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Abstract

Extensive activation of glial cells during a latent period has been well
documented in various animal models of epilepsy. However, it remains unclear
whether activated glial cells contribute to epileptogenesis; i.e., the chronically
persistent process leading to epilepsy. Particularly, it is not clear whether inter-
glial communication between different types of glial cells contributes to
epileptogenesis, as past literature mainly focused on one type of glial cell. Here,
we show that temporally distinct activation profiles of microglia and astrocytes
collaboratively contribute to epileptogenesis in a drug-induced status epilepticus
model. We found that reactive microglia appeared first, followed by reactive
astrocytes and increased susceptibility to seizures. Reactive astrocytes
exhibited larger Ca?* signals mediated by IP3R2, whereas deletion of this type
of Ca?* signaling reduced seizure susceptibility after status epilepticus.
Immediate, but not late, pharmacological inhibition of microglial activation
prevented subsequent reactive astrocytes, aberrant astrocyte Ca?* signaling,
and the enhanced seizure susceptibility. These findings indicate that the
seqguential activation of glial cells constitutes a cause of epileptogenesis after

status epilepticus. Thus, our findings suggest that the therapeutic target to



47  prevent epilepsy after status epilepticus should be shifted from microglia (early

48 phase) to astrocytes (late phase).
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Introduction

Epileptogenesis; i.e., the process leading to epilepsy, is a common sequel of

brain insults such as brain injury, cerebrovascular disease, or status epilepticus

(SE) (1,2). Such brain insults are typically followed by a latent period, during

which the brain undergoes a cascade of morphological and functional changes

over month to years prior to the onset of chronic epilepsy (3,4). Extensive

activation of glial cells, including microglia and astrocytes, has been well

documented during this latent period in various animal models of epilepsy (5-7).

Although the association of pathology with reactive glial cells is widely

recognized, it is unclear whether such microglial and astrocytic activation

constitutes primary causes of epilepsy or rather represents the results of

repeated seizures. Moreover, the potential for these reactive glial cells to

comprise candidates for epileptogenesis raises the further mechanistic question

regarding whether activated glial cells might contribute to epileptogenesis

independently or collaboratively.

In chemoconvulsant-induced epilepsy models, microglia are activated and

produce pro-inflammatory mediators immediately following seizure onset (8).

Activated microglia can decrease the seizure threshold in animal models by

releasing pro-inflammatory molecules with neuromodulatory properties (9).
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Notably, the extent of microglial activation correlates with the seizure frequency

in human drug-resistant epilepsy (10). Alternatively, such microglial activation

may not persist chronically. For example, pro-inflammatory molecules are

detectable in microglia following a seizure but the expression diminishes after

several hours (11). Furthermore, although the activation of microglia is well

characterized, it is unclear whether these activated microglia affect developing

epileptogenic processes directly or through the modulation of other cells, such

as subsequent astrocytic activation.

Reactive astrogliosis is also one of the most common pathological features

in epilepsy and other brain insults (12,13). Although reactive astrogliosis is

considered the consequence of repetitive seizures, some evidence that reactive

astrocytes may be responsible for repetitive seizures is available. In the

epileptic brain, reactive astrocytes exhibit physiological and molecular changes,

such as reduced inward rectifying K* current (14), changes in transporters (15),

release of gliotransmitters (16), or uncoupling of gap junction (17), that may

underlie neuronal hyperexcitability (18). Although astrocytes do not exhibit

prominent electrical excitability as observed in neurons, they are able to

dynamically regulate calcium using internal stores (19,20). Calcium transients in
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astrocytes are thought to modulate the release of a number of gliotransmitters
that could influence synaptic function, synapse formation (21-24), and neural
circuit excitability (25-27). In particular, several previous studies showed that
astrocyte calcium activity could contribute to excitotoxic neuronal death through
glutamate release following SE (28,29). However, the functional changes
including Ca?* signaling of reactive astrocytes after SE and their causal roles in
epileptogenesis remain largely uncertain.

To evaluate the role of inter-glial communication between different types of
glial cells in the process of epileptogenesis, we assessed the spatiotemporal
dynamics of glial activation following SE. Using cell-type specific manipulation,
we show that relative alterations of both, microglia and astrocytes, play causal
roles in epileptogenesis. Moreover, reactive glia are temporally distinct and
collaboratively contribute to epileptogenesis. Reactive microglia appear first and
induce reactive astrocytes in the hippocampus after SE. These reactive
astrocytes present larger IPsR2-mediated Ca?* signals, which are essential for
induction of the increased seizure susceptibility after SE. We clearly
demonstrate that inhibition of microglial activation reduces astrogliosis, aberrant

astrocytic Ca?* signaling, and seizure susceptibility. We therefore conclude that
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the sequential activation of glial cells; i.e., the initial activation of microglia

followed by astrocytic activation, is a cause of epileptogenesis after SE.

Results

Astrocytic activation follows microglial activation after SE

To determine the contributions of glial cells to epileptogenesis, we used the
pilocarpine model of epilepsy in mice, a model known to be highly isomorphic
with human temporal lobe epilepsy (30,31). Repeated low doses of pilocarpine
(100 mg kg™) were injected intraperitoneally (i.p.) until the onset of SE (Fig 1A).
This ramping protocol has been shown to reduce mortality after SE (32,33). To
investigate how glial cell activation affects the epileptogenic process, we first
examined the spatiotemporal pattern of microglial and astrocytic activation in
the hippocampus following SE. We initially assessed microglial and astrocytic
activation with immunohistochemistry using cell-type-specific activation markers
at1, 3, 7, and 28 days after SE (Fig 1B and 1D). The area of Ibal-positive
microglia was significantly increased in CA1 from 1 to 7 days after SE, which
was followed by an increase in the area of GFAP-positive astrocytes in CA1

from 3 to 28 days after SE (Fig 1C and 1E).
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Out of the twenty-nine animals treated with pilocarpine, ten survived the
treatment and received a second treatment, 4 weeks after the first SE, to
examine whether the first SE increased seizure susceptibility (the lethality in the
first SE was 55.2%). A lower dose of pilocarpine was required for the induction
of the second SE in mice with prior exposure to pilocarpine-induced SE at 8
weeks of age (PP) compared to those without such exposure (SP) (Fig 1F). In
addition, a lower dose of pilocarpine was required for the induction of the
second SE compared to the first SE (Fig 1G) To measure the ictal and the
interictal epileptiform activity, we performed EEG recordings of the left CAl area
of the dorsal hippocampus. Interictal spikes significantly increased 7 and 28
days after SE (S1 Fig A, B, C, and F). These data indicated that the first SE
increased seizure susceptibility even 4 weeks after the first SE. A comparison
with the results in Fig 1 suggested that the temporal pattern of astrocyte
activation, rather than that of microglia, correlates well with the increase of

seizure susceptibility.

Ca?* hyperactivity via IPsR2 in reactive astrocytes after SE

To examine the SE-induced functional changes in astrocytes, Ca?* imaging was
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performed from hippocampal slices prepared from wild-type (WT) and Glast-
CreERT2::flIx-GCaMP3 mice (34,35). Astrocytes displayed significantly larger
Ca?* signals approximately 4 weeks after SE in somata (Fig 2J, 2K, and 2L) (S1
Movie). To test whether hyperactivity of astrocytes is influenced by neuronal
hyperactivity, we blocked neuronal transmission by topically applying the
voltage-gated sodium channel blocker tetrodotoxin (TTX; 1 uM). TTX did not
affect the amplitude of astrocytic Ca?* signals (Fig 2A, 2D, and 2E) (S2 Movie).
To elucidate the molecular mechanisms involved in astrocytic Ca?*
hyperactivity, we applied cyclopiazonic acid (CPA; 20 uM) to deplete
intracellular calcium stores. CPA significantly reduced the amplitude of
astrocytic Ca?* signals after SE (Fig 2B, 2F, and G) (S2 Movie). Then, we
applied the membrane-permeable IPs receptor antagonist 2-
aminoethoxydiphenyl borate (2-APB; 100 uM). 2-APB also significantly reduced
the amplitude of astrocytic Ca?* signals after SE (Fig 2C, 2H, and 2I) (S4
Movie). To confirm that astrocytic Ca?* hyperactivity is completely dependent on
the IP3 receptor, we performed Ca?* imaging in IP3R2 knockout (KO) mice (36).
The amplitude of astrocytic Ca?* signals after SE was significantly decreased in

IP3sR2KO mice compared with that in WT (Fig 23, 2K, 2L, 2M, and 2N). The
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frequency of astrocytic Ca?* signals after SE was also significantly decreased in
IP3sR2KO mice (Fig 2M and 2N) (S1 Movie). These results suggested that
astrocytic Ca?* hyperactivity after SE should be dependent on IPsR2-mediated

Ca?* release from internal stores.

IPsR2KO mice exhibit rescue of the increased seizure susceptibility

To clarify the role of astrocytic Ca?* hyperactivity after SE in epileptogenesis, we
investigated seizure susceptibility after SE in IP3sR2KO mice (36). No
differences in the dose of pilocarpine required for the induction of the first SE
were observed between IP3R2KO and WT mice (Fig 1F and 20). These data
indicated that IPsR2-mediated Ca?* signaling in astrocytes does not alter the
acute responses to pilocarpine.

In IP3sR2KO mice, the area of Ibal-positive microglia was significantly
increased in CALl at 1 day after SE, suggesting that microglial activation after
SE was comparable in IP3sR2KO and WT mice (S2 Fig). However, there was no
significant change in the dose of pilocarpine required for the induction of the
second SE in SP compared with PP mice (Fig 20). Sixteen animals were

treated with pilocarpine, out of which ten survived, and received the second

11
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treatment, (the lethality in the first SE was 37.5%.) There was no significant
change in the dose of pilocarpine required for the induction of the first and
second SE in IPsR2KO mice (Fig 2P). In controlled conditions, there was no
significant change in the number of interictal spikes in IPsR2KO mice when
compared with WT mice (S1 Fig F). In addition, interictal spikes were
significantly reduced 28 days after SE in IPsR2KO mice, compared with WT
mice (S1 Fig E and F). These results suggested that IPsR2-mediated astrocytic
Ca?* hyperactivity is essential for the induction of the increased seizure

susceptibility after SE.

Microglia inhibition reduces activated astrocyte morphology

Our data indicated temporal differences between activation of microglia and
astrocytes; i.e., earlier and later onset after SE, respectively. To reveal features
of the activated microglia after SE, we investigated the changes in mRNA levels
of pro-inflammatory cytokines that are relevant to microglial activation by
guantitative reverse transcription-polymerase chain reaction (RT-PCR) (Fig 3A,
3B, and 3C). SE increased Tnf and ll1b mRNA in the hippocampus at 1 day

after SE (Fig 3B and 3C). To explore the microglia-triggered astrocyte

12
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activation, we investigated microglial functional changes after SE. Among

several molecules tested, we found that Tnf and II1b mRNAs were also

significantly upregulated in the isolated hippocampal microglia at 1 day after SE

(Fig 3A).

To clarify whether microglial activation is required for astrogliosis, we

investigated the effect of post-treatment with the inhibitor, minocycline (Fig 3D)

(37-39). To confirm the efficacy of minocycline in this protocol, microglial

activation was assessed by immunohistochemistry and quantitative RT-PCR.

Minocycline post-treatment prevented the increase in the area of Ibal-positive

cells in CAl at 3 days after the first SE (Fig 3E and 3G) along with an increase

in Tnf but not II1b mRNA in the hippocampus at 1 day after the first SE (Fig 3l

and 3J). Notably, microglia inhibition with minocycline post-treatment prevented

the increase in the area of GFAP-positive cells in CAl at 28 days after the first

SE (Fig 3F and 3H).

To further confirm that acute microglial activation plays an important role in

the morphological activation of astrocytes after SE, we applied PLX5622, a

CSF1R antagonist, to deplete microglia (Fig 3K) (40—42). PLX5622 treatment

prevented the increase in the area of Ibal-positive cells in CA1 from 1 to 7 days

13
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after the first SE (Fig 3L and 3N). In addition, Aifl and Tnf mRNA levels were
significantly decreased at 1 day after SE with PLX5622 treatment compared
with those in the control diet group (Fig 3P). Similarly, the increased area of
GFAP-positive astrocytes in CA1 from 7 to 28 days after SE in control diet (AIN-
76A) mice was prevented in PLX5622 treated mice (Fig 3M and 30). To identify
the optimal timing of microglial inhibition to prevent astrogliosis, we applied
PLX5622 from 3 weeks after SE (Fig 4A). This later PLX5622 treatment
decreased the area of Ibal-positive cells in CAl at 28 days after the first SE
(Fig 4B and 4D) but did not prevent the increased area of GFAP-positive
astrocytes (Fig 4C and 4E). These findings showed that the initial reactive

microglia are required to induce morphological activation of astrocytes after SE.

Microglia inhibition reduces astrocytic Ca®* hyperactivity

We then investigated whether microglial activation is required for astrocytic Ca?*
hyperactivity after SE. We also used a pharmacological approach to inhibit the
early microglial activation after SE. Microglia inhibition with minocycline reduced
the larger and frequent Ca?* signals of astrocytes (S5 Movie) (Fig 5A, 5B, 5C,

5D, and 5E). Similarly, the amplitude and frequency of fluo-4AM-labeled
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astrocytic Ca?* signaling after SE were significantly increased in control diet
(AIN-76A) mice (Fig 5F, 5H, 51, 5J, and 5K) (S6 Movie). Conversely, the larger
and frequent Ca?* signals after SE were significantly reduced by the PLX5622
treatment (Fig 5G, 5L, 5M, 5N, and 50) (S7 Movie). These results indicated that
acute microglial activation is essential for the changes of astrocytic Ca?* activity

after SE.

Microglia inhibition rescues enhanced seizure susceptibility

Finally, we tested whether microglia inhibition rescued the increased seizure
susceptibility following SE. Eighteen animals were treated with pilocarpine and
minocycline, ten mice survived the treatment, and received a second treatment
(the lethality in the first SE was 44.4%). Post-treatment with minocycline
following the first SE prevented the increased seizure susceptibility (Fig 6A and
6B). No difference was observed between control diet and PLX5622-treated
mice in the dose of pilocarpine required for the induction of the first SE (Fig 6C).
Furthermore, there was no significant change in the number of interictal spikes
in PLX5622-treated mice when compared with WT mice (S1 Fig F). These

results indicated that microglia inhibition does not alter the acute responses to
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pilocarpine. In contrast, a lower dose of pilocarpine was required for the

induction of the second SE in control mice compared with that in PLX5622-

treated mice (Fig 6D). Consistent with this, unlike the enhanced seizure

susceptibility observed in control mice following the first SE (as indicated by the

reduced dose of pilocarpine required to induce the second vs. the first SE),

there was no significant change in the dose of pilocarpine required for the

induction of the first or second SE in PLX5622-treated mice (Fig 6E and 6F)

Fifteen animals were treated with pilocarpine and control diet, and the ten

surviving mice received a second treatment (the lethality in the first SE was

33.3%.) Twenty animals were treated with pilocarpine and PLX5622, and ten

survived, and received a second treatment (the lethality in the first SE was

60.0%). In addition, interictal spikes were significantly reduced 7 and 28 days

after SE in PLX5622-treated mice, compared with WT mice (S1 Fig D and F). In

contrast, a lower dose of pilocarpine was required for the induction of the

second SE in later PLX5622 treatment mice, similar to that in control diet mice

(Fig 6G, 6H, 61, and 6J). Twenty-four animals were treated with pilocarpine and

control diet, and the ten surviving mice received a second treatment. The

lethality in the first SE was 58.3%. Seventeen animals were treated with
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pilocarpine and PLX5622 later phase, and ten survived, receiving a second
treatment. The lethality in the first SE was 41.2%. These data suggested that
the inhibition of initial microglial activation rescues the increased seizure

susceptibility.

Discussion

Here, we demonstrate that SE induces sequential activation of glial cells; i.e.,
the initial activation of microglia, followed by astrocytic activation, which is
essential for seizure susceptibility or epileptogenesis. The main findings in the
present study are as follows: 1. Microglia are activated and pro-inflammatory
cytokines of microglia are increased immediately after SE; 2. Reactive
astrocytes, which exhibit larger IPsR2-mediated Ca?* signals, appear following
microglial activation after SE; 3. Genetic deletion of IPsR2 rescues both the
aberrant Ca?* signals in astrocytes and the increased seizure susceptibility; 4.
Pharmacological inhibition of microglial activation or deletion of microglia at
early phase after SE reduces astrogliosis along with aberrant Ca?* signals of
astrocytes, and rescues the increased seizure susceptibility. These findings

indicate that initially activated microglia are responsible for the subsequent
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induction of epileptogenic reactive astrocytes in vivo. The limitation of this study

is that the severity of epilepsy was not evaluated by spontaneous recurrent

seizures, but was evaluated by changes in the threshold of pilocarpine-induced

seizures and interictal spikes. However, overall our findings suggest that the

therapeutic target to prevent epilepsy after status epilepticus should be shifted

from microglia (early phase) to astrocytes (late phase).

Microglial and astrocytic activation is a common feature of various central

nervous system (CNS) disorders including epilepsy (43—-46). However, the

pathological significance and spatiotemporal pattern of microglial and astrocytic

activation in the epileptogenic process have not been carefully addressed.

Microglial response to SE occurs immediately, with reactive microglia playing

both detrimental and beneficial roles during acute seizures (47). Although

activated microglia exhibit a neuroprotective role via the P2Y12 receptor in the

acute phase, they exert proconvulsive effects through the production of pro-

inflammatory cytokines such as IL-18 (11), TNF (48), and IL-6 (49,50). However,

such increase of purinergic receptors and pro-inflammatory cytokines after SE

may be transient (11), and it is unknown how this transient microglial activation

including pro-inflammatory cytokines causes long-term epileptic potential. Here,
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we found that inhibiting microglia at the acute phase (0 to 7 days after SE) but
not the late phase (21 to 28 days after SE) reduced susceptibility to the second
SE, suggesting that activated microglia trigger the epileptogenic process
including astrocytic activation, but do not exert a direct proconvulsive effect on
the later phase after SE.

In the present study, we demonstrate that astrocytic activation develops
slowly starting 7 days after SE, is long lasting, and still observed when mice
show increased seizure susceptibility. Astrogliosis is thought to contribute to the
pathophysiology of epilepsy (51-53). Some previous reports show dysregulation
of astrocyte functions, such as K* ion homeostasis (14), neurotransmitter
buffering (15), gliotransmission (16), or purinergic signaling (54, 55), can
actively contribute to hyperexcitation of neuronal networks and progression of
seizures. However, the role of astrogliosis in epileptogenesis is largely
unknown. In particular, it is important to determine whether activated astrocytes
play a proconvulsive or anticonvulsive role in the epileptic brain. It has been
proposed that astrocytic Ca?* signaling contributes to the induction of epileptic
seizures and neuronal cell loss by seizures (24,31,32,56). In this study, we

observed larger Ca?* signals in the somatic regions of astrocytes in the latent
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phase of epileptogenesis. Analysis of the Ca?* signals in astrocytes suggests
that these Ca?* signals are mediated by IP3R2. Notably, we found that genetic
deletion of IP3R2 is sufficient to rescue the increased seizure susceptibility and
reduce astrogliosis. Our study thus suggests that IPs3R2-mediated Ca?*
signaling in reactive astrocytes plays a proconvulsive role in the epileptic brain
and can contribute to epileptogenesis.

Astrocytic Ca?* signals may contribute to epileptogenesis through several
mechanisms. Astrocytes impact neural circuit excitability directly by releasing
“gliotransmitters”, such as glutamate (25,57,58). Astrocytes also increase
neuronal excitability by forming new circuits through the release of synaptogenic
molecules (23,59). However, the functional consequences of these changes in
the context of epileptogenesis remain to be determined. As Ca?* ions serve as a
ubiquitous intracellular signal in the regulation of numerous cellular processes,
including exocytosis, proliferation, and gene expression, it is also likely to
regulate many processes in the induction or maintenance of reactive astrocytes
(60,61). Since it has been reported that the Ca?* signals in astrocytes could
contribute to ictogenesis (27,29), we cannot disregard the possibility that IP3R2

may contribute to neural excitability and microglial activation after SE. We
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demonstrate that SE induces neither an increase in Ca?* excitation in astrocytes
nor proconvulsive effects in IPs3R2KO mice, suggesting that enhanced Ca?*
signals in astrocytes are likely responsible for epileptogenesis.

In animal models of epilepsy, reactive astrocytes undergo extensive
physiological changes involving not only Ca?* signaling but also ion and
neurotransmitter homeostasis along with intracellular and extracellular water
content, which can cause neuronal hyperexcitability (17,62—64). The relative
importance of such functional changes of astrocytes to epileptogenesis will be
investigated in future studies. Recently, it has been reported that activated
microglia can induce neurotoxic reactive astrocytes (i.e., Al astrocytes), which
release unidentified neurotoxic factors (41,65). Thus, whether astrogliosis after
SE results in a similar phenotype to Al astrocytes and whether IP3-mediated
Ca?* signals contribute to the induction of neurotoxic phenotype (61) represent
relevant issues to be addressed in future investigations. However, it was also
reported that these functional changes of astrocytes, including gap junction
dysfunction (17), could occur before the increase is observed in GFAP
immunostaining, astrocytic Ca?* signals, or Ibal immunostaining, investigated in

this study. Although whether the astrocytes induced by activated microglia are
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in a primarily neurotoxic or neuroprotective state remains largely unknown, our

data suggest that the reactive astrocytes induced by activated microglia after

SE exert proconvulsive effects in the epileptic brain.

In this study, we also demonstrate that pro-inflammatory cytokines of

microglia are increased prior to astrocytic activation, suggesting the importance

of microglial activation as an initial process of epileptogenesis. Pharmacological

inhibition and depletion of microglia significantly blocked the activation of

astrocytes and decreased the seizure threshold after SE. Our findings identify

that activated microglia likely promote epileptogenesis by inducing the

proconvulsive phenotype of astrocytes. Although it has been recognized that

microglial activation occurs before reactive astrogliosis in various CNS diseases

(66-68), little was known prior to the present study regarding how microglial-

astrocytic interactions contribute to the pathophysiology of epilepsy. For

example, several previous studies using chemoconvulsant-induced epilepsy

models have shown that activated microglia were present immediately after SE

and that functional changes occurred, such as upregulation of pro-inflammatory

cytokines (8,69,70), purinergic receptors (43), and phagocytosis (44).

Previous reports also revealed that microglia modulate astrocyte activation
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via various molecules, especially pro-inflammatory cytokines (71,72). Consistent

with this, we found that TNF and IL-1pB are significantly upregulated in

hippocampal microglia at 1 day after SE. Conversely, microglia inhibition by

minocycline prevents the increased mRNA of TNF in the hippocampus at 1 day

after the first SE along with subsequent reactive astrogliosis, suggesting a

potential role of pro-inflammatory cytokines from microglia in reactive

astrogliosis after SE. As the effect of minocycline may not be restricted to

microglia, we depleted microglia using a CSF-1 receptor antagonist and found

similar results, suggesting that microglial activation occurs through cytokine

release. CSF1 receptor antagonist may affect not only microglia, but also

peripheral macrophages (73,74), which could contribute to pathophysiology of

epilepsy (75-77). Thus, despite the potential problem of specificity owing to the

use of pharmacological inhibition of microglia, we clearly show that initial

activation of microglia and microglia-derived proinflammatory cytokines likely

underlie the subsequent astrogliosis-mediated epileptogenesis. Nevertheless,

because the molecular mechanisms underlying the activation of astrocytes

triggered by activated microglia have not been fully clarified, other chemical

mediators such as ATP may also contribute to activate microglia-mediated
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astrogliosis (78). Further investigations using more specific interventions are
required to elucidate the precise molecular mechanisms underlying the
interaction between microglia and astrocytes.

In summary, our findings identify a sequence of glial activation in the
hippocampus that contributes to the epileptogenic process. In this process,
microglial activation is identified as a crucial event to induce reactive astrocytes.
In turn, astrocytic Ca?* activation, mediated by IPsR2, plays an important role in
the induction of epileptogenesis. Our findings add to the emerging view that
reactive astrocytes triggered by microglia have a central role in the
pathogenesis of epilepsy and, given the limited progress of neuron-centered
epilepsy research over the past several years, suggest reactive glial cells as
promising new targets for the development of alternative and more specific

antiepileptic drugs.
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Methods
Animals
All studies used male C57BL/6J mice (SLC Japan, Shizuoka, Japan). IPsR2KO
mice on a C57BL/6 background were available from a previous study (36); their
generation and maintenance have been previously described in detail. Glast-
CreERT2::flIx-GCaMP3 mice on a C57BL/6 background were also available from
a previous study (34,35); their generation and maintenance have been previously
described in detail. In the present study, we performed immunohistochemistry
and confirmed that GCaMP3 was co-localized with GFAP, an astrocyte marker,
but not with Ibal or NeuN (S3 Fig and S1 Table). Overall, Ca?* signals detected
by GCaMP3 were mainly detected from astrocytes.

Mice were housed on a 12 h light (6 am)/dark (6 pm) cycle with ad libitum
access to water and rodent chow. The animals were allowed to adapt to

laboratory conditions for at least 1 week before starting the experiments.

Animal treatments
The first SE was induced in 8-week-old male mice by the administration of

pilocarpine and the second SE was induced 4 weeks after the first SE. Alow dose
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of 100 mg kg™ pilocarpine (Wako, 161-07201) per injection was administered i.p.
every 20 min until the onset of Racine scale stage 5 seizures. Scoporamin methyl
bromide (1 mg kg™, i.p., Wako, 198-07971) was administered 30 min prior to
pilocarpine injection to reduce its peripheral effects (32,33). Seizures were
terminated with pentobarbital (20 mg kg™, i.p., Kyoritu Seiyaku) when mice
experienced stage 5 seizures for 30 min. Behavior of pilocarpine-treated mice
was observed for 1 h after SE. To examine whether the first SE increased seizure
susceptibility, the second SE was induced 4 weeks after the first SE using the
same protocol.

To establish whether minocycline inhibits acute seizure-induced microglial
activation, mice were administered i.p. with saline or minocycline (25 mg kg™) 1
h after pilocarpine-SE induction and for the following two consecutive days (37—
39). Microglia were also depleted from mice by treatment with the CSF1R
antagonist, PLX5622 (Plexxikon), formulated in AIN-76A rodent chow (Research
Diets). Mice were treated with PLX5622 (1200 mg kg™* Chow) or a matched
control diet (AIN-76A) for seven days before SE and for the following seven

consecutive days (40-42).
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EEG acquisition

The mice were deeply anesthetized with isoflurane. For EEG recordings, a bipolar

electrode was implanted at the left CA1 area of the dorsal hippocampus (AP = -

1.8 mm, ML = +1.6 mm, DV = -2.0 mm). The electrode was fixed to the skull with

dental cement. Animals were allowed to recover for 5 to 7 days before EEG

recording. EEGs were recorded in freely moving mice using a digital acquisition

system (PowerLab 26T, ADInstruments), for at least 2 hour per day. EEG data

were collected at a sampling rate of 2000 Hz. Data were acquired, digitized, and

analyzed off-line using Labchart 8 software (ADInstruments). The artifacts in the

raw EEG traces were manually identified and excluded from the analyses of

interictal spikes.

Immunohistochemistry

The mice were deeply anesthetized with pentobarbital and perfused

transcardially with phosphate buffered saline (PBS), followed by 4% (w/v)

paraformaldehyde in PBS. The brains were removed, postfixed overnight, then

cryoprotected with 30% (w/v) sucrose in PBS for two days. The brains were

frozen and coronal sections (20 um) were cut using a cryostat (Leica CM1100).
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Slices were washed with PBS three times and treated with 0.1% Triton-X100/10%

NGS for 1 h to block nonspecific binding. The sections were incubated for two

days at 4 °C with the following primary antibodies: monoclonal rat anti-GFAP

(1:2000; Thermo Fisher Scientific, 13-0300), monoclonal mouse anti-NeuN

(1:500; Millipore, MAB377), polyclonal rabbit anti-lbal (1:1000; Wako, 019-

19741), polyclonal chicken anti-GFP antibody (1:1000, Thermo Fisher Scientific,

A10262), and monoclonal rabbit anti-NeuN (1:1,000; Millipore, MABN140). The

sections were washed three times with PBS and then incubated for 2 h at room

temperature with secondary antibodies: Alexa 488- or Alexa 546-conjugated

polyclonal goat anti-mouse/rat/rabbit or chicken IgGs (1:500; Invitrogen,

A11029/Thermo Fisher Scientific, A-11081/Invitrogen, A11035/Thermo Fisher

Scientific, A11039). After washing slices with PBS three times, they were

mounted with Vectashield Mounting Medium (Vector Laboratories). Fluorescence

images were obtained using a confocal laser microscope system (FV-1000;

Olympus) or Keyence fluorescence microscope (BZX-700).

Standard quantitative RT-PCR

Total RNA was isolated and purified from tissues using the RNeasy Lipid Tissue
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Mini Kit (Qiagen) according to the manufacturer’s instructions. RT-PCR

amplifications were performed using the One Step PrimeScript RT-PCR Kit

(TaKaRa Bio). RT-PCR amplifications and real-time detection were performed

using an Applied Biosystems 7500 Real-Time PCR System. The thermocycling

parameters were as follows: 5 min at 42 °C for reverse transcription, 10 s at 95 °C

for inactivation of the RT enzyme, and 40 cycles of denaturation (5 s at 95 °C)

and annealing or extension (34 s at 60 °C). Relative gene expression was

calculated using Gapdh expression as a housekeeping gene. All primer probe

sets and reagents were purchased from Applied Biosystems: rodent Gapdh

(4308313), mouse Tnf (MmM00443260_g1), mouse ll1b (MmM00434228 m1).

Dissociated cell suspensions from adult mouse brain

Three 8-week old male mice were perfused with PBS after anesthesia to

eliminate serum vesicles and hippocampi were dissected to comprise one sample.

Tissue dissociation was performed using the gentleMACS dissociator and the

Adult Brain Dissociation Kit (Miltenyi Biotec) according to the manufacturer’s

protocol. Briefly, brain tissue was minced and digested with a proprietary enzyme

solution on the gentleMACS dissociator adult brain program. The cells were then
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incubated with anti-mouse CD11b-coated microbeads (Miltenyi Biotec) for 10 min

at 4 °C. The cell-bead mix was then washed to remove unbound beads. Prior to

antibody labeling, nonspecific binding to the Fc receptor was blocked using the

FcR Blocking Reagent (Miltenyi Biotec). Cells were suspended in PBS with 0.5%

bovine serum albumin and the cell suspension was loaded onto an LS Column

(Miltenyi Biotec), which was placed in the magnetic field of a QuadroMACS™

Separator (Miltenyi Biotec). The magnetically labeled CD11b positive cells were

retained within the column and eluted as the positively selected cell fraction after

removing the column from the magnet.

Microfluidic quantitative RT-PCR

Total RNA was extracted from dissociated cells using the RNeasy Lipid Tissue

Mini Kit (Qiagen) and cDNA synthesis performed using the PrimeScript RT-PCR

Kit (Perfect Real Time) (TaKaRa Bio). For pre-amplification, up to 100 gPCR

assays (primer or probe sets in 20x stock concentration) were pooled and diluted

to a 0.2x concentration. For microfluidic gqPCR, 1.25 uL of each cDNA sample

was pre-amplified using 1 pL of TagMan pre-amplification master mix (PN 100-

5580, Fluidigm), 1.25 pL of the primer pool, and 1.5 uL of water. Pre-amplification
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was performed using a 2 min 95 °C denaturation step and 14 cycles of 15 s at

95 °C and 4 min at 60 °C. Microfluidic quantitative RT-PCR reactions were

performed using the 96x96 chips and included 2—-3 technical replicates for each

combination of sample and assay. For sample mixtures, 2.7 uL pre-amplification

product was combined with 0.3 pL of 20x GE Sample Loading Reagent

(85000746, Fluidigm) and 3 uL of 2x PCR master mix (4324020, Thermo Fisher

Scientific), of which 5 uL of was loaded into sample wells. For assay mixtures,

equal volumes of TagMan assay and 2x Assay Loading Reagent (PN85000736,

Fluidigm) were combined, and 5 yL of the resulting mixture was loaded into

multiple assay wells. RT-PCR amplifications and real-time detection were

performed using the BioMarkHD Real-Time PCR System (Fluidigm). Data from

Fluidigm runs were manually checked for reaction quality prior to analysis, and

Ct values for each gene target were normalized to Ct values for housekeeping

genes. All primer probe sets and reagents were purchased from Integrated DNA

Technologies: rodent Gapdh (Mm.PT.39a.1), mouse Tnf (Mm.PT.58.12575861),

mouse ll11b (Mm.PT.58.41616450), mouse Cx3crl (Mm.PT.58.17555544), mouse

CD45 (Mm.PT.58.7583849), mouse CD11b (Mm.PT.58.14195622), mouse CD68

(Mm.PT.58.32698807), mouse CD206 (Mm.PT.58.42560062), mouse II6
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(Mm.PT.58.10005566), mouse Ifng (Mm.PT.58.41769240), mouse 4
(Mm.PT.58.32703659), mouse 1110 (Mm.PT.58.13531087), and mouse Tgfb

(Mm.PT.58.11254750).

Preparation of brain slices and Ca?* imaging

The methods used have been described previously (61,79). Briefly, 8-week-old
male mice were anesthetized with pentobarbital (100 mg kg™, i.p.). Cold cutting
ACSF, composed of 92 mM NaCl, 2.5 mM KCI, 1.2 mM NaH2PO4, 30 mM
NaHCOs, 20 mM HEPES, 25 mM D-glucose, 5 mM sodium ascorbate, 2 mM
thiourea, 3 mM sodium pyruvate, 10 mM MgClz, and 0.5 mM CacClz saturated with
95% 02-5% COz2, was perfused transcardially. Coronal slices of the hippocampus
(300 um) were cut using a vibrating microtome (Pro7, Dosaka) in cutting ACSF.
Slices were incubated at 34 °C for 10 min in recovery ACSF, composed of 93 mM
N-methyl-D-glucamine, 93 mM HCI, 2.5 mM KCI, 1.2 mM NaH2PO4, 30 mM
NaHCOs, 20 mM HEPES, 25 mM D-glucose, 5 mM sodium ascorbate, 2 mM
thiourea, 3 mM sodium pyruvate, 10 mM MgCl2, and 0.5 mM CacClz saturated with
95% 02-5% COg2, and subsequently stored in ACSF comprising 124 mM NacCl,

2.5 mM KCI, 1.2 mM NaH2POs4, 24 mM NaHCOs, 5 mM HEPES, 12.5 mM D-
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glucose, 5 mM sodium ascorbate, 2 mM thiourea, 3 mM sodium pyruvate, 2 mM

MgClz, and 2 mM CacCl2 saturated with 95% O2 and 5% CO:2 at room temperature.

After 1 h of recovery, slices were submerged in ACSF at approximately 32 °C.

Slices were imaged using an Olympus Fluoview FV1000MPE two-photon laser

scanning microscope equipped with a Maitai HP DS-OL laser (Spectra-Physics).

We used a 920 nm laser and 495-540 nm bandpass emission filter. Astrocytes

were selected from the CAL stratum radiatum region and were typically 30-50

pm from the slice surface. Images were gathered using a 40x water immersion

lens with a numerical aperture of 0.80.

For Fluo-4AM measurements, we dropped 2.5 pL Fluo-4AM (2 mM) onto the

hippocampal slices followed by incubation in ACSF for 60 min, then transferred

the slices to dye-free ACSF for at least 30 min prior to experimentation. The final

concentration of Fluo4-AM was 5 yM with 0.02% Pluronic F—127. Astrocytes were

selected from the CA1 stratum radiatum region and were typically 30—-50 ym from

the slice surface. TTX (1 uM), 2-APB (100 pyM), and CPA (20 uM) were solubilized

in ACSF. Baseline astrocytic activity was recorded prior to drug application.

Subsequently, drugs were applied onto the slice for 10 min and astrocytic activity

was recorded for 10 min.
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Image analysis

Images were acquired using inverted confocal laser-scanning systems (Olympus
FV-1000) at 40x magnification with a 1.30 numerical aperture objective lens.
Information regarding z-stack images is described in the figure legends.
Astrocytes were selected from the CALl stratum radiatum region and imaged
based on GFAP immunostaining. Microglia were imaged based on lbal
immunostaining at the CA1 stratum radiatum region. Subsequent images were
processed and quantified using ImageJ (US National Institutes of Health; NIH).
For the quantitative analysis of the area containing Ibal positive microglia, we
randomly chose three fields per mouse. Images were converted to gray scale and
the quantification threshold was set constantly for all specimens within each
experimental group. The percentage of Ibal-positive area was calculated by
dividing the area of Ibal-positive region by the total area of the region of interest.
For the quantitative analysis of the area containing GFAP positive astrocyte, the
percentage of GFAP-positive area was calculated using the same method used
to quantify Ibal-positive microglia.

The methods used for Ca?* imaging data analysis have been described
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previously (56,70). Briefly, imaging data were analyzed using ImagedJ. We
selected regions of interest from somatic regions of astrocytes by visual
examination of the time lapse image. Using these regions of interest, raw
fluorescence intensity values (F) were taken from the original videos and
converted to delta F/F (dF/F) in Originlab (Origin Lab Corp.). We analyzed Ca?*
signals when their dF/F values were greater than 0.2. We analyzed Ca?* signals
and their amplitude (dF/F) and duration (full width at half maximum) using the

Originlab “peak analysis” function.

Statistical analysis

All statistical analyses were performed using SPSS version 19.0 (SPSS Inc.)
software. Data are presented as the mean + SEM. Most data were analyzed using
one-way ANOVA followed by Dunnett’'s multiple post hoc test for comparing more
than three samples, and two-sample unpaired t-tests. P values <0.05 were

considered as statistically significant.

Study approval

All experimental procedures were performed in accordance with the “Guiding
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Principles in the Care and Use of Animals in the Field of Physiologic Sciences”

published by the Physiologic Society of Japan and with the previous approval of

the Animal Care Committee of Yamanashi University (Chuo, Yamanashi, Japan).
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Fig 1. Astrogliosis is observed following microglial activation after SE.

(A) As shown in the experimental protocols, mice were administered pilocarpine

to achieve stage 5 seizures. The second SE was induced using the same

protocol 4 weeks after the first SE. SP (PP) indicates that mice were injected

with saline (pilocarpine) at 8 weeks of age followed by an injection of pilocarpine

at 12 weeks of age. (B and C) Representative microphotographs showing the

spatiotemporal characteristics of Iba-1 (B) or GFAP (C) expression in CAl after

SE. Fifteen images were captured per z-stack image (0.5 uym step). Cont,

control; D, day. (D and E) Quantification of the temporal profile of Iba-1 positive

microglia (D) or GFAP positive astrocytes (E) after SE (n =5 mice (D); n =5, 5,
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5,5, 7 mice, (E), *P < 0.05, **P < 0.01 vs. control, one-way ANOVA (P < 0.001)

with Dunnett's test). (F) Dot plots showing dose of pilocarpine required for the

induction of the second SE (n = 14, 13 mice, *P < 0.05, Mann—-Whitney U-test).

(G) Scatter plot showing dose of pilocarpine required for the induction of the first

(at 8 weeks of age) and second (at 12 weeks of age) SE in the PP group (n =

13 mice, **P < 0.01, Wilcoxon signed-rank test). Values represent the mean +

SEM.
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Fig 2. Reactive astrocytes exhibit IPsR2-mediated Ca?* hyperactivity,

which is essential for epileptogenesis.

(A-C) Ca?* dynamics of astrocytes approximately 4 weeks after SE in the CA1

stratum radiatum region in Glast-CreERT2::flx-GCaMP3 mice before and after

TTX (1 M) (A), CPA (20 uM) (B), and 2-APB (100 uM) (C) application. (D-1)

Box plots showing amplitudes of Ca?* signals before and after TTX (1 uM) (D),

CPA (20 pM) (F), and 2-APB (100 uM) (H) application. (n = 10, 13, 14 cells/2
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mice, ***P < 0.001, unpaired t-test). Cont, control. Cumulative probability plots
showing amplitudes (dF/F) of Ca?* signals before and after TTX (not significant
(P > 0.05), Kolmogorov—Smirnov test) (E), CPA (P < 0.001, Kolmogorov—
Smirnov test) (G), and 2-APB (P < 0.001, Kolmogorov—Smirnov test) (1)
application. (J) Astrocytic Ca?* dynamics by Fluo4 in the CA1 stratum radiatum
region in WT control, WT after SE, and IP3sR2KO mice after SE. (K-N) Box plots
showing Ca?* signal amplitudes (dF/F) (K) and frequency (M) (n = 57, 32, 85
cells/2, 2, 3 mice, ***P < 0.001, unpaired t-test). Cumulative probability plots
showing Ca?* signal amplitudes (dF/F) (L) and frequency (N) (P < 0.001,
Kolmogorov—Smirnov test). (O) Dot plots showing dose of pilocarpine required
for the induction of the second SE in IP3sR2KO mice. SP (PP) indicates mice
were injected with saline (pilocarpine) at 8 weeks of age followed by an injection
of pilocarpine at 12 weeks of age. (n = 10 mice, N.S., not significant (P > 0.05),
Mann-Whitney U-test). (P) Scatter plot showing dose of pilocarpine required for
the induction of the first (at 8 weeks of age) and second (at 12 weeks of age)
SE in the PP group regarding IP3R2KO mice (n = 10 mice, N.S., not significant
(P > 0.05), Wilcoxon signed-rank test). Note: The first pilocarpine did not affect

the dose required for the second SE in IP3sR2KO, see Fig 1G.
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861

862  Fig 3. Microglia inhibition with minocycline and depletion with CSF1R
863 antagonist (PLX5622) reduces astrogliosis.

864  (A) Microfluidic quantitative RT-PCR analysis of mRNA in total RNA extracted
865  from hippocampal microglia after SE (n = 3 samples/9 mice, **P < 0.001 vs.

866  control, one-way ANOVA (P < 0.01, P < 0.001) with Dunnett's test). (B and C)
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Quantitative RT-PCR analysis of mRNA in total hippocampal RNA after SE (n =
5 mice, *P < 0.05, ***P < 0.001 vs. control, one-way ANOVA (P < 0.001, P <
0.05) with Dunnett's test). (D) Experimental scheme for minocycline post-
treatment-mediated microglia inhibition. (E-H) Representative microphotographs
showing the spatiotemporal characteristics of Iba-1 (E) and GFAP (F)
expression and quantification of Iba-1 positive microglia (G) and GFAP positive
astrocytes (H) in CA1 with or without minocycline post-treatment after SE (n =5
mice, N.S., not significant (P > 0.05), *P < 0.05, *P < 0.001, one-way ANOVA
(P < 0.01) with Bonferroni test). (I and J) Quantitative RT-PCR analysis as in (B
and C) with or without minocycline post-treatment. (n = 5 mice, N.S., not
significant (P > 0.05), *P < 0.05, unpaired t-test). (K) Experimental scheme for
PLX5622-mediated microglia depletion. (L-O) Representative microphotographs
showing the spatiotemporal characteristics of Iba-1 (L) and GFAP (M)
expression and quantification of Iba-1 positive microglia (N) and GFAP positive
astrocytes (O) in CA1 with or without PLX5622 after SE (n =5 mice, *P < 0.05,
**P < 0.01 vs. control of AIN-76A (control diet), #P < 0.01 vs. control of
PLX5622, 8P < 0.05, 58P < 0.01, 3%8P < 0.001 vs. AIN-76A (corresponding day),

one-way ANOVA (P < 0.01) with Dunnett's test and unpaired t-test). (P)
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885  Quantitative RT-PCR analysis as in (B and C) with or without PLX5622. (n =5

886  mice, *P < 0.05, *P < 0.01, unpaired t-test).
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Fig 4. Microglia depletion with CSF1R antagonist (PLX5622) at late phase

after SE does not reduce astrogliosis and increased seizure susceptibility.

(A) Experimental scheme for microglia depletion with PLX5622 at the late phase

after SE. (B and C) Representative microphotographs showing the

spatiotemporal feature of Iba-1 (B) and GFAP (C) expression in CA1 with or

without PLX5622 after SE. Fifteen images were collected per z-stack image (0.5

pm step). Cont, control; D, day. (D and E) Quantification of the temporal profile

of Iba-1 positive microglia (D) and GFAP positive astrocytes (E) after SE (n =5

mice, ***P < 0.01 vs. control, unpaired t-test, ##P < 0.01 vs. AIN-76A

(corresponding day), one-way ANOVA (P < 0.001) with Dunnett's test). Values

represent the mean £ SEM.
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Fig 5. Microglia inhibition with minocycline or CSF1R antagonist (PLX5622)
reduces the increased astrocytic Ca?* hyperactivity following SE.

(A) Ca?* dynamics of astrocytes approximately 4 weeks after SE in the CA1l
stratum radiatum region in Glast-CreERT2::flx-GCaMP3 mice with or without
minocycline treatment. (B-E) Box plots showing Ca?* signal amplitude (dF/F) (B)
and frequency (D) (n = 74, 92, 93 cells/3 mice, N.S., not significant (P > 0.05),
**P < 0.001, unpaired t-test). Cumulative probability plots showing Ca?* signal

amplitude (dF/F) (P < 0.001, Kolmogorov—Smirnov test) (C) and frequency (not
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significant (P > 0.05), Kolmogorov—Smirnov test) (E). (F and G) Ca?* dynamics
of astrocytes approximately 4 weeks after SE in the CA1 stratum radiatum region
in Glast-CreERT2::flx-GCaMP3 mice with (G) or without (F) PLX5622 treatment.
(H-K) Box plots showing Ca?* signal amplitude (dF/F) (H) and frequency (J) in the
AIN-76A (control diet) group. (n = 70, 58 cells/2 mice, *P < 0.001, unpaired t-
test). Cumulative probability plots showing Ca?* signal amplitude (dF/F) (P <
0.001, Kolmogorov—Smirnov test) (I) and frequency (P < 0.001, Kolmogorov—
Smirnov test) (K) in the AIN-76A (control diet) group. (L-O) Box plots showing
Ca?* signal amplitude (dF/F) (L) and frequency (M) in the PLX5622 group. (n =
61, 71 cells/2 mice, N.S., not significant (P > 0.05), unpaired t-test). Cumulative
probability plots showing Ca?* signal amplitude (dF/F) (not significant (P > 0.05),
Kolmogorov—Smirnov test) (M) and frequency (not significant (P > 0.05),

Kolmogorov—Smirnov test) (O) in the PLX5622 group.
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Fig 6. Microglia inhibition with minocycline or CSF1R antagonist (PLX5622)
reduces the increased seizure susceptibility following SE.

(A) Dot plots showing dose of pilocarpine required for the induction of the second
SE (n = 10 mice, N.S., not significant (P > 0.05), *P < 0.05, Tie-collected Mann—
Whitney U-test). SMP (PMP) indicates that mice were injected with saline
(pilocarpine) at 8 weeks of age with minocycline post-treatment followed by an
injection of pilocarpine at 12 weeks of age. (B) Scatter plot showing dose of

pilocarpine required for the induction of the first (at 8 weeks of age) and second
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(at 12 weeks of age) SE. (n = 10 mice, **P < 0.01, Wilcoxon signed-rank test). (C

and D) Dot plots showing dose of pilocarpine required for the induction of the first

(C) and second (D) SE with or without PLX5622. (n = 10, 8 mice, N.S., not

significant (P > 0.05), *P < 0.01, Mann-Whitney U-test). AIN, control diet (AIN-

76A). (E and F) Scatter plot showing dose of pilocarpine required for the induction

of the first (at 8 weeks of age) and second (at 12 weeks of age) SE for AIN-76A

(control diet) (E) or PLX5622 (F). (n = 10, 8 mice, N.S., not significant (P > 0.05),

*P < 0.01, Wilcoxon signed-rank test). (G and H) Dot plots showing dose of

pilocarpine required for the induction of the first (G) and second (H) SE with or

without late PLX5622 treatment. (n = 10 mice, N.S., not significant (P > 0.05),

Mann-Whitney U-test). (I and J) Scatter plot showing dose of pilocarpine required

for the induction of the first (at 8 weeks of age) and second (at 12 weeks of age)

SE AIN-76A (control diet) (I) or PLX5622 (J). (n = 10 mice, **P < 0.01, Wilcoxon

signed-rank test).
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Supporting Information

S1 Fig Microglia depletion with CSF1R antagonist (PLX5622) or IPsR2KO mice
reduces the increased interictal spikes following SE.

S2 Fig Initial microglial activation is observed after SE in IP3R2KO mice.

S3 Fig Immunohistochemical analysis of GCaMP expression in the hippocampus
in Glast-CreERT2::FIx-GCaMP3 mice.

S1 Table Cell-specific markers in GCaMP3-expressing cells in the hippocampus
of Glast-CreERT2::FIx-GCaMP3 mice (tamoxifen i.p. at P7).

S1 Movie Astrocytic Ca?* dynamics revealed by Fluo4 in the CALl stratum
radiatum region in WT control, WT after SE, and IPsR2KO mice after SE.

S2 Movie Ca?* dynamics of astrocytes approximately 4 weeks after SE in the
CA1 stratum radiatum region in Glast-CreERT2::flx-GCaMP3 mice before and
after TTX application.

S3 Movie Ca?* dynamics of astrocytes approximately 4 weeks after SE in the
CA1 stratum radiatum region in Glast-CreERT2::flx-GCaMP3 mice before and
after CPA application.

S4 Movie Ca?* dynamics of astrocytes approximately 4 weeks after SE in the

CA1l stratum radiatum region in Glast-CreERT2::flx-GCaMP3 mice before and
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after 2-APB application.

S5 Movie Ca?* dynamics of astrocytes in the CA1 stratum radiatum region in
Glast-CreERT2::flx-GCaMP3 control mice, and approximately 4 weeks after SE,
with or without minocycline treatment.

S6 Movie Ca?* dynamics of astrocytes approximately 4 weeks after SE in the
CA1 stratum radiatum region in Glast-CreERT2::flx-GCaMP3 mice.

S7 Movie Ca?* dynamics of astrocytes approximately 4 weeks after SE in the
CA1l stratum radiatum region in Glast-CreERT2::flx-GCaMP3, mice with or

without PLX5622 treatment.
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Supporting information
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SE (WT Pilocarpine 600mg kg')

SE (PLX5622 Pilocarpine 600mg kg )
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S1 Fig Microglia depletion with CSF1R antagonist (PLX5622) or IPsR2KO

mice reduces the increased interictal spikes following SE.

(A) Sample EEG from a WT, PLX5622-treated and IP3R2 knockout mouse during

a pilocarpine-induced stage 5 seizure. (B) Sample EEG presenting Interictal

spikes from a WT mouse at 28 days after SE. (C) Interictal spikes (for 10 min) in

WT control and 28 days after SE. (D) Interictal spikes (for 20 min) in WT control

and 28 days after SE with PLX5622 treatment. (E) Interictal spikes (for 10 min) in

IP3sR2KO mice control and 28 days after SE. (F) Quantification of the temporal

profile of interictal spikes after SE (n = 5 mice, **P < 0.01, **P < 0.001 vs. control
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of WT mice, #P < 0.05 vs. control of PLX5622, 8P < 0.05, %8P < 0.01 vs. WT

(corresponding day), one-way ANOVA (P < 0.01) with Dunnett's test and unpaired

t-test). Values represent the means £ SEM. Cont, control; D, day.
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S2 Fig Initial microglial activation is observed after SE in IPsR2KO mice.

(A) Representative microphotographs showing the spatiotemporal characteristics

of Iba-1 expression in CAl after SE. Fifteen images were captured per z-stack

image (0.5 um step). (B) Quantification of the temporal profile of Iba-1 positive

microglia in IPsR2KO mice after SE (n = 4 mice, N.S. means not significant (P >

0.05), **P < 0.001, one-way ANOVA (P < 0.001) with Bonferroni test). Values

represent the mean + SEM. Cont, control; D, day.
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S3 Fig Immunohistochemical analysis of GCaMP expression in the

hippocampus in Glast-CreERT2::FIx-GCaMP3 mice.

(Ato C) Representative images showing immunohistochemical staining for GFAP

(A), NeuN (B), and Ibal (C) with GFP staining in the CALl region of Glast-

CreERT2::FIx-GCaMP3 mice (tamoxifen i.p. at P7).
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1004 S1 Table Cell-specific markers in GCaMP3-expressing cells in the

1005 hippocampus of Glast-CreERT2::FIx-GCaMP3 mice (tamoxifen i.p. at P7).

Region GFAP/GFP NeuN/GFP Ibal/GFP

92 + 2% 0+ 0% 0+ 0%
CAl
(12 FOVI/6 slices) (12 FOV/6 slices) | (12 FOV/6 slices)

86 + 5% 0+ 0% 0+ 0%
CA2
(6 FOVI/6 slices) (6 FOV/6 slices) (6 FOV/6 slices)

1006  n =3 mice, values represent the means + SEM. FOV, fields of view.
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