ m) were cut using a cryostat (Leica CM1100).

461 Slices were washed with PBS three times and treated with 0.1% Triton-X100/10%
462 NGS for 1 h to block nonspecific binding. The sections were incubated for two
463 days at 4 °C with the following primary antibodies: monoclonal rat anti-GFAP
464 (1:2000; Thermo Fisher Scientific, 13-0300), monoclonal mouse anti-NeuN
465 (1:500; Millipore, MAB377), polyclonal rabbit anti-Iba1 (1:1000; Wako, 019-
466 19741), polyclonal chicken anti-GFP antibody (1:1000, Thermo Fisher Scientific,
467 A10262), and monoclonal rabbit anti-NeuN (1:1,000; Millipore, MABN140). The
468 sections were washed three times with PBS and then incubated for 2 h at room
469 temperature with secondary antibodies: Alexa 488- or Alexa 546-conjugated
470 polyclonal goat anti-mouse/rat/rabbit or chicken IgGs (1:500; Invitrogen,
471 A11029/Thermo Fisher Scientific, A-11081/Invitrogen, A11035/Thermo Fisher
472 Scientific, A11039). After washing slices with PBS three times, they were
473 mounted with Vectashield Mounting Medium (Vector Laboratories). Fluorescence
474 images were obtained using a confocal laser microscope system (FV-1000;
475 Olympus) or Keyence fluorescence microscope (BZX-700).

476

477 **Standard quantitative RT-PCR**

478 Total RNA was isolated and purified from tissues using the RNeasy Lipid Tissue

479 Mini Kit (Qiagen) according to the manufacturer's instructions. RT-PCR
480 amplifications were performed using the One Step PrimeScript RT-PCR Kit
481 (TaKaRa Bio). RT-PCR amplifications and real-time detection were performed
482 using an Applied Biosystems 7500 Real-Time PCR System. The thermocycling
483 parameters were as follows: 5 min at 42 °C for reverse transcription, 10 s at 95 °C
484 for inactivation of the RT enzyme, and 40 cycles of denaturation (5 s at 95 °C)
485 and annealing or extension (34 s at 60 °C). Relative gene expression was
486 calculated using *Gapdh* expression as a housekeeping gene. All primer probe
487 sets and reagents were purchased from Applied Biosystems: rodent *Gapdh*
488 (4308313), mouse *Tnf* (Mm00443260_g1), mouse *Il1b* (Mm00434228_m1).

489

490 **Dissociated cell suspensions from adult mouse brain**

491 Three 8-week old male mice were perfused with PBS after anesthesia to
492 eliminate serum vesicles and hippocampi were dissected to comprise one sample.
493 Tissue dissociation was performed using the gentleMACS dissociator and the
494 Adult Brain Dissociation Kit (Miltenyi Biotec) according to the manufacturer's
495 protocol. Briefly, brain tissue was minced and digested with a proprietary enzyme
496 solution on the gentleMACS dissociator adult brain program. The cells were then

497 incubated with anti-mouse CD11b-coated microbeads (Miltenyi Biotec) for 10 min
498 at 4 °C. The cell-bead mix was then washed to remove unbound beads. Prior to
499 antibody labeling, nonspecific binding to the Fc receptor was blocked using the
500 FcR Blocking Reagent (Miltenyi Biotec). Cells were suspended in PBS with 0.5%
501 bovine serum albumin and the cell suspension was loaded onto an LS Column
502 (Miltenyi Biotec), which was placed in the magnetic field of a QuadroMACS™
503 Separator (Miltenyi Biotec). The magnetically labeled CD11b positive cells were
504 retained within the column and eluted as the positively selected cell fraction after
505 removing the column from the magnet.

506

507 **Microfluidic quantitative RT-PCR**

508 Total RNA was extracted from dissociated cells using the RNeasy Lipid Tissue
509 Mini Kit (Qiagen) and cDNA synthesis performed using the PrimeScript RT-PCR
510 Kit (Perfect Real Time) (TaKaRa Bio). For pre-amplification, up to 100 qPCR
511 assays (primer or probe sets in 20x stock concentration) were pooled and diluted
512 to a 0.2x concentration. For microfluidic qPCR, 1.25 µL of each cDNA sample
513 was pre-amplified using 1 µL of TaqMan pre-amplification master mix (PN 100-
514 5580, Fluidigm), 1.25 µL of the primer pool, and 1.5 µL of water. Pre-amplification

515 was performed using a 2 min 95 °C denaturation step and 14 cycles of 15 s at
516 95 °C and 4 min at 60 °C. Microfluidic quantitative RT-PCR reactions were
517 performed using the 96x96 chips and included 2–3 technical replicates for each
518 combination of sample and assay. For sample mixtures, 2.7 µL pre-amplification
519 product was combined with 0.3 µL of 20x GE Sample Loading Reagent
520 (85000746, Fluidigm) and 3 µL of 2x PCR master mix (4324020, Thermo Fisher
521 Scientific), of which 5 µL of was loaded into sample wells. For assay mixtures,
522 equal volumes of TaqMan assay and 2x Assay Loading Reagent (PN85000736,
523 Fluidigm) were combined, and 5 µL of the resulting mixture was loaded into
524 multiple assay wells. RT-PCR amplifications and real-time detection were
525 performed using the BioMarkHD Real-Time PCR System (Fluidigm). Data from
526 Fluidigm runs were manually checked for reaction quality prior to analysis, and
527 Ct values for each gene target were normalized to Ct values for housekeeping
528 genes. All primer probe sets and reagents were purchased from Integrated DNA
529 Technologies: rodent *Gapdh* (Mm.PT.39a.1), mouse *Tnf* (Mm.PT.58.12575861),
530 mouse *Il1b* (Mm.PT.58.41616450), mouse *Cx3cr1* (Mm.PT.58.17555544), mouse
531 *CD45* (Mm.PT.58.7583849), mouse *CD11b* (Mm.PT.58.14195622), mouse *CD68*
532 (Mm.PT.58.32698807), mouse *CD206* (Mm.PT.58.42560062), mouse *Il6*

533 (Mm.PT.58.10005566), mouse *Ifng* (Mm.PT.58.41769240), mouse *Il4*
534 (Mm.PT.58.32703659), mouse *Il10* (Mm.PT.58.13531087), and mouse *Tgfb*
535 (Mm.PT.58.11254750).

536

537 **Preparation of brain slices and Ca²⁺ imaging**

538 The methods used have been described previously (61,79). Briefly, 8-week-old
539 male mice were anesthetized with pentobarbital (100 mg kg⁻¹, i.p.). Cold cutting
540 ACSF, composed of 92 mM NaCl, 2.5 mM KCl, 1.2 mM NaH₂PO₄, 30 mM
541 NaHCO₃, 20 mM HEPES, 25 mM D-glucose, 5 mM sodium ascorbate, 2 mM
542 thiourea, 3 mM sodium pyruvate, 10 mM MgCl₂, and 0.5 mM CaCl₂ saturated with
543 95% O₂–5% CO₂, was perfused transcardially. Coronal slices of the hippocampus
544 (300 µm) were cut using a vibrating microtome (Pro7, Dosaka) in cutting ACSF.
545 Slices were incubated at 34 °C for 10 min in recovery ACSF, composed of 93 mM
546 N-methyl-D-glucamine, 93 mM HCl, 2.5 mM KCl, 1.2 mM NaH₂PO₄, 30 mM
547 NaHCO₃, 20 mM HEPES, 25 mM D-glucose, 5 mM sodium ascorbate, 2 mM
548 thiourea, 3 mM sodium pyruvate, 10 mM MgCl₂, and 0.5 mM CaCl₂ saturated with
549 95% O₂–5% CO₂, and subsequently stored in ACSF comprising 124 mM NaCl,
550 2.5 mM KCl, 1.2 mM NaH₂PO₄, 24 mM NaHCO₃, 5 mM HEPES, 12.5 mM D-

551 glucose, 5 mM sodium ascorbate, 2 mM thiourea, 3 mM sodium pyruvate, 2 mM

552 MgCl_2 , and 2 mM CaCl_2 saturated with 95% O_2 and 5% CO_2 at room temperature.

553 After 1 h of recovery, slices were submerged in ACSF at approximately 32 °C.

554 Slices were imaged using an Olympus Fluoview FV1000MPE two-photon laser

555 scanning microscope equipped with a Maitai HP DS-OL laser (Spectra-Physics).

556 We used a 920 nm laser and 495-540 nm bandpass emission filter. Astrocytes

557 were selected from the CA1 stratum radiatum region and were typically 30–50

558 μm from the slice surface. Images were gathered using a 40 \times water immersion

559 lens with a numerical aperture of 0.80.

560 For Fluo-4AM measurements, we dropped 2.5 μL Fluo-4AM (2 mM) onto the

561 hippocampal slices followed by incubation in ACSF for 60 min, then transferred

562 the slices to dye-free ACSF for at least 30 min prior to experimentation. The final

563 concentration of Fluo4-AM was 5 μM with 0.02% Pluronic F-127. Astrocytes were

564 selected from the CA1 stratum radiatum region and were typically 30–50 μm from

565 the slice surface. TTX (1 μM), 2-APB (100 μM), and CPA (20 μM) were solubilized

566 in ACSF. Baseline astrocytic activity was recorded prior to drug application.

567 Subsequently, drugs were applied onto the slice for 10 min and astrocytic activity

568 was recorded for 10 min.

569

570 **Image analysis**

571 Images were acquired using inverted confocal laser-scanning systems (Olympus

572 FV-1000) at 40 \times magnification with a 1.30 numerical aperture objective lens.

573 Information regarding z-stack images is described in the figure legends.

574 Astrocytes were selected from the CA1 stratum radiatum region and imaged

575 based on GFAP immunostaining. Microglia were imaged based on Iba1

576 immunostaining at the CA1 stratum radiatum region. Subsequent images were

577 processed and quantified using ImageJ (US National Institutes of Health; NIH).

578 For the quantitative analysis of the area containing Iba1 positive microglia, we

579 randomly chose three fields per mouse. Images were converted to gray scale and

580 the quantification threshold was set constantly for all specimens within each

581 experimental group. The percentage of Iba1-positive area was calculated by

582 dividing the area of Iba1-positive region by the total area of the region of interest.

583 For the quantitative analysis of the area containing GFAP positive astrocyte, the

584 percentage of GFAP-positive area was calculated using the same method used

585 to quantify Iba1-positive microglia.

586 The methods used for Ca²⁺ imaging data analysis have been described

587 previously (56,70). Briefly, imaging data were analyzed using ImageJ. We
588 selected regions of interest from somatic regions of astrocytes by visual
589 examination of the time lapse image. Using these regions of interest, raw
590 fluorescence intensity values (F) were taken from the original videos and
591 converted to delta F/F (dF/F) in Originlab (Origin Lab Corp.). We analyzed Ca^{2+}
592 signals when their dF/F values were greater than 0.2. We analyzed Ca^{2+} signals
593 and their amplitude (dF/F) and duration (full width at half maximum) using the
594 Originlab “peak analysis” function.

595

596 **Statistical analysis**

597 All statistical analyses were performed using SPSS version 19.0 (SPSS Inc.)
598 software. Data are presented as the mean \pm SEM. Most data were analyzed using
599 one-way ANOVA followed by Dunnett’s multiple post hoc test for comparing more
600 than three samples, and two-sample unpaired *t*-tests. *P* values <0.05 were
601 considered as statistically significant.

602

603 **Study approval**

604 All experimental procedures were performed in accordance with the “Guiding

605 Principles in the Care and Use of Animals in the Field of Physiologic Sciences”
606 published by the Physiologic Society of Japan and with the previous approval of
607 the Animal Care Committee of Yamanashi University (Chuo, Yamanashi, Japan).

608

609 **Author contributions**

610 F.S. and S.K. conceived and designed the research. F.S. performed most of the
611 experiments, analyzed the data, and wrote the manuscript. H.T. contributed to the
612 immunohistochemistry experiments. K.S. contributed to the MACS experiments.
613 Y.S., E.S., and S.K. analyzed the data. K.M. provided IP3R2KO mice. H.H., D.C.,
614 and J.N. contributed to the EEG experiments. K.S., M.A., and S.K. supervised
615 the project. All of the authors discussed and commented on the manuscript.

616

617 **Acknowledgements**

618 This work was supported by JSPS KAKENHI Grant Numbers JP16H04669,
619 JP16K19634, JP18K15701, JP18H05121, JP19H04746, 20H05902, 20H05060,
620 Scientific Research on Innovative Areas 25117003, CREST JPMJCR14G2,
621 AMED-CREST (25gm1310008), the Mitsubishi Science Foundation, the Takeda
622 Science Foundation, Intramural Research Grant (28-4) for Neurological and

623 Psychiatric Disorders of NCNP, and a Grant for the Cutting Edge Brain
624 Sciences from the University of Yamanashi. We thank Dr. K. Takanashi, Mr. R.
625 Komatsu, Mrs. Y. Fukasawa, Mrs. M. Tachibana, Mrs. Y. Koseki, and Mrs. Y.
626 Hoshino (Univ. Yamanashi) for technical assistance, and all members of the
627 Koizumi Laboratory for critical discussion.
628

629 **References**

630 1. Engel J Jr. Mesial temporal lobe epilepsy: what have we learned?
631 *Neuroscientist*. 2001;7(4):340–352.

632 2. Herman ST. Epilepsy after brain insult: targeting epileptogenesis. *Neurology*.
633 2002;59(9 Suppl 5):S21–26.

634 3. French JA, et al. Characteristics of medial temporal lobe epilepsy: I. Results of
635 history and physical examination. *Ann Neurol*. 1993;34(6):774–780.

636 4. Rakhade SN, Jensen FE. Epileptogenesis in the immature brain: emerging
637 mechanisms. *Nat Rev Neurol*. 2009;5(7):380–391.

638 5. Binder DK, Steinhauser C. Functional changes in astroglial cells in epilepsy.
639 *Glia*. 2006;54(5):358–368.

640 6. Seifert G, Steinhauser C. Neuron-astrocyte signaling and epilepsy. *Exp Neurol*.
641 2013;244:4–10.

642 7. Shapiro LA, Wang L, Ribak CE. Rapid astrocyte and microglial activation
643 following pilocarpine-induced seizures in rats. *Epilepsia*. 2008;49 Suppl 2:33–41.

644 8. Benson MJ, Manzanero S, Borges K. Complex alterations in microglial M1/M2
645 markers during the development of epilepsy in two mouse models. *Epilepsia*.
646 2015;56(6):895–905.

647 9. Vezzani A, French J, Bartfai T, Baram TZ. The role of inflammation in epilepsy.

648 *Nat Rev Neurol.* 2011;7(1):31–40.

649 10. Boer K, et al. Evidence of activated microglia in focal cortical dysplasia. *J*

650 *Neuroimmunol.* 2006;173(1-2):188–195.

651 11. Vezzani A, et al. Functional role of inflammatory cytokines and

652 antiinflammatory molecules in seizures and epileptogenesis. *Epilepsia.* 2002;43

653 Suppl 5:30–35.

654 12. Cendes F, Sakamoto AC, Spreafico R, Bingaman W, Becker AJ. Epilepsies

655 associated with hippocampal sclerosis. *Acta Neuropathol.* 2014;128(1):21–37.

656 13. Morizawa YM, et al. Reactive astrocytes function as phagocytes after brain

657 ischemia via ABCA1-mediated pathway. *Nat Commun.* 2017;8(1):1598.

658 14. Haj-Yasein NN, et al. Evidence that compromised K⁺ spatial buffering

659 contributes to the epileptogenic effect of mutations in the human Kir4.1 gene

660 (KCNJ10). *Glia.* 2011;59(11):1635–1642.

661 15. Tanaka K, et al. Epilepsy and exacerbation of brain injury in mice lacking the

662 glutamate transporter GLT-1. *Science.* 1997;276(5319):1699–1702.

663 16. Bezzi P, et al. Astrocytes contain a vesicular compartment that is competent

664 for regulated exocytosis of glutamate. *Nat Neurosci.* 2004;7(6):613–620.

665 17. Bedner P, et al. Astrocyte uncoupling as a cause of human temporal lobe
666 epilepsy. *Brain*. 2015;138(Pt 5):1208–1222.

667 18. Devinsky O, Vezzani A, Najjar S, De Lanerolle NC, Rogawski MA. Glia and
668 epilepsy: excitability and inflammation. *Trends Neurosci*. 2013;36(3):174–184.

669 19. Charles AC, Merrill JE, Dirksen ER, Sanderson MJ. Intercellular signaling in
670 glial cells: calcium waves and oscillations in response to mechanical stimulation
671 and glutamate. *Neuron*. 1991;6(6):983–992.

672 20. Cornell-Bell AH, Finkbeiner SM, Cooper MS, Smith SJ. Glutamate induces
673 calcium waves in cultured astrocytes: long-range glial signaling. *Science*.
674 1990;247(4941):470–473.

675 21. Allen NJ, Eroglu C. Cell biology of astrocyte-synapse interactions. *Neuron*.
676 2017;96(3):697–708.

677 22. Araque A, et al. Gliotransmitters travel in time and space. *Neuron*.
678 2014;81(4):728–739.

679 23. Kim SK, et al. Cortical astrocytes rewire somatosensory cortical circuits for
680 peripheral neuropathic pain. *J Clin Invest*. 2016;126(5):1983–1997.

681 24. Alvarez-Ferradas C, et al. Enhanced astroglial Ca²⁺ signaling increases
682 excitatory synaptic strength in the epileptic brain. *Glia*. 2015;63(9):1507–1521.

683 25. Halassa MM, Fellin T, Haydon PG. The tripartite synapse: roles for
684 gliotransmission in health and disease. *Trends Mol Medi*. 2007;13(2):54–63.

685 26. Szokol K, et al. Augmentation of Ca (2+) signaling in astrocytic endfeet in the
686 latent phase of temporal lobe epilepsy. *Frontiers in cellular neuroscience*.
687 2015;9:49.

688 27. Heuser K, et al. Ca²⁺ Signals in Astrocytes Facilitate Spread of Epileptiform
689 Activity. *Cerebral cortex*. 2018;28:4036-4048.

690 28. Ding S, et al. Enhanced astrocytic Ca²⁺ signals contribute to neuronal
691 excitotoxicity after status epilepticus. *J Neurosci*. 2007;27(40):10674–10684.

692 29. Tian GF, et al. An astrocytic basis of epilepsy. *Nat Med*. 2005;11(9):973–981.

693 30. Curia G, Longo D, Biagini G, Jones RS, Avoli M. The pilocarpine model of
694 temporal lobe epilepsy. *J Neurosci Methods*. 2008;172(2):143–157.

695 31. Levesque M, Avoli M, Bernard C. Animal models of temporal lobe epilepsy
696 following systemic chemoconvulsant administration. *J Neurosci Methods*.
697 2016;260:45–52.

698 32. Clasadonte J, Dong J, Hines DJ, Haydon PG. Astrocyte control of synaptic
699 NMDA receptors contributes to the progressive development of temporal lobe
700 epilepsy. *Proc Natl Acad Sci U S A*. 2013;110(43):17540–17545.

701 33. Groticke I, Hoffmann K, Loscher W. Behavioral alterations in a mouse model
702 of temporal lobe epilepsy induced by intrahippocampal injection of kainate.
703 *Experimental neurology*. 2008;213:71-83.

704 34. Mori T, Tanaka K, Buffo A, Wurst W, Kuhn R, Gotz M. Inducible gene deletion
705 in astroglia and radial glia--a valuable tool for functional and lineage analysis. *Glia*.
706 2006;54(1):21–34.

707 35. Zariwala HA, et al. A Cre-dependent GCaMP3 reporter mouse for neuronal
708 imaging in vivo. *J Neurosci*. 2012;32(9):3131–3141.

709 36. Futatsugi A, et al. IP3 receptor types 2 and 3 mediate exocrine secretion
710 underlying energy metabolism. *Science*. 2005;309(5744):2232–2234.

711 37. Abraham J, Fox PD, Condello C, Bartolini A, Koh S. Minocycline attenuates
712 microglia activation and blocks the long-term epileptogenic effects of early-life
713 seizures. *Neurobiol Dis*. 2012;46(2):425–430.

714 38. Hirayama Y, et al. Astrocyte-mediated ischemic tolerance. *J Neurosci*.
715 2015;35(9):3794–3805.

716 39. Matsuda T, et al. TLR9 signalling in microglia attenuates seizure-induced
717 aberrant neurogenesis in the adult hippocampus. *Nat Commun*. 2015;6:6514.

718 40. Dagher NN, et al. Colony-stimulating factor 1 receptor inhibition prevents

719 microglial plaque association and improves cognition in 3xTg-AD mice. *J*
720 *Neuroinflamm.* 2015;12:139.

721 41. Shinozaki Y, et al. Transformation of astrocytes to a neuroprotective
722 phenotype by microglia via P2Y1 receptor downregulation. *Cell Rep.*
723 2017;19(6):1151-1164.

724 42. Valdarcos M, et al. Microglia dictate the impact of saturated fat consumption
725 on hypothalamic inflammation and neuronal function. *Cell Rep.* 2014;9(6):2124–
726 2138.

727 43. Avignone E, Ulmann L, Levavasseur F, Rassendren F, Audinat E. Status
728 epilepticus induces a particular microglial activation state characterized by
729 enhanced purinergic signaling. *J Neurosci.* 2008;28(37):9133–9144.

730 44. Koizumi S, et al. UDP acting at P2Y6 receptors is a mediator of microglial
731 phagocytosis. *Nature.* 2007;446(7139):1091–1095.

732 45. Pekny M, Nilsson M. Astrocyte activation and reactive gliosis. *Glia.*
733 2005;50(4):427–434.

734 46. Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. *Acta*
735 *Neuropathol.* 2010;119(1):7–35.

736 47. Eyo UB, Murugan M, Wu LJ. Microglia-neuron communication in epilepsy.

737 *Glia*. 2017;65(1):5–18.

738 48. Stellwagen D, Beattie EC, Seo JY, Malenka RC. Differential regulation of

739 AMPA receptor and GABA receptor trafficking by tumor necrosis factor-alpha. *J*

740 *Neurosci*. 2005;25(12):3219–3228.

741 49. Campbell IL, et al. Neurologic disease induced in transgenic mice by cerebral

742 overexpression of interleukin 6. *Proc Natl Acad Sci U S A*. 1993;90(21):10061–

743 10065.

744 50. Samland H, et al. Profound increase in sensitivity to glutamatergic- but not

745 cholinergic agonist-induced seizures in transgenic mice with astrocyte production

746 of IL-6. *J Neurosci Res*. 2003;73(2):176–187.

747 51. Coulter DA, Steinhauser C. Role of astrocytes in epilepsy. *Cold Spring Harb*

748 *Perspect Med*. 2015;5(3):a022434.

749 52. Seifert G, Carmignoto G, Steinhauser C. Astrocyte dysfunction in epilepsy.

750 *Brain Res Rev*. 2010;63(1-2):212–221.

751 53. Steinhauser C, Grunnet M, Carmignoto G. Crucial role of astrocytes in

752 temporal lobe epilepsy. *Neuroscience*. 2016;323:157–169.

753 54. Li T, et al. Adenosine kinase is a target for the prediction and prevention of

754 epileptogenesis in mice. *The Journal of clinical investigation*. 2008;118:571-82.

755 55. Boison D. The adenosine kinase hypothesis of epileptogenesis. *Progress in*
756 *neurobiology*. 2008;84:249-262.

757 56. Gomez-Gonzalo M, et al. An excitatory loop with astrocytes contributes to
758 drive neurons to seizure threshold. *PLoS Biol*. 2010;8(4):e1000352.

759 57. Bazargani N, Attwell D. Astrocyte calcium signaling: the third wave. *Nat*
760 *Neurosci*. 2016;19(2):182–189.

761 58. Haydon PG. GLIA: listening and talking to the synapse. *Nat Rev Neurosci*.
762 2001;2(3):185–193.

763 59. Weissberg I, et al. Albumin induces excitatory synaptogenesis through
764 astrocytic TGF-beta/ALK5 signaling in a model of acquired epilepsy following
765 blood-brain barrier dysfunction. *Neurobiol Dis*. 2015;78:115–125.

766 60. Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics,
767 homeostasis and remodelling. *Nat Rev Mol Cell Biol*. 2003;4(7):517–529.

768 61. Saito K, et al. Aberrant astrocyte Ca(2+) signals "AxCa signals" exacerbate
769 pathological alterations in an Alexander disease model. *Glia*. 2018;66(5):1053–
770 1067.

771 62. Bordey A, Lyons SA, Hablitz JJ, Sontheimer H. Electrophysiological
772 characteristics of reactive astrocytes in experimental cortical dysplasia. *J*

773 *Neurophysiol.* 2001;85(4):1719–1731.

774 63. Bordey A, Sontheimer H. Properties of human glial cells associated with

775 epileptic seizure foci. *Epilepsy Res.* 1998;32(1-2):286–303.

776 64. Steinhauser C, Seifert G, Bedner P. Astrocyte dysfunction in temporal lobe

777 epilepsy: K⁺ channels and gap junction coupling. *Glia.* 2012;60(8):1192–1202.

778 65. Liddelow SA, et al. Neurotoxic reactive astrocytes are induced by activated

779 microglia. *Nature.* 2017;541(7638):481–487.

780 66. Dheen ST, Kaur C, Ling EA. Microglial activation and its implications in the

781 brain diseases. *Curr Med Chem.* 2007;14(11):1189–1197.

782 67. Kingwell K. Neurodegenerative disease: Microglia in early disease stages.

783 *Nat Rev Neurol.* 2012;8(9):475.

784 68. Shinozaki Y, et al. Microglia trigger astrocyte-mediated neuroprotection via

785 purinergic gliotransmission. *Sci Rep.* 2014;4:4329.

786 69. Riazi K, et al. Microglial activation and TNFalpha production mediate altered

787 CNS excitability following peripheral inflammation. *Proc Natl Acad Sci U S A.*

788 2008;105(44):17151–17156.

789 70. Vezzani A, et al. Interleukin-1beta immunoreactivity and microglia are

790 enhanced in the rat hippocampus by focal kainate application: functional

791 evidence for enhancement of electrographic seizures. *J Neurosci.*

792 1999;19(12):5054–5065.

793 71. John GR, Lee SC, Brosnan CF. Cytokines: powerful regulators of glial cell

794 activation. *Neuroscientist.* 2003;9(1):10–22.

795 72. Sofroniew MV. Molecular dissection of reactive astrogliosis and glial scar

796 formation. *Trends Neurosci.* 2009;32(12):638–647.

797 73. Patel S, Player MR. Colony-stimulating factor-1 receptor inhibitors for the

798 treatment of cancer and inflammatory disease. *Current topics in medicinal*

799 *chemistry.* 2009;9:599-610.

800 74. Li J, Chen K, Zhu L, Pollard JW. Conditional deletion of the colony stimulating

801 factor-1 receptor (c-fms proto-oncogene) in mice. *Genesis.* 2006;44:328-335.

802 75. Fabene PF, et al. A role for leukocyte-endothelial adhesion mechanisms in

803 epilepsy. *Nature medicine.* 2008;14:1377-1383.

804 76. Zattoni M, et al. Brain infiltration of leukocytes contributes to the

805 pathophysiology of temporal lobe epilepsy. *The Journal of neuroscience.*

806 2011;31:4037-4050.

807 77. Xu D, et al. Peripherally derived T regulatory and $\gamma\delta$ T cells have opposing

808 roles in the pathogenesis of intractable pediatric epilepsy. *The Journal of*

809 *experimental medicine*. 2018;215:1169-1186.

810 78. Imura Y, et al. Microglia release ATP by exocytosis. *Glia*. 2013;61(8):1320–

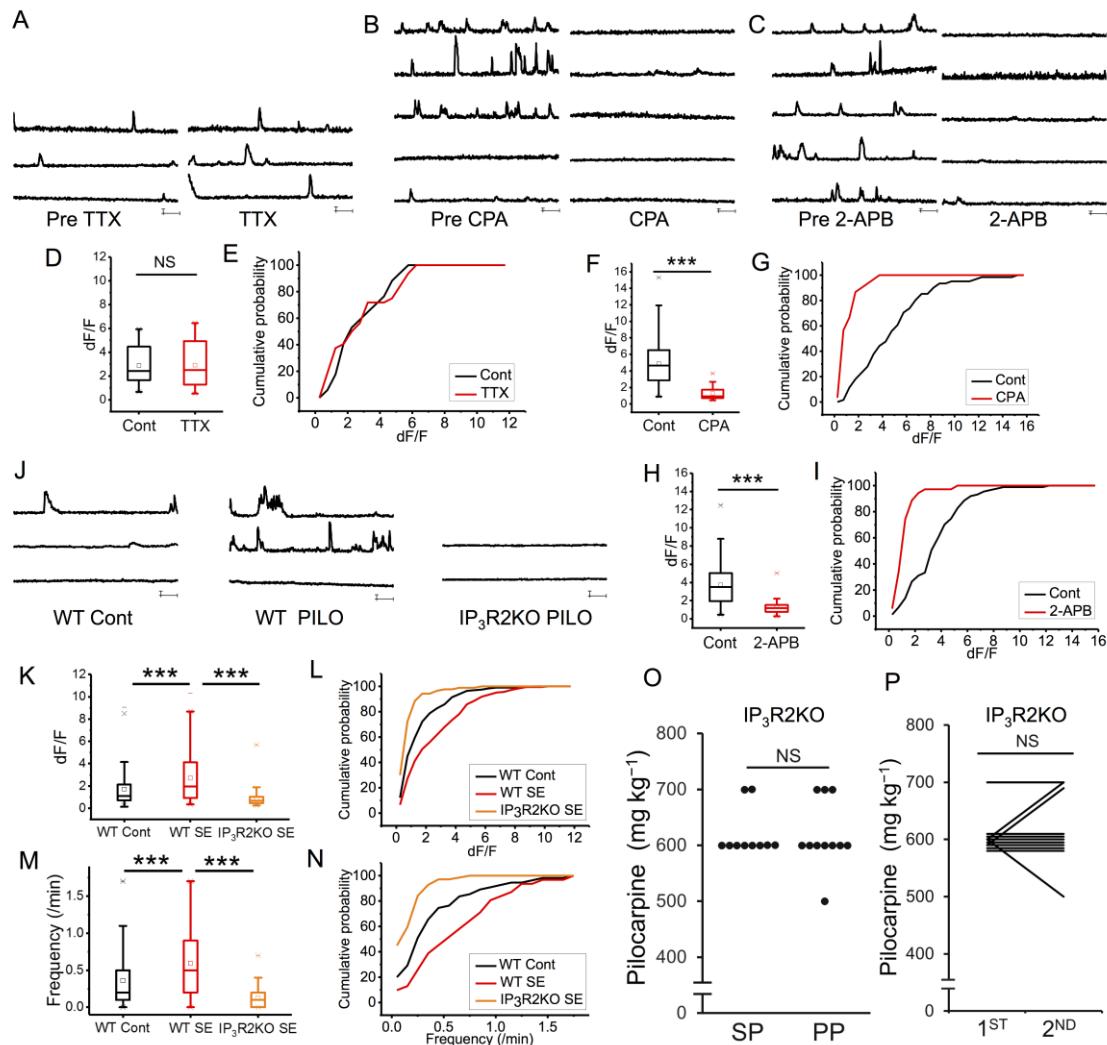
811 1330.


812 79. Shigetomi E, Hirayama YJ, Ikenaka K, Tanaka KF, Koizumi S. Role of

813 purinergic receptor P2Y1 in spatiotemporal Ca(2+) dynamics in astrocytes. *J*

814 *Neurosci*. 2018;38(6):1383–1395.

815


816 **Figure legends**

818 **Fig 1. Astrogliosis is observed following microglial activation after SE.**

819 (A) As shown in the experimental protocols, mice were administered pilocarpine
 820 to achieve stage 5 seizures. The second SE was induced using the same
 821 protocol 4 weeks after the first SE. SP (PP) indicates that mice were injected
 822 with saline (pilocarpine) at 8 weeks of age followed by an injection of pilocarpine
 823 at 12 weeks of age. (B and C) Representative microphotographs showing the
 824 spatiotemporal characteristics of Iba-1 (B) or GFAP (C) expression in CA1 after
 825 SE. Fifteen images were captured per z-stack image (0.5 μ m step). Cont,
 826 control; D, day. (D and E) Quantification of the temporal profile of Iba-1 positive
 827 microglia (D) or GFAP positive astrocytes (E) after SE (n = 5 mice (D); n = 5, 5,

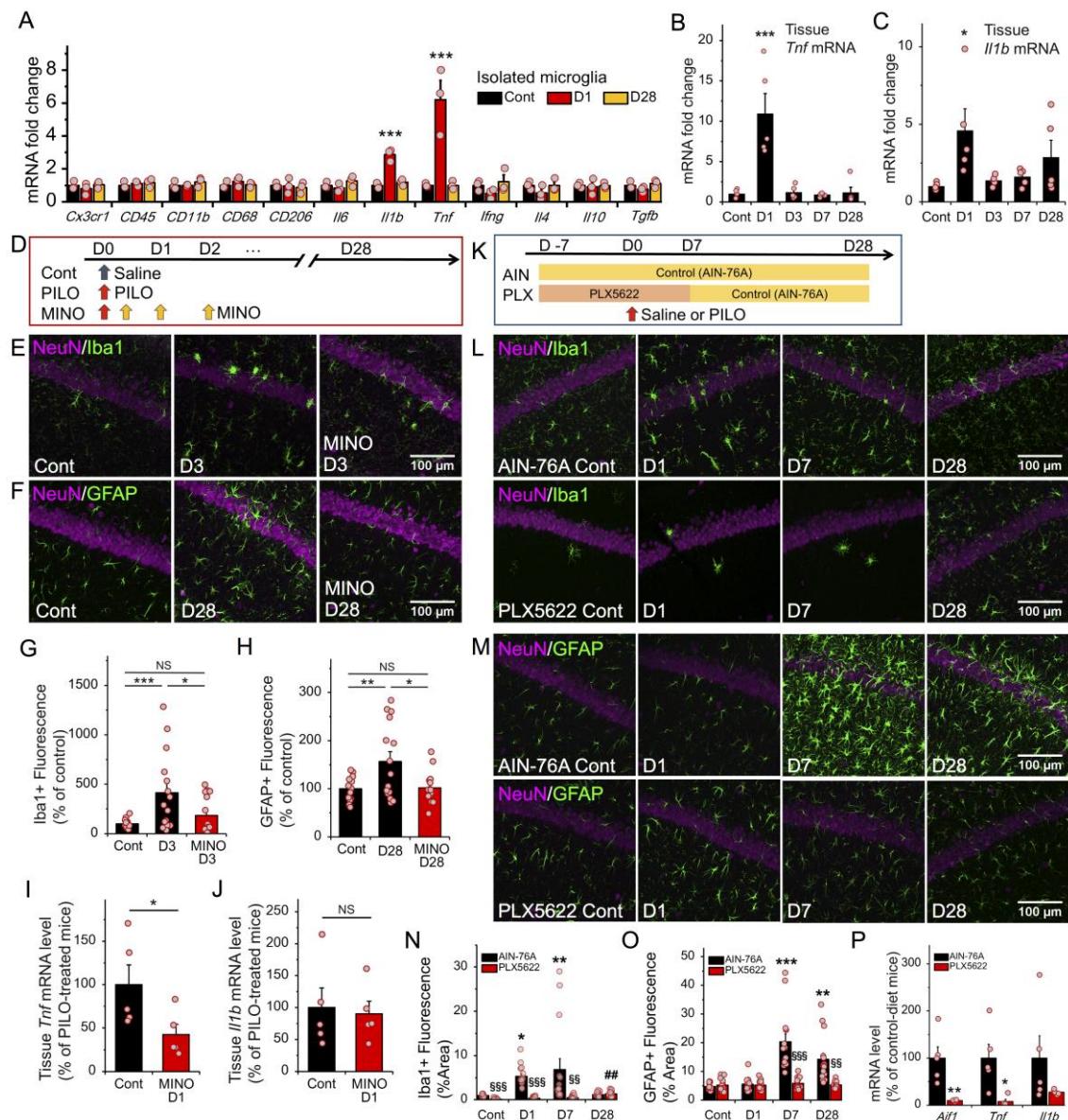
828 5, 5, 7 mice, (E), $*P < 0.05$, $**P < 0.01$ vs. control, one-way ANOVA ($P < 0.001$)
829 with Dunnett's test). (F) Dot plots showing dose of pilocarpine required for the
830 induction of the second SE ($n = 14$, 13 mice, $*P < 0.05$, Mann-Whitney U-test).
831 (G) Scatter plot showing dose of pilocarpine required for the induction of the first
832 (at 8 weeks of age) and second (at 12 weeks of age) SE in the PP group ($n =$
833 13 mice, $**P < 0.01$, Wilcoxon signed-rank test). Values represent the mean \pm
834 SEM.

835

836 **Fig 2. Reactive astrocytes exhibit IP₃R2-mediated Ca²⁺ hyperactivity,**

837 **which is essential for epileptogenesis.**

838 (A-C) Ca²⁺ dynamics of astrocytes approximately 4 weeks after SE in the CA1


839 stratum radiatum region in Glast-CreERT2::flx-GCaMP3 mice before and after

840 TTX (1 μ M) (A), CPA (20 μ M) (B), and 2-APB (100 μ M) (C) application. (D-I)

841 Box plots showing amplitudes of Ca²⁺ signals before and after TTX (1 μ M) (D),

842 CPA (20 μ M) (F), and 2-APB (100 μ M) (H) application. (n = 10, 13, 14 cells/2

843 mice, *** $P < 0.001$, unpaired t-test). Cont, control. Cumulative probability plots
844 showing amplitudes (dF/F) of Ca^{2+} signals before and after TTX (not significant
845 ($P > 0.05$), Kolmogorov–Smirnov test) (E), CPA ($P < 0.001$, Kolmogorov–
846 Smirnov test) (G), and 2-APB ($P < 0.001$, Kolmogorov–Smirnov test) (I)
847 application. (J) Astrocytic Ca^{2+} dynamics by Fluo4 in the CA1 stratum radiatum
848 region in WT control, WT after SE, and IP₃R2KO mice after SE. (K–N) Box plots
849 showing Ca^{2+} signal amplitudes (dF/F) (K) and frequency (M) (n = 57, 32, 85
850 cells/2, 2, 3 mice, *** $P < 0.001$, unpaired t-test). Cumulative probability plots
851 showing Ca^{2+} signal amplitudes (dF/F) (L) and frequency (N) ($P < 0.001$,
852 Kolmogorov–Smirnov test). (O) Dot plots showing dose of pilocarpine required
853 for the induction of the second SE in IP₃R2KO mice. SP (PP) indicates mice
854 were injected with saline (pilocarpine) at 8 weeks of age followed by an injection
855 of pilocarpine at 12 weeks of age. (n = 10 mice, N.S., not significant ($P > 0.05$),
856 Mann–Whitney U-test). (P) Scatter plot showing dose of pilocarpine required for
857 the induction of the first (at 8 weeks of age) and second (at 12 weeks of age)
858 SE in the PP group regarding IP₃R2KO mice (n = 10 mice, N.S., not significant
859 ($P > 0.05$), Wilcoxon signed-rank test). Note: The first pilocarpine did not affect
860 the dose required for the second SE in IP₃R2KO, see Fig 1G.

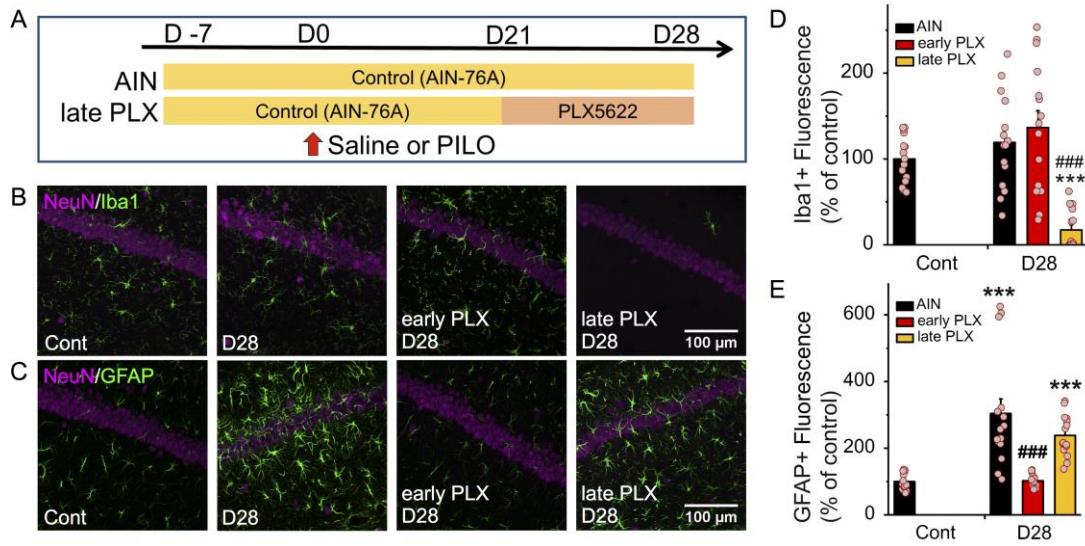
861

862 **Fig 3. Microglia inhibition with minocycline and depletion with CSF1R**

863 **antagonist (PLX5622) reduces astrogliosis.**

864 (A) Microfluidic quantitative RT-PCR analysis of mRNA in total RNA extracted

865 from hippocampal microglia after SE (n = 3 samples/9 mice, ***P < 0.001 vs.


866 control, one-way ANOVA (P < 0.01, P < 0.001) with Dunnett's test). (B and C)

867 Quantitative RT-PCR analysis of mRNA in total hippocampal RNA after SE (n =
868 5 mice, * $P < 0.05$, *** $P < 0.001$ vs. control, one-way ANOVA ($P < 0.001$, $P <$
869 0.05) with Dunnett's test). (D) Experimental scheme for minocycline post-
870 treatment-mediated microglia inhibition. (E-H) Representative microphotographs
871 showing the spatiotemporal characteristics of Iba-1 (E) and GFAP (F)
872 expression and quantification of Iba-1 positive microglia (G) and GFAP positive
873 astrocytes (H) in CA1 with or without minocycline post-treatment after SE (n = 5
874 mice, N.S., not significant ($P > 0.05$), * $P < 0.05$, *** $P < 0.001$, one-way ANOVA
875 ($P < 0.01$) with Bonferroni test). (I and J) Quantitative RT-PCR analysis as in (B
876 and C) with or without minocycline post-treatment. (n = 5 mice, N.S., not
877 significant ($P > 0.05$), * $P < 0.05$, unpaired t-test). (K) Experimental scheme for
878 PLX5622-mediated microglia depletion. (L-O) Representative microphotographs
879 showing the spatiotemporal characteristics of Iba-1 (L) and GFAP (M)
880 expression and quantification of Iba-1 positive microglia (N) and GFAP positive
881 astrocytes (O) in CA1 with or without PLX5622 after SE (n = 5 mice, * $P < 0.05$,
882 ** $P < 0.01$ vs. control of AIN-76A (control diet), ## $P < 0.01$ vs. control of
883 PLX5622, § $P < 0.05$, §§ $P < 0.01$, §§§ $P < 0.001$ vs. AIN-76A (corresponding day),
884 one-way ANOVA ($P < 0.01$) with Dunnett's test and unpaired t-test). (P)

885 Quantitative RT-PCR analysis as in (B and C) with or without PLX5622. (n = 5

886 mice, $*P < 0.05$, $**P < 0.01$, unpaired t-test).

887

889 **Fig 4. Microglia depletion with CSF1R antagonist (PLX5622) at late phase**

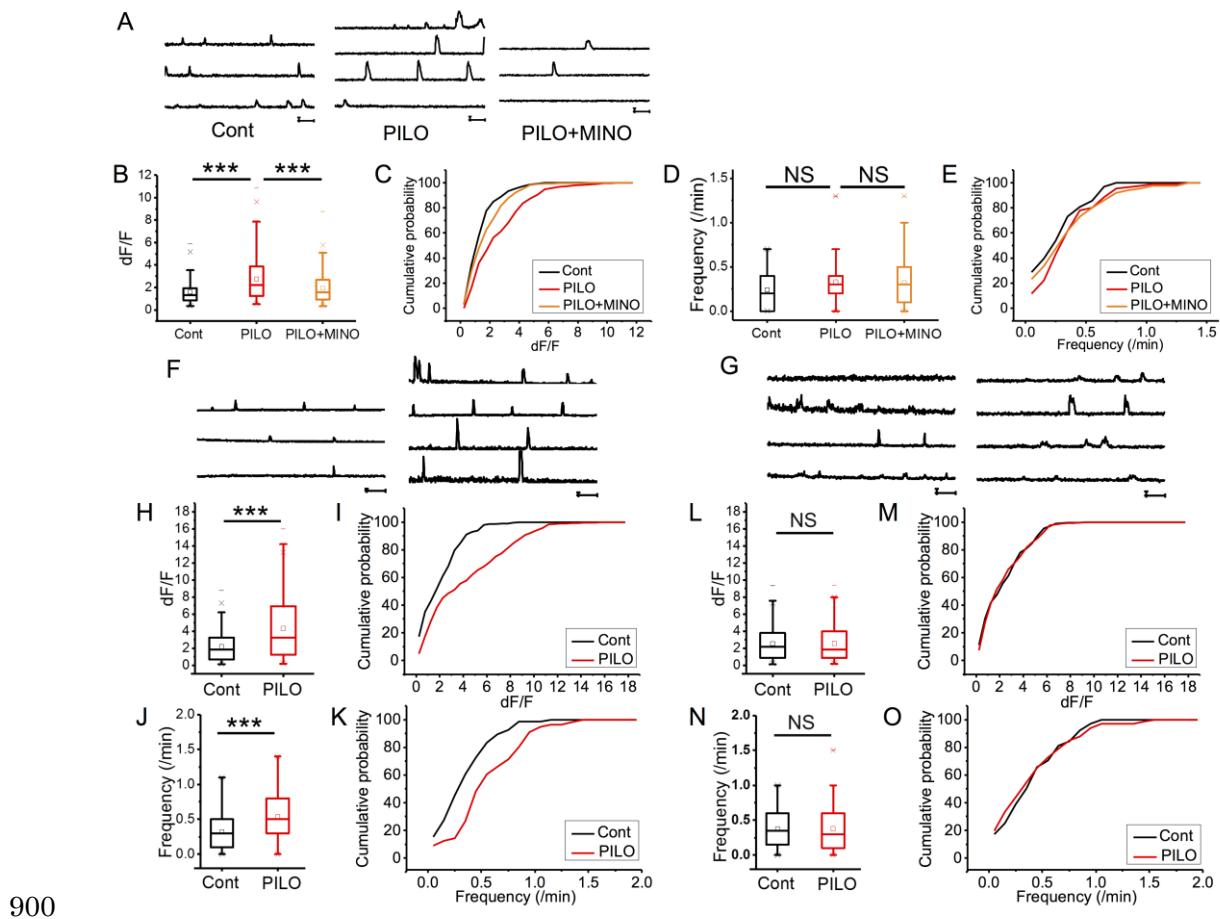
890 **after SE does not reduce astrogliosis and increased seizure susceptibility.**

891 (A) Experimental scheme for microglia depletion with PLX5622 at the late phase

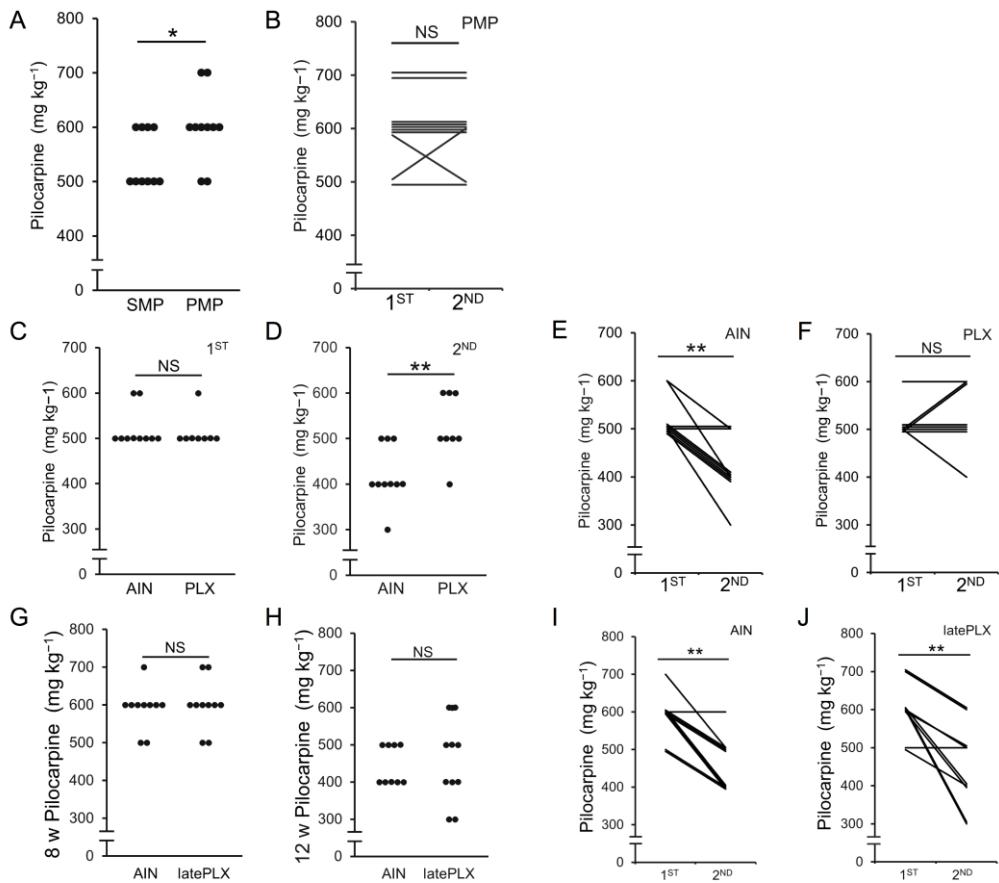
892 after SE. (B and C) Representative microphotographs showing the

893 spatiotemporal feature of Iba-1 (B) and GFAP (C) expression in CA1 with or

894 without PLX5622 after SE. Fifteen images were collected per z-stack image (0.5


895 μm step). Cont, control; D, day. (D and E) Quantification of the temporal profile

896 of Iba-1 positive microglia (D) and GFAP positive astrocytes (E) after SE (n = 5


897 mice, ***P < 0.01 vs. control, unpaired t-test, ###P < 0.01 vs. AIN-76A

898 (corresponding day), one-way ANOVA (P < 0.001) with Dunnett's test). Values

899 represent the mean ± SEM.

909 significant ($P > 0.05$), Kolmogorov–Smirnov test) (E). (F and G) Ca^{2+} dynamics
910 of astrocytes approximately 4 weeks after SE in the CA1 stratum radiatum region
911 in Glast-CreERT2::flx-GCaMP3 mice with (G) or without (F) PLX5622 treatment.
912 (H-K) Box plots showing Ca^{2+} signal amplitude (dF/F) (H) and frequency (J) in the
913 AIN-76A (control diet) group. (n = 70, 58 cells/2 mice, *** $P < 0.001$, unpaired t-
914 test). Cumulative probability plots showing Ca^{2+} signal amplitude (dF/F) ($P <$
915 0.001, Kolmogorov–Smirnov test) (I) and frequency ($P < 0.001$, Kolmogorov–
916 Smirnov test) (K) in the AIN-76A (control diet) group. (L-O) Box plots showing
917 Ca^{2+} signal amplitude (dF/F) (L) and frequency (M) in the PLX5622 group. (n =
918 61, 71 cells/2 mice, N.S., not significant ($P > 0.05$), unpaired t-test). Cumulative
919 probability plots showing Ca^{2+} signal amplitude (dF/F) (not significant ($P > 0.05$),
920 Kolmogorov–Smirnov test) (M) and frequency (not significant ($P > 0.05$),
921 Kolmogorov–Smirnov test) (O) in the PLX5622 group.
922

923

924 **Fig 6. Microglia inhibition with minocycline or CSF1R antagonist (PLX5622)**

925 **reduces the increased seizure susceptibility following SE.**

926 (A) Dot plots showing dose of pilocarpine required for the induction of the second

927 SE (n = 10 mice, N.S., not significant ($P > 0.05$), * $P < 0.05$, Tie-collected Mann-

928 Whitney U-test). SMP (PMP) indicates that mice were injected with saline

929 (pilocarpine) at 8 weeks of age with minocycline post-treatment followed by an

930 injection of pilocarpine at 12 weeks of age. (B) Scatter plot showing dose of

931 pilocarpine required for the induction of the first (at 8 weeks of age) and second

932 (at 12 weeks of age) SE. (n = 10 mice, $**P < 0.01$, Wilcoxon signed-rank test). (C
933 and D) Dot plots showing dose of pilocarpine required for the induction of the first
934 (C) and second (D) SE with or without PLX5622. (n = 10, 8 mice, N.S., not
935 significant ($P > 0.05$), $**P < 0.01$, Mann–Whitney U-test). AIN, control diet (AIN-
936 76A). (E and F) Scatter plot showing dose of pilocarpine required for the induction
937 of the first (at 8 weeks of age) and second (at 12 weeks of age) SE for AIN-76A
938 (control diet) (E) or PLX5622 (F). (n = 10, 8 mice, N.S., not significant ($P > 0.05$),
939 $**P < 0.01$, Wilcoxon signed-rank test). (G and H) Dot plots showing dose of
940 pilocarpine required for the induction of the first (G) and second (H) SE with or
941 without late PLX5622 treatment. (n = 10 mice, N.S., not significant ($P > 0.05$),
942 Mann–Whitney U-test). (I and J) Scatter plot showing dose of pilocarpine required
943 for the induction of the first (at 8 weeks of age) and second (at 12 weeks of age)
944 SE AIN-76A (control diet) (I) or PLX5622 (J). (n = 10 mice, $**P < 0.01$, Wilcoxon
945 signed-rank test).
946

947 **Supporting Information**

948 **S1 Fig** Microglia depletion with CSF1R antagonist (PLX5622) or IP₃R2KO mice
949 reduces the increased interictal spikes following SE.

950 **S2 Fig** Initial microglial activation is observed after SE in IP3R2KO mice.

951 **S3 Fig** Immunohistochemical analysis of GCaMP expression in the hippocampus
952 in Glast-CreERT2::Flx-GCaMP3 mice.

953 **S1 Table** Cell-specific markers in GCaMP3-expressing cells in the hippocampus
954 of Glast-CreERT2::Flx-GCaMP3 mice (tamoxifen i.p. at P7).

955 **S1 Movie** Astrocytic Ca²⁺ dynamics revealed by Fluo4 in the CA1 stratum
956 radiatum region in WT control, WT after SE, and IP₃R2KO mice after SE.

957 **S2 Movie** Ca²⁺ dynamics of astrocytes approximately 4 weeks after SE in the
958 CA1 stratum radiatum region in Glast-CreERT2::flx-GCaMP3 mice before and
959 after TTX application.

960 **S3 Movie** Ca²⁺ dynamics of astrocytes approximately 4 weeks after SE in the
961 CA1 stratum radiatum region in Glast-CreERT2::flx-GCaMP3 mice before and
962 after CPA application.

963 **S4 Movie** Ca²⁺ dynamics of astrocytes approximately 4 weeks after SE in the
964 CA1 stratum radiatum region in Glast-CreERT2::flx-GCaMP3 mice before and

965 after 2-APB application.

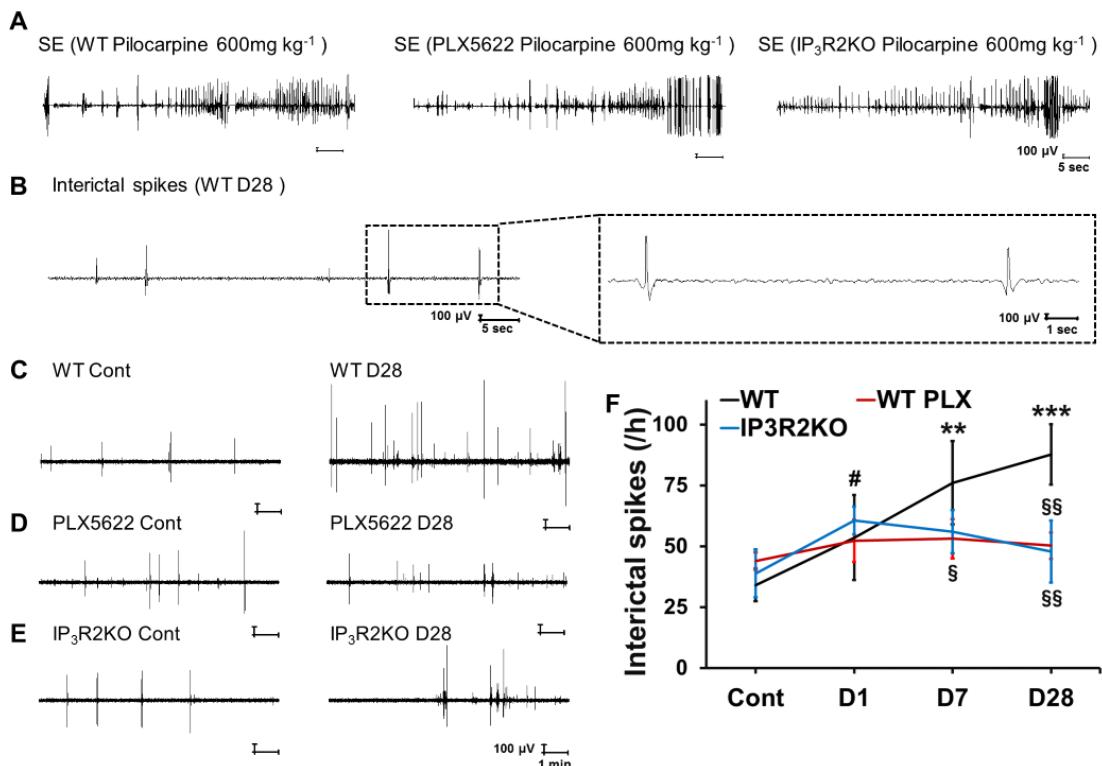
966 **S5 Movie** Ca^{2+} dynamics of astrocytes in the CA1 stratum radiatum region in

967 Glast-CreERT2::flx-GCaMP3 control mice, and approximately 4 weeks after SE,

968 with or without minocycline treatment.

969 **S6 Movie** Ca^{2+} dynamics of astrocytes approximately 4 weeks after SE in the

970 CA1 stratum radiatum region in Glast-CreERT2::flx-GCaMP3 mice.


971 **S7 Movie** Ca^{2+} dynamics of astrocytes approximately 4 weeks after SE in the

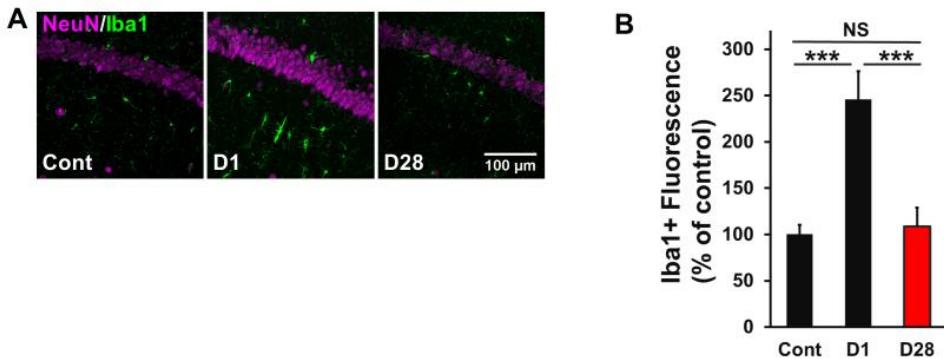
972 CA1 stratum radiatum region in Glast-CreERT2::flx-GCaMP3, mice with or

973 without PLX5622 treatment.

974

975 **Supporting information**

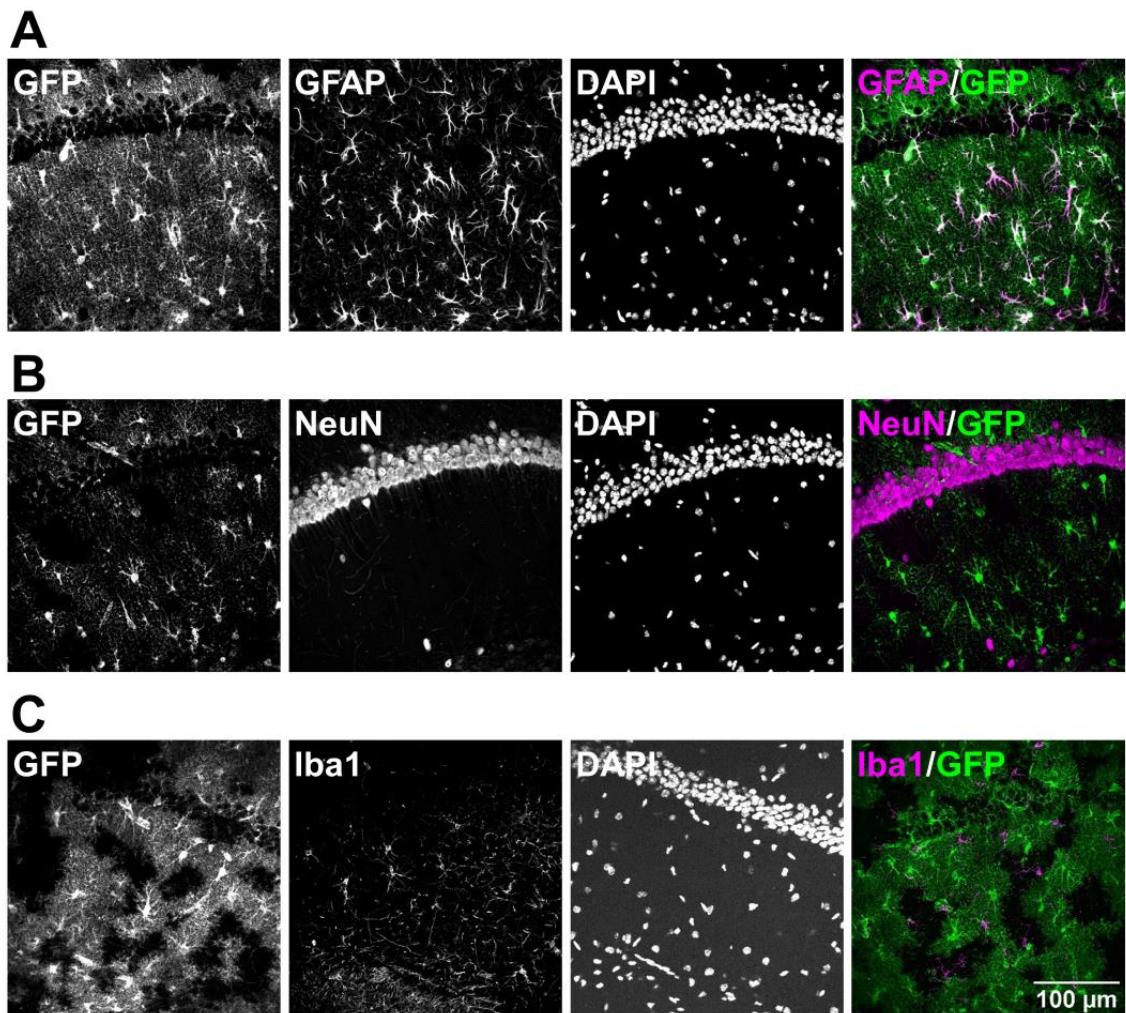
976


977 **S1 Fig Microglia depletion with CSF1R antagonist (PLX5622) or IP₃R2KO**

978 **mice reduces the increased interictal spikes following SE.**

979 (A) Sample EEG from a WT, PLX5622-treated and IP₃R2 knockout mouse during
 980 a pilocarpine-induced stage 5 seizure. (B) Sample EEG presenting Interictal
 981 spikes from a WT mouse at 28 days after SE. (C) Interictal spikes (for 10 min) in
 982 WT control and 28 days after SE. (D) Interictal spikes (for 10 min) in WT control
 983 and 28 days after SE with PLX5622 treatment. (E) Interictal spikes (for 10 min) in
 984 IP₃R2KO mice control and 28 days after SE. (F) Quantification of the temporal
 985 profile of interictal spikes after SE (n = 5 mice, **P < 0.01, ***P < 0.001 vs. control)

986 of WT mice, $\#P < 0.05$ vs. control of PLX5622, $\$P < 0.05$, $\$\$P < 0.01$ vs. WT
987 (corresponding day), one-way ANOVA ($P < 0.01$) with Dunnett's test and unpaired
988 t-test). Values represent the means \pm SEM. Cont, control; D, day.


989

990

991 **S2 Fig Initial microglial activation is observed after SE in IP₃R2KO mice.**

992 (A) Representative microphotographs showing the spatiotemporal characteristics
 993 of Iba-1 expression in CA1 after SE. Fifteen images were captured per z-stack
 994 image (0.5 μ m step). (B) Quantification of the temporal profile of Iba-1 positive
 995 microglia in IP₃R2KO mice after SE (n = 4 mice, N.S. means not significant ($P >$
 996 0.05), *** $P < 0.001$, one-way ANOVA ($P < 0.001$) with Bonferroni test). Values
 997 represent the mean \pm SEM. Cont, control; D, day.

998

999 **S3 Fig Immunohistochemical analysis of GCaMP expression in the**

1000 **hippocampus in Glast-CreERT2::Flx-GCaMP3 mice.**

1001 (A to C) Representative images showing immunohistochemical staining for GFAP

1002 (A), NeuN (B), and Iba1 (C) with GFP staining in the CA1 region of Glast-

1003 CreERT2::Flx-GCaMP3 mice (tamoxifen i.p. at P7).

1004 **S1 Table Cell-specific markers in GCaMP3-expressing cells in the**
1005 **hippocampus of Glast-CreERT2::Flx-GCaMP3 mice (tamoxifen i.p. at P7).**

Region	GFAP/GFP	NeuN/GFP	Iba1/GFP
CA1	92 ± 2% (12 FOV/6 slices)	0 ± 0% (12 FOV/6 slices)	0 ± 0% (12 FOV/6 slices)
CA2	86 ± 5% (6 FOV/6 slices)	0 ± 0% (6 FOV/6 slices)	0 ± 0% (6 FOV/6 slices)

1006 n = 3 mice, values represent the means ± SEM. FOV, fields of view.