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Introduction
Programmed cell death 1 (PD-1) and cytotoxic T lymphocyte–associated protein 4 (CTLA-4) are the 
critical players in maintaining immune tolerance during tumor growth (1–4). Blocking of  molecules 
individually or both together rejuvenates CD8+ T cells in the dormant or reversible exhaustion stage and 
can induce strong antitumor activity in mice and humans (1–3, 5, 6). CD8+ T cells, once activated by 
recognition of  tumor antigens, proliferate and attack tumors. Activated T cells with chronic stimulation 
eventually express PD-1 and CTLA-4 and go into the reversible exhaustion stage to avoid excessive 
proliferation and the generation of  autoimmunity. Some of  the activated CD8+ T cells may go into the 

BACKGROUND. Current clinical biomarkers for the programmed cell death 1 (PD-1) blockade 
therapy are insufficient because they rely only on the tumor properties, such as programmed cell 
death ligand 1 expression frequency and tumor mutation burden. Identifying reliable, responsive 
biomarkers based on the host immunity is necessary to improve the predictive values.

METHODS. We investigated levels of plasma metabolites and T cell properties, including energy 
metabolism markers, in the blood of patients with non-small cell lung cancer before and after 
treatment with nivolumab (n = 55). Predictive values of combination markers statistically selected 
were evaluated by cross-validation and linear discriminant analysis on discovery and validation 
cohorts, respectively. Correlation between plasma metabolites and T cell markers was investigated.

RESULTS. The 4 metabolites derived from the microbiome (hippuric acid), fatty acid oxidation 
(butyrylcarnitine), and redox (cystine and glutathione disulfide) provided high response probability 
(AUC = 0.91). Similarly, a combination of 4 T cell markers, those related to mitochondrial activation 
(PPARγ coactivator 1 expression and ROS), and the frequencies of CD8+PD-1hi and CD4+ T cells 
demonstrated even higher prediction value (AUC = 0.96). Among the pool of selected markers, the 
4 T cell markers were exclusively selected as the highest predictive combination, probably because 
of their linkage to the abovementioned metabolite markers. In a prospective validation set (n = 24), 
these 4 cellular markers showed a high accuracy rate for clinical responses of patients (AUC = 0.92).

CONCLUSION. Combination of biomarkers reflecting host immune activity is quite valuable for 
responder prediction.
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irreversible exhaustion stage, resist rejuvenation, and are defined by PD-1hi, CTLA-4hi, T cell immuno-
globulin and mucin domain–containing molecule 3–positive (Tim-3+), Ki-67+, and others (7). Immune 
tolerant individuals who carry tumors are likely to contain variable proportions of  CD8+ T cells with 
reversible and irreversible exhaustion stages.

Although antibodies against CTLA-4, PD-1, or its ligand, PD-L1, have been approved for treatment of  
various human cancers and demonstrated the impressive clinical efficacy (4), a significant portion of  cancer 
patients remain less responsive (4–6). Therefore, predictive biomarkers to distinguish responders and non-
responders are desperately required to save cost and time for those patients.

Effective cancer immunotherapy depends on the cancer-immunity cycle, in which naive T cells are 
primed in draining lymph nodes (DLNs) and differentiated to effector T cells that egress into circulation 
and traffic to tumor sites, guided by a gradient of  chemokines released from tumor sites to attack tumor 
cells (8). Tumor antigens are captured by dendritic cells, which in turn traffic to DLNs and stimulate naive 
T cells again. To distinguish responders from nonresponders, it is critical to evaluate how many CD8+ T 
cells are in the stage of  reversible or irreversible exhaustion in patients by monitoring peripheral blood 
mononuclear cells (PBMCs), while the actual battles of  the immune system against cancer take place in 
tumor sites and DLNs. 

When CD8+ T cells are activated by antigenic stimulation, such as tumor antigens, they mobilize vari-
ous intracellular signaling pathways to generate abundant energy and anabolic reaction substrates required 
for proliferation (9). Fagarasan’s group previously showed that proliferation of  the antigen-stimulated T cell 
population drastically changes the systemic metabolites in mouse blood (10). We also confirmed similar 
drastic change in serum metabolites due to the antitumor immune reactions in a PD-1 blockade cancer 
therapy model (11). Activated tumor-reactive CD8+ T cells were also shown to carry mitochondria with 
higher reactive oxygen species (ROS) detected by mitochondrial dye staining. ROS signaling links to the 
regulation of  mTOR/AMPK phosphorylation, which subsequently activates the PPARγ coactivator 1α 
(PGC-1α) pathway. This feed-forward pathway for mitochondrial biogenesis enhances CD8+ T cell acti-
vation (11, 12). We further showed that PGC-1α/PPAR complex activation enhances the efficacy of  the 
PD-1 blockade therapy by enhancing fatty acid oxidation (FAO) in CD8+ T cells, which leads to longevity 
of  effector CD8+ T cells (13). Therefore, these T cell metabolism-associated markers may serve as predictive 
or early monitoring biomarkers in the PD-1 blockade therapy.

It is also known that gut microbiota and immune activity mutually affect each other as Fagarasan 
and coworkers have demonstrated using IgA-deficient or PD-1–deficient mouse models (14, 15). In 
the case of  tumor immunity, recent reports also suggested that microbiota and/or their metabolites 
are related to the efficacy of  immune checkpoint inhibitors (16–18). Especially, certain microbiota, 
Akkermansia muciniphila, and diversity of  flora are shown to correlate to the responsiveness to the PD-1 
blockade therapy (18). However, it is still elusive whether any of  the microbiota-associated factors 
could be responder biomarkers for the PD-1 blockade therapy.

Currently, PD-L1hi expression on histological tumor tissue samples is used as a responder predic-
tive marker for non-small cell lung cancer (NSCLC) (19, 20). The FDA has recently approved micro-
satellite instability–high or mismatch repair deficiency as common responder biomarkers for various 
solid tumors (21). These markers, however, cannot cover all the responsive patients, probably because 
the responses of  tumor-reactive CD8+ T cells are affected not only by tumor properties but also by host 
immune activity (21). Several groups have identified candidates for responder biomarkers by analysis 
of  various immune cell compartments at tumor sites or in peripheral blood. The proposed markers 
include the frequencies of  CD8+ T cells, CD4+ T cells, eosinophils, neutrophils, subsets of  suppressive 
macrophages, and subsets of  T cells (16). Immune regulators, such as certain cytokines or chemokines, 
were also listed as candidates of  biomarkers (16). However, the predictive value of  each of  these single 
markers for host immunity is not sufficient for clinical usage.

In the present studies using blood samples from 55 patients with NSCLC, we demonstrated that a com-
bination of  several plasma metabolites and/or T cell markers could serve as good responder biomarkers 
(AUC = 0.96 by cross-validation). The metabolite markers include those related to microbiota (hippuric 
acid), FAO (butyrylcarnitine), and redox (cystine and glutathione disulfide). The cellular markers of  T 
cells in responders contain those associated with suppressive function (the PD-1hi population) and mito-
chondrial activities (PGC-1 and ROS expression) in CD8+ T cells. These T cell markers are linked with the 
metabolite markers described above. Therefore, we propose that the combinatorial quantitation of  either 
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the specific plasma metabolites or PBMC T cell markers will be a highly predictive biomarker of  the PD-1 
blockade therapy for clinical usage.

Results
Microbiota metabolism– and energy metabolism–related metabolites correlate with responsiveness to the PD-1 block-
ade cancer immunotherapy. Accumulating evidence indicates there is a considerable association between 
immune responses and the metabolome (22). However, it remains unknown whether particular metabolites 
can serve as predictive biomarkers for the PD-1 blockade therapy in humans. In this study, we identified 
plasma metabolites and T cellular markers from 55 NSCLC patients (discovery cohort) and validated the 
markers in 24 patients (validation cohort) (Figure 1). To investigate how metabolites are associated with 
antitumor immunity first, we analyzed metabolites and T cell functional markers in plasma and PBMCs, 
respectively, in 55 patients with NSCLC before and after nivolumab treatment (Figure 2A and Supple-
mental Tables 1–4; supplemental material available online with this article; https://doi.org/10.1172/jci.
insight.133501DS1). Blood was harvested just before the injection of  nivolumab at 0, 2, and 4 weeks, 
and we designated these samples as the 1st, 2nd, and 3rd samples, respectively (Figure 2A). We defined 
responsive and unresponsive patients based on the criteria of  progression-free survival (PFS) more than 3 
months or PFS no more than 3 months according to the PFS data of  phase III clinical studies of  NSCLC 
patients where around 40% to 50% of  patients died within 3 months (Supplemental Figure 1A and refs. 
23, 24). Although PFS more than 6 months has often been used as a responder criterion, both criteria 
(PFS > 3 months and PFS > 6 months) provided similar overall survival (OS) curves in the present study 
(Supplemental Figure 1, B and C). Moreover, PD-L1 tumor proportion score (TPS) at tumor sites could 
not discriminate between responders and nonresponders clearly in the present study (Supplemental Figure 
1, D and E). We measured 247 metabolites in 55 patients, of  whom 8 had to stop the therapy because of  
severe side effects and other reasons, leaving us with the data of  47 patients for analysis (Figure 1 and 
Figure 2A). Volcano plot analysis of  these metabolites based on fold change and P value demonstrated 
that hippuric acid in the 1st samples and hippuric acid, indoxyl sulfate, 4-cresol, and glutathione disulfide 
(GSSG) in the 3rd samples were significantly elevated in responders compared with nonresponders (Figure 
2B and Table 1). On the other hand, the levels of  α-ketoglutaric acid and butyrlcarnitine in the 3rd samples 
were lower in responders, but there were no items with significant differences between responders and 
nonresponders in the 2nd samples (Figure 2B and Table 1). Hippuric acid, indoxyl sulfate, and 4-cresol are 
reported to be almost exclusively produced by microbiota in mammals (25), which is consistent with the 
finding that patients treated with antibiotics within 3 months before the nivolumab treatment had lower 
levels of  these 3 metabolites (Supplemental Figure 2A). Importantly, responsive patients had higher levels 
of  the microbiota-derived metabolites (indoxyl sulfate and 4-cresol) than unresponsive patients, indicating 
that stronger antitumor immune responses are associated with the gut microenvironment (Figure 2C and 
Supplemental Figure 2B). We did not exclude those patients pretreated with antibiotics from this study 
because there were no differences in survival between patients treated with and without antibiotics at any 
time within 3 months before nivolumab injection (Supplemental Figure 2C). GSSG levels were higher in 
responders than in nonresponders, especially in the 3rd samples (Figure 2, B and D, and Table 1). GSSG is 
an oxidized form of  glutathione, which controls the ROS levels appropriately in cells (26). Butyrylcarnitine 
levels were higher in nonresponders than in responders (Figure 2, B and D, and Table 1). Butyrylcarnitine, 
the 4-carbon acylcarnitine, serves as a fatty acid transporter into mitochondria to generate ATP. Acylcarni-
tine species with various amounts of  carbon are released from cells once the function of  FAO is attenuated 
(27–29). It should be noted that butyrylcarnitine and other acylcarnitine species (isovalerylcarnitine and 
hexanoylcarnitine) had a trend to increase in the later phase of  therapy in nonresponders (Supplemental 
Figure 2D). There was a trend of  lower α-ketoglutaric acid in responders than in nonresponders (Figure 2, 
B and D, and Table 1). In the tricarboxylic acid cycle in mitochondria for ATP production, α-ketoglutaric 
acid is a core metabolite and is reduced in the blood because of  consumption by activated T cells (10, 11). 
Therefore, these data indicate that antitumor immune responses to the PD-1 blockade therapy are linked to 
microbiota and energy metabolism.

A combination of  plasma metabolites can be a predictive biomarker. We addressed the probability of  each 
predictive biomarker candidate selected above (Figure 2B and Table 1) by receiver operating character-
istic (ROC) curve analysis with logistic regression. The AUC of  each candidate was not high enough for 
prediction (right column in Table 1), though their AUCs were higher than that of  PD-L1 TPS (0.66).  
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Therefore, we next used stepwise discriminant analysis to elucidate superior biomarkers based on a combi-
nation of  metabolites. We first selected those with a significant difference between responders and nonre-
sponders in their levels or in their ratio (fold change) of  the different time points among 1482 items in total 
(247 items × 3 time points + 247 items × 3 ratios) (Supplemental Table 5). A stepwise Akaike’s information 
criterion (AIC) regression procedure against the markers listed in Supplemental Table 5 demonstrated that 
metabolite combinations I, II, and III were most predictive for the 1st, 1st + 2nd, and 1st + 2nd + 3rd sam-
ples, respectively (Table 2 and Supplemental Figure 3). Linear discriminant analysis (LDA) demonstrated 
that metabolic combination I distinguished between responders and nonresponders with a 23% error rate 
for 1st samples (Figure 3A). To test the reliability of  metabolite combination I, we assigned 47 samples to 
LDA-R or LDA-NR based on the LDA cutoff  value (Figure 3A). As shown in Figure 3B, prediction mark-
ers of  metabolite combination I could significantly discriminate LDA-R from LDA-NR in PFS. We then 
found that metabolite combination II distinguished responders and nonresponders with a 22% error rate, 
and there was a significant difference in both PFS and OS between LDA-R and LDA-NR (Figure 3, C and 
D). Finally, we found that metabolite combination III discriminated responders and nonresponders with 
the lowest error rate, 19.6% (Figure 3, E and F). To calculate AUCs of  metabolite combinations by discrim-
inant models, we conducted 5-fold cross-validation with logistic regression. In the 5-fold cross-validation, 
we split the cohort into 5 folds, took the first 20% fold as test data, and trained the prediction model with 
the remaining 80% to predict into the test data. We iterated this procedure 5 times for each fold and evaluat-
ed the model performance with the AUC. As a result, the calculated AUC values were 0.77, 0.83, and 0.91 
for the metabolite combinations I, II, and III, respectively, suggesting combination III better discriminated 
responders and nonresponders (Figure 3G).

Considering that patients are administered nivolumab 6 times over 3 months in the current clinical pro-
tocol for NSCLC, metabolite combinations I and II are useful as predictive biomarkers, while metabolite 
combination III may be less valuable for clinical use despite having the highest reliability.

A combination of  cellular markers including mitochondrial activities of  CD8+ T cells can distinguish between 
responders and nonresponders. Our previous reports have shown that mitochondrial activation and energy 

Figure 1. CONSORT flow diagram. irAE, immune-related adverse event.
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metabolism in T cells are strongly associated with the response to the PD-1 blockade therapy (11, 13). 
Therefore, we simultaneously investigated cellular markers for effector function, energy metabolism, 
mitochondrial status, and immune activation in CD8+ T cells of  the patients’ PBMCs. Among the 52 
markers shown in Supplemental Table 4 and their ratios between each time point, we found 26 items 

Figure 2. Particular plasma metabolites are associated with nivolumab treatment response. (A) A schematic diagram of this study. GC-MS/
LC-MS, gas chromatography–mass spectrometry and liquid chromatography–mass spectrometry. (B) Comparison of 247 metabolites between non-
responders and responders at each time point was summarized in volcano plots. Metabolites with log2 |fold change| greater than 1.0 and –log10 (P 
value) greater than 1.3 were considered significant. Ten metabolites with significant difference between responders and nonresponders are listed in 
Table 1. (C) The peak areas measured by GC-MS or LC-MS of each microbiota-related metabolite in nonresponders (NR) and responders (R). (D) The 
peak areas of redox/energy metabolism–related metabolites. Each dot represents 1 patient. Error bars show median and interquartile range. *P < 
0.05; **P < 0.01 by Kruskal-Wallis test followed by Dunn’s multiple-comparisons test (C and D).
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with significant differences in the expression levels between responders and nonresponders (Supplemen-
tal Table 6). We further selected the best combination of  predictive biomarkers from these 26 items 
using the stepwise method as described for metabolites. As shown in Table 3, the best combinations 
to predict responders in the 1st, 1st + 2nd, and 1st + 2nd + 3rd samples were designated as cellular 
marker combinations I, II, and III containing 2, 4, and 4 items, respectively. The marker of  responsive 
patients having a lower PD-1hi population among CD8+ T cells in pretreated samples (in the 1st samples) 
appeared in all 3 cellular marker combinations, I, II, and III (Figure 4A and Table 3). The cutoff  for 
PD-1hi was defined by the 97th percentile of  PD-1 expression intensity (Supplemental Figure 4A). It is 
important to note that there was no difference between responders and nonresponders in the frequen-
cy of  total PD-1+CD8+ T cells (Supplemental Figure 4B). Although the PD-1hiCD8+ T cell population 
appears to vigorously proliferate as the frequency of  Ki-67 was higher than PD-1lo or PD-1–CD8+ T cells, 
it produced less granzyme B and IFN-γ (Supplemental Figure 5). In addition, in PD-1hiCD8+ T cells, 
T-box expressed in T cells (T-bet) expression was lower, but eomesodermin (EOMES) expression and 
intensity of  Mito SOX were higher than in PD-1lo or PD-1–CD8+ T cells (Supplemental Figure 5). The 
Ki-67+ T cells increased after treatment (2nd + 3rd) compared with pretreatment (1st) in both PD-1hi and 
PD-1lo subpopulations, which corresponds to the previous report (Supplemental Figure 5 and ref. 30). 
The PD-1lo population showed stronger effector phenotypes, such as higher production of  granzyme B, 
IFN-γ, and T-bet, while the PD-1hi population showed lower production of  these markers. These data 
indicate that after PD-1 blockade, highly proliferated T cells express more PD-1 and go into a severe 
exhaustion state, whereas moderately proliferated T cells express less PD-1 and keep a greater capacity 
to revive to effector T cells. Indeed, the transcriptional expression array analysis in peripheral CD8+ 
T cells demonstrated that the frequency of  PD-1hi in CD8+ T cells correlated well with the expression 
levels of  CTLA4 and TIM3, known as exhaustion markers (Supplemental Figure 6A). The frequency of  
subpopulations among PD-1hiCD8+ T cells showed no significant differences between responders and 
nonresponders, indicating that quantity rather than quality of  CD8+PD-1hi T cells was associated with 
responsiveness (Supplemental Figure 6B). To test the correlation between the PD-1hiCD8+ T cells and 
tumor antigen load, we also examined the tumor burden as previously described (31). Patients with only 
nonmeasurable lesions, including 2 responders and 5 nonresponders, were excluded from this analysis of  
tumor burden. As shown in Supplemental Figure 7A, there was no correlation between PD-1hi frequency 
and tumor burden. Notably, the tumor burden did not correlate to responsiveness to the PD-1 blockade 
therapy (Supplemental Figure 7B), suggesting that the tumor burden may not be a determinant of  the 
severity of  exhaustion in patients with NSCLC in our study.

Mitochondrial ROS, which is measured by a dye called Mito SOX, is one of  the mitochondrial acti-
vation indicators (11). We found that the ratio of  Mito SOX levels in CD8+ and CD4+ T cells (Mito SOX 
CD8/CD4) was higher in pretreated responders (1st samples), and this marker was shared by all marker 

Table 1. Ten metabolites with significant difference between responders and nonresponders shown in Figure 2B

Number in  
Figure 2B

Metabolite name Timing Changes in responders 
relative to nonresponders

PlatformA P valueB Fold change AUCC

1 Hippuric acid 1st Higher LC 0.0056 2.3 0.74
2 Hippuric acid 1st Higher GC 0.0062 2.74 0.73
3 Hippuric acid 3rd Higher GC 0.0002 2.89 0.81
4 Hippuric acid 3rd Higher LC 0.0003 2.3 0.81
5 Indoxyl sulfate 3rd Higher LC 0.0011 2.19 0.78
6 Indoxyl sulfate 3rd Higher GC 0.0049 2.08 0.74
7 4-Cresol 3rd Higher GC 0.0023 2.41 0.76
8 GSSG 3rd Higher LC 0.0068 2.1 0.73
9 α-Ketoglutaric acid 3rd Lower GC 0.0238 0.42 0.69
10 Butyrylcarnitine 3rd Lower LC 0.0015 0.43 0.77

AThe analytical platform (GC-MS or LC-MS) used for metabolite measurement. BP value for distinction between responders and nonresponders 
(Wilcoxon’s rank-sum test). CThe area under the curve (AUC) of each metabolite in relation to responsiveness was calculated from univariate logistic 
regression analysis.
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combinations as with the PD-1hiCD8+ T cell marker (Table 3 and Figure 4B). These results indicate that 
higher mitochondrial activation status in CD8+ T cells when normalized by that of  CD4+ T cells before 
treatment is important for a better response (Figure 4B). Because PGC-1 is a master regulator of  mitochon-
drial biogenesis and mitochondrial metabolic pathways, such as oxidative phosphorylation and FAO (32, 
33), we addressed PGC-1 expression using a polyclonal antibody that recognizes both PGC-1α and PGC-1β 
(PGC-1αβ hereafter). Whereas the PGC-1αβ expression in CD8+ T cells decreased in responders between 
the 1st and 2nd samples, it increased between the 2nd and 3rd samples (Table 3 and Figure 4C). Therefore, 
the ratio of  PGC-1αβ expression in the 2nd relative to 1st samples was lower in responders but higher in 
the 2nd relative to 3rd samples (Figure 4C). To clarify the mechanism of  the quick decline of  PGC-1αβ 
expression following the first nivolumab injection in responders, we investigated the PGC-1αβ expression 
in each population of  CD8+ T cells. As shown in Supplemental Figure 8A, CCR7–CD8+ (effector) T cells 
have higher PGC-1αβ levels than CCR7+CD8+ (naive) T cells. Importantly, the frequency of  CCR7–CD8+ 
in PBMCs decreased after the first shot of  nivolumab in responders (Supplemental Figure 8B). Therefore, 
the quick decline is presumably because the frequency of  CCR7–CD8+ T cells, which have higher PGC-
1αβ, decreased in the peripherally circulating PBMCs in responders after nivolumab injection. This inter-
pretation will be discussed later. As other groups have already reported, we also found that the frequency 
of  CD4+ T cells was increased after nivolumab treatment in responders (Table 3, Figure 4D, and ref. 34). 
Further analysis revealed that nivolumab treatment increased the population of  CD4+CD45RO+CCR7+ 
(central memory) in responders and decreased CD4+CD45RO–CCR7– (terminally differentiated effector 
memory CD45RA+ T cells) (Supplemental Figure 9).

A combination of  the cellular markers associated with suppressive state and mitochondrial status in T cells is 
highly predictive. We assessed the error rate of  cellular marker combinations I, II, and III by the method 
described above. LDA demonstrated clear separation between responders and nonresponders with an 
error rate of  19.1% for cellular combination I (Figure 5A). If  we define responders and nonresponders 
based on the LDA criteria as we did in the metabolic markers, this classification significantly discrim-
inated LDA-R and LDA-NR in both PFS and OS (Figure 5B). The cellular markers in combination 
I showed higher AUC in a single or combined mode than the PD-L1 TPS usually used in the clinic, 
indicating the importance of  the markers derived from the immune properties of  patients rather than 
those from tumors (Supplemental Table 7, Figure 5B, and Supplemental Figure 1, D and E). LDA of  
cellular marker combinations II and III predicted both LDA-R and LDA-NR with 4.3% error rates, and 
there were significant differences (P < 0.05) between LDA-R and LDA-NR in both PFS and OS (Figure 
5, C–F). AUCs for cellular marker combinations I, II, and III were 0.85, 0.96, and 0.93, respectively, by 
5-fold cross-validation with logistic regression within the same cohort (Figure 5G). These data indicate 
that a combination of  cellular biomarkers obtained before the second therapy is sufficient to discrimi-
nate between responders and nonresponders. Although it has been reported that patients with EGFR 
mutations show a different response to the PD-1 blockade therapy (24), those patients could be correctly 

Table 2. The best predictive combination of metabolites selected by AIC regression procedure

Metabolite combination Selected metabolite 
(time point)

Change in responders 
relative to nonresponders

Samples Platform Data in Supplemental 
Figure 3

I Cystine (1st) Higher 1st GC A
Unk8 (1st) Lower GC A

Hippuric acid (1st) Higher LC A

II Arabinose (2nd) Higher 1st + 2nd GC B
Arginine (2nd) Higher LC B

Butyrylcarnitine (2nd) Lower LC B

III Hippuric acid (1st) Higher 1st + 2nd + 3rd LC A
Cystine (2nd) Higher GC C

GSSG (3rd) Higher LC C
Butyrylcarnitine (3rd) Lower LC C
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determined using our cellular marker combination II (Supplemental Figure 10), suggesting that these 
combination markers based on immune properties may be more useful than tumor property–derived 
markers alone.

To prospectively validate cellular marker combination II, we measured the 4 cellular markers in a new 
cohort (validation cohort) of  24 patients (Figure 1). The LDA criteria of  cellular marker combination II 
based on the discovery cohort correctly identified responders and nonresponders with an 8.3 % error rate 
and AUC was 0.919 with LDA (Figure 5H).

Figure 3. A combination of plasma metabolites predicts responsiveness to nivolumab treatment. (A) Linear discriminant analysis (LDA) was used to evaluate 
the accuracy of metabolite combination I as a predictive biomarker. Canonical plot of LDA for determination of responders (LDA-R) and nonresponders (LDA-
NR). Each dot represents 1 patient. The vertical dotted line indicates the cutoff value. (B) Kaplan-Meier plots of PFS and OS of LDA-R (solid line) and LDA-NR 
(dotted line) determined by combination I. (C) Canonical plot of LDA based on metabolite combination II. (D) Kaplan-Meier plots of PFS and OS of LDA-R and 
LDA-NR in combination II. (E) Canonical plot for LDA based on metabolite combination III. (F) Kaplan-Meier plots of PFS and OS of LDA-R and LDA-NR in combi-
nation III. *P < 0.05; **P < 0.01; ***P < 0.001 by log-rank test (B, D, and F). (G) The ROC curve of 5-fold cross-validation for metabolite combinations I, II, and III.
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The metabolic and cellular markers are linked. We next carried out the stepwise method to select the 
best combination of  markers among the total metabolic and cellular markers with significant differences 
between responders and nonresponders (Supplemental Tables 5 and 6). Surprisingly, all selected markers 
were derived from cellular markers, resulting in the same combination and results as shown in Table 3. 
Therefore, we hypothesized that there might be a linkage between responsible metabolic and cellular 
markers, which might lead us to exclude the metabolic markers. Because cellular combination II was 
appropriate for prediction and practical for clinical use as described above, we focused on cellular marker 
combination II and investigated which metabolic markers correlated with each of  the cellular markers in 
the combination. Spearman’s correlation coefficients (r) were used to measure the association between 
the cellular and metabolic markers. Generally, |r| of  more than 0.4 in Spearman’s is considered to have 
a modest to strong correlation. We found that PGC-1αβ expression in CD8+ T cells correlated with the 
microbiota-related metabolic markers, the frequency of  PD-1hiCD8+ T cells correlated with the FAO-re-
lated metabolic marker, and the T cell Mito SOX marker was correlated with redox-related metabolic 
markers (Figure 6A). Note that cystine and pyroglutamic acid are components of  glutathione, as shown 
in Supplemental Figure 11. We further examined the correlation between the frequency of  PD-1hiCD8+ 
T cells and FAO-related gene expression in CD8+ T cells. Importantly, the frequency of  PD-1hi (1st) was 
negatively correlated with the transcriptional expression of  carnitine palmitoyltransferase 1B (CpT1B) 
(2nd) (r = –0.44), which transports acylcarnitine from the cytoplasm into the mitochondria (27–29), sug-
gesting the reduced function of  acylcarnitine transportation in PD-1hi T cells (Supplemental Figure 12). 
Corresponding to this mechanism, in these patients, the frequency of  PD-1hi population also correlated 
with butyrylcarnitine 3rd/1st and hexanoylcarnitine 2nd/1st (Figure 6A and Supplemental Figure 12), 
demonstrating that the frequency of  the PD-1hi marker correlated with plasma increases in these acylcar-
nitine families after nivolumab treatment. This interpretation will be discussed later.

Cluster analysis showed a relative correlation weight between cellular combination II and metabolic 
markers, which can be classified into the 3 groups of  (a) microbiota-related metabolites, (b) FAO-relat-
ed metabolites, and (c) redox-related metabolites (Figure 6B). Details of  the correlation between cellular 
markers and metabolite markers are summarized in Table 4. In conclusion, stepwise discriminant analysis 
among all markers excluded the responsible metabolic markers because they were closely linked with par-
ticular cellular markers that had slightly more predictive value than the metabolic markers. The current 
data support a link between microbiota activity and T cell energy metabolism, both of  which contribute to 
the power of  antitumor immunity and responsiveness to the PD-1 blockade immunotherapy.

Table 3. The best combination of cellular markers for prediction selected by AIC regression

Cellular marker combination Selected cellular marker  
(time point)

Change in responders relative 
to nonresponders

Samples Data in Figure 4

I % of PD-1hi among CD8+ T cells 
(1st)

Lower 1st A

Mito SOX CD8/CD4 (1st) Higher B

II % of PD-1hi among CD8+ T cells 
(1st)

Lower 1st + 2nd A

Mito SOX CD8/CD4 (1st) Higher B
PGC-1αβ of CD8+ T cells 

(2nd/1st)
Lower C

% of CD4+ T cells among PBMCs 
(2nd/1st)

Higher D

III % of PD-1hi among CD8+ T cells 
(1st)

Lower 1st + 2nd + 3rd A

Mito SOX CD8/CD4 (1st) Higher B
PGC-1αβ of CD8+ T cells 

(3rd/2nd)
Higher C

% of CD4+ T cells among PBMCs 
(2nd/1st)

Higher D
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Discussion
In this study, we first demonstrated that the combination of several cellular markers of T cell activation status, 
including T cell mitochondrial condition, could effectively discriminate responders from nonresponders. The 
correlation analysis revealed that the functional activity of CD8+ T cells was related to a complex network of  
different higher-order function systems, such as the microbiome and energy metabolism. The advantages of  
our findings are summarized as follows: (a) we showed that each AUC of our immune property–based markers 
is higher than that of the hitherto clinically approved biomarker, PD-L1 TPS; (b) blood-based tests to examine 

Figure 4. Particular cellular markers, 
including mitochondria status, were selected 
to make up a combinatorial predictive 
marker. (A) Two representative NSCLC samples 
(nonresponder and responder) showing PD-1 
and CCR7 positivity after gating on CD8+ 
PBMCs (left). Frequency of PD-1hiCD8+ T cells 
in nonresponders and responders in the 1st 
samples (right). (B) Representative histograms 
of Mito SOX on gated CD4+ (black) and CD8+ 
(red) T cells (left). Ratio of Mito SOX levels 
in CD8+ and CD4+ T cells (Mito SOX CD8/CD4) 
for nonresponders and responders in the 1st 
samples (right). (C) PGC-1αβ of the 1st (black), 
2nd (red), and 3rd (blue) samples among CD8+ 
PBMCs (upper left). MFI of PGC-1αβ between 
the 1st, 2nd, and 3rd samples (upper right). The 
solid line and dotted line represent responders 
and nonresponders, respectively. Fold change 
of PGC-1αβ expression between nonrespond-
ers and responders in the 2nd relative to 1st 
samples (lower left) and the 3rd relative to 2nd 
samples (lower right). (D) Frequency of CD4+ T 
cells among PBMCs in the 1st and 2nd samples 
(left). The solid line and dotted line represent 
responders and nonresponders, respectively. 
Fold change of CD4+ T cell frequency in the 2nd 
relative to 1st samples between nonresponders 
and responders (right). Each dot represents 
1 patient. Error bars show median and inter-
quartile range. *P < 0.05; **P < 0.01; ****P < 
0.0001 by Wilcoxon’s rank-sum test.
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immune cell properties and/or metabolites would be much simpler and more patient-friendly because testing 
phenotypes of tumors usually puts a huge burden on patients; and (c) combination of immune property–based 
biomarkers is more powerful than several single immune property–based biomarkers so far proposed (16).

One of  the microbiota-derived metabolites, hippuric acid, which was higher in the pretreated samples of  
responders, could be an indicator of  microbiome diversity and is produced preferentially by Clostridiales (35, 
36). Diversity of  microbiota and the ratio of  Clostridiales are reported to be higher in PD-1 blockade therapy 
responders, which supports our results that hippuric acid is higher in responders. So far, identification of  
particular strains of  microbiota involved in antitumor activation is still quite difficult because of  numerous 
species of  microbiota in the gut (17). However, measuring a few common metabolites, such as hippuric acid, 
indoxyl sulfate, and 4-cresol, produced by numerous kinds of  microbiota would facilitate the quick, com-
prehensive evaluation of  microbiota status without deep sequencing of  microbiota 16s rRNA. Considering 
that the levels of  microbiota-derived metabolites correlated with PGC-1αβ expression levels in CD8+ T cells, 
some components of  microbiota may affect the mitochondrial activation of  peripheral CD8+ T cells, though 
the mechanism behind microbiota regulation of  peripheral CD8+ T cells remains largely unknown (18).

We showed that the temporal reduction of PGC-1αβ may be due to the decrement of effector CD8+ T cells 
(CCR7– population) from the blood, which express higher PGC-1αβ than CD8+ naive T cells (CCR7+ popula-
tion). We and other groups previously indicated the cancer-immunity cycle theory is critical for robust antitumor 
immunity where effector T cells traffic to the tumor site, guided by the gradient of IFN-γ–induced chemokines 
released from the tumor site during the PD-1 blockade therapy (8, 11). Therefore, it is anticipated that PD-1 
blockade triggers the trafficking of peripheral effector T cells to the tumor site preferentially in the responders. 
Given that microbiota affect the activation status of effector T cells (17, 35, 36), it would be reasonable that 
plasma hippuric acid levels and PGC-1αβ expression in the peripheral CD8+ T cells have moderate to high cor-
relation with each other because PGC-1αβ expression is higher in effector CD8+ T cells than naive CD8+ T cells.

We previously reported that FAO is important to produce sufficient ATP, which is required for longevity 
in effector T cells (13). When FAO is promoted, acylcarnitines are substantially transported into the mito-
chondrial matrix, resulting in the reduction of  acylcarnitine levels in the plasma (27–29, 37, 38). Therefore, 
plasma levels of  acylcarnitine species could be an indicator of  robustness in mitochondrial function or FAO 
usage in inflammation mediated by immunity (39–41). In the present study, acylcarnitines (butyrylcarnitine, 
isovalerylcarnitine, and hexanoylcarnitine) were elevated in nonresponders, especially in the latter seconnd 
and third phases, suggesting that the function of  FAO in CD8+ T cells is attenuated in nonresponders (38). 
The substantial correlation between higher acylcarnitine levels and higher frequency of  PD-1hiCD8+ T cells 
suggests the presence of  a large number of  severely exhausted CD8+ T cells, which have a weaker FAO 
function in nonresponders. Indeed, the frequency of  PD-1hi negatively correlated with the transcriptional 
expression of  CpT1B in CD8+ T cells, which serves as a transporter of  acylcarnitine families from cytoplasm 
into mitochondria. Given that (a) PD-1loCD8+ T cells proliferated less and retained the effector function and 
(b) PD-1loCD8+ T cells had lower levels of  CTLA-4 and Tim-3 based on correlation analysis, it is likely that 
PD-1hiCD8+ T cells are in irreversible exhaustion states associated with the FAO defect in the periphery. 
However, the precise mechanistic linkage of  FAO defect and T cell dysfunction is largely unknown.

Although we recruited 55 and 26 patients for the discovery and validation cohorts, respectively, the 
cohorts are rather small to obtain high reliability. However, validation is difficult in a larger cohort under 
the same conditions because the use of  PD-1 blockade antibody single therapy is currently very rare because 
of  the clinical strategy of  combination therapy in patients with NSCLC. It will be important to test our bio-
markers for the combination therapy as well in the future. Considering the convenience of  specific metabolite 
measurement and the difficulties in technical variations for cellular marker measurements between different 
facilities, the combination of  particular metabolites might be more practical in the clinic. Our new insight 
sheds light on the use of  combinatorial biomarkers for cancer immunotherapy, which would provide nonre-
sponders another opportunity to have immunotherapy and improve therapeutic efficacy.

Figure 5. A combination of cellular markers could predict survival more precisely. (A) LDA evaluated accuracy of cellular marker combination I. Canonical 
plot of LDA for determination of LDA-R and LDA-NR. Each dot represents 1 patient. The vertical dotted line indicates the cutoff value. (B) Kaplan-Meier 
plots of PFS and OS of LDA-R (solid line) and LDA-NR (dotted line) on cellular marker combination I. (C) Canonical plot for LDA based on cellular marker 
combination II. (D) Kaplan-Meier plots of PFS and OS of LDA-R and LDA-NR on cellular marker combination II. (E) Canonical plot for LDA based on cellular 
marker combination III. (F) Kaplan-Meier plots of PFS and OS of LDA-R and LDA-NR on cellular marker combination III. **P < 0.01; ***P < 0.001; ****P < 
0.0001 by log-rank test (B, D, and F). (G) The ROC curve of 5-fold cross-validation for cellular marker combinations I, II, and III. (H) Canonical plot and ROC 
curve for prospective validation cohort with LDA based on cellular marker combination II.
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Methods
Study design and participants. The study subjects, patients with NSCLC receiving nivolumab (anti–PD-1 
blocking antibody) at Kyoto University Hospital, consented to the collection and storage of  blood sam-
ples during treatment and allowed review of  their medical records for past medical history, cancer tumor 

Figure 6. Modest correlation between particular cellular and metabolite markers excludes metabolite makers from the combinatorial candidate biomarker. (A) 
Scatter plots between cellular markers (x axis) and metabolite markers (y axis). The dots represent the responders and the circles indicate the nonresponders. r, 
Spearman’s correlation coefficients. Generally, |r| of more than 0.4 in Spearman’s is considered to have a modest to strong correlation. (B) A clustered heatmap of 
absolute correlation coefficients over all marker pairs detected in A (using Spearman’s correlation distance and complete linkage). Dark denotes higher correlation 
(|r| close to 1) and light lower correlation (|r| close to 0). The markers clustered into 3 groups, which were designated as metabolic categories I, II, and III.
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type, toxicity assessments, and clinical response, survival, and laboratory data. We enrolled 55 patients 
with NSCLC, all of  whom had previously received other chemotherapy. This study included 39 male and 
16 female patients, aged between 31 and 83 years (median 68). Forty-three patients (78.2% among all 
patients) were diagnosed with adenocarcinoma, including 9 patients with EGFR mutation (17.3% among 
52 patients) and 3 patients with anaplastic lymphoma kinase translocation (6.8% among 44 patients) (Sup-
plemental Table 1). Patients received nivolumab (3 mg/kg) through i.v. infusion every 2 weeks (1 cycle) 
until disease progression or the emergence of  an unacceptable side effect. At a median follow-up time of  
455 days (range, 29 to 861 days), the median PFS and OS were 147 days (95% CI, 76 to 300 days) and 
629 days (95% CI, 408 days to not reached), respectively (Supplemental Figure 1A). Among 55 patients 
enrolled, 8 patients had to stop the therapy because of  severe side effects and other reasons (Figure 1). 
Blood samples were collected just before the first, second, and third nivolumab injection. Tumor size was 
measured by CT and evaluated for response using Response Evaluation Criteria in Solid Tumors 1.1. 
Total measurable tumor burden was defined as the sum of  the long axis of  all measurable lesions of  the 
pretreatment CT as previously described (31). To assess PD-L1 expression, we performed PD-L1 IHC 
using the PD-L1 IHC 22C3 pharmDx kit (Agilent Technologies) as previously described (42). TPS was 
defined as tumor PD-L1 expression frequency. PD-L1 TPS was classified into PD-L1 negative, weakly 
positive, or strongly positive (<1%, 1%–49 %, and ≥50%, respectively) (42).

For the prospective validation study, 26 patients with NSCLC who had received nivolumab or pem-
brolizumab at Kyoto University Hospital were independently enrolled. Of  these 26, 2 had to stop the 
therapy because of  severe side effects, leaving us with the data of  24 patients for analysis (Figure 1). 
For functional analysis of  the PD-1hiCD8+ T cell population, we assessed 16 patients among 24 patients 
enrolled for the validation.

Thirty healthy blood donors were recruited at the Medical Examination Center at Takeda Hospital. 
Their age was between 46 and 78 (mean 66) years, and they included 22 male and 8 female donors.

Sample preparation for plasma metabolome measurement. Peripheral blood samples were collected in 7-mL 
EDTA vacutainers (Venoject II, VP-NA070K), immediately stored in a CubeCooler (Forte Grow Medical 
Co. Ltd.), and kept at 4°C until centrifugation at 4°C at 1800 g for 15 minutes. All the harvested plasma 
samples were then stored at −80°C until analysis. For GC-MS analysis, 50 μL of  plasma was mixed with 
256 μL of  a solvent mixture (methanol/water/chloroform = 2.5:1:1) containing 2.34 μg/mL of  2-isopro-
pylmalic acid (MilliporeSigma), which was used as an internal standard. The obtained mixture was shaken 
at 1200 rpm for 30 minutes at 37°C (Maximizer MBR-022UP, Taitec). After centrifugation at 16,000 g for 
5 minutes at 25°C, 150 μL of  supernatant was collected and mixed with 140 μL of  purified water followed 
by vortex mixing for 5 seconds. After centrifugation at 16,000 g for 5 minutes at 25°C, 180 μL of  superna-
tant was dried in a centrifugal evaporator (CVE-3100, Tokyo Rikakikai Co. Ltd.). The dried sample was 
dissolved in 80 μL of  methoxyamine solution (20 mg/mL in pyridine, MilliporeSigma) and shaken at 1200 
rpm for 30 minutes at 37°C. Forty microliters of  N-methyl-N-trimethylsilyl-trifluoroacetamide solution 
(GL Sciences) was added for trimethylsilyl derivatization, followed by agitation at 1200 rpm for 30 minutes 
at 37°C. After centrifugation, 50 μL of  supernatant was transferred to a glass vial and subjected to GC-MS 
measurement. For LC-MS analysis, the metabolite extraction protocol was slightly changed. Fifty microli-

Table 4. Correlation between cellular and metabolite markers

Cellular markers 
(Change in responders relative to nonresponders)

Metabolite markers 
(Change in responders relative to nonresponders)

Metabolite category

PGC-1αβ of CD8+ T cells (2nd/1st) (lower) Indoxyl sulfate (3rd) (higher) (I) Microbiome-related metabolites
Hippuric acid (3rd) (higher)

Hippuric acid (3rd/1st) (higher)

Percentage of PD-1hi among CD8+ T cells  
(1st) (lower)

Butyrylcarnitine (3rd/1st) (lower) (II) FAO-related metabolites

Mito SOX CD8/CD4 (1st) (higher) Cystine (2nd) (higher) (III) Redox-related metabolites
Pyroglutamic acid (2nd/1st) (higher)
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ters of  plasma was mixed with 256 μL of  methanol and shaken at 1200 rpm for 10 minutes at 37°C. After 
centrifugation at 16,000 g for 30 minutes at 25°C, 150 μL of  supernatant was mixed with 90 μL of  1% acetic 
acid in water and 120 μL of  chloroform, followed by vortex mixing for 15 seconds. After centrifugation at 
2000 g for 10 minutes at 25°C, 150 μL of  the upper layer was dried and solubilized in 50 μL of  0.1% formic 
acid in water and then subjected to LC-MS analysis.

Plasma metabolome analysis. GC-MS analysis was performed with a GCMS-QP2010 Ultra (Shimadzu). 
The derivatized metabolites were separated on a DB-5 column (30 m × 0.25 mm inner diameter, film thick-
ness 1.0 μm, Agilent Technologies). The helium carrier gas was set at a flow rate of  39 cm/s. The inlet tem-
perature was 280°C and the column temperature was first held at 80°C for 2 minutes, then raised at a rate of  
15°C/min to 330°C and held for 6 minutes. One microliter of  the sample was injected into the GC-MS in 
the split mode (split ratio 1:3). The mass spectra were obtained under the following conditions: electron ion-
ization (ionization voltage 70 eV), ion source temperature 200°C, interface temperature 250°C, and full scan 
mode in the range of  m/z 85 to 500 and scan rate 0.3 s/scan. Identification of  chromatographic peaks was 
performed using the National Institute of  Standards and Technology Research Library or Shimadzu GC/
MS database and further confirmed with authentic commercial standards. For semiquantitative analysis, 
the area of  each metabolite peak was calculated and divided by the area of  the internal standard peak. LC 
separation was conducted on a Shim-pack GIST C18-AQ column (3 μm, 150 mm × 2.1 mm id, Shimadzu 
GLC) with a Nexera UHPLC system (Shimadzu). The mobile phase consisted of  0.1% formic acid in water 
(A) and 0.1% formic acid in acetonitrile (B). The gradient program was as follows: 0 to 3 minutes, 0% B; 3 
to 15 minutes, linear gradient to 60% B; 15.0 to 17.5 minutes, 95% B; 17.5 to 20.0 minutes, linear gradient 
to 0% B; hold for 4 minutes; flow rate, 0.2 mL/min. The column oven temperature was maintained at 40°C. 
The LC system was coupled with a triple-quadrupole mass spectrometer, LCMS-8060 (Shimadzu). LCMS-
8060 was operated with the electrospray ionization and multiple reaction monitoring mode. All ion transi-
tions and collision energies were optimized experimentally by using authentic standards of  each metabolite. 
Three microliters of  the sample was injected into the LC-MS system. Quality control (QC, pooled plasma) 
samples were subjected to the same preparation protocol and injected every 10 and 5 samples for GC-MS 
and LC-MS analysis, respectively. Each metabolite’s signals were normalized with a QC-based correction 
method using the smooth-spline algorithm (43–45). Information on all the measured metabolites, including 
retention time, m/z, and ion transitions, is summarized in Supplemental Tables 2 and 3.

Flow cytometry. Fresh PBMCs were isolated by Ficoll density gradient centrifugation. PBMCs were 
immediately stained using the following antibodies: anti-CD8a (RPA-T8, TONBO), -CD8 (SK1, TON-
BO), -CD4 (RPA-T4, SK3, TONBO), -CD45RA (HI100, TONBO), -CD45RO (UCHL1, BioLegend), 
-CCR7 (3D12, eBioscience), –PD-1 (EH12.2H7, BioLegend), -Tim3 (F38-2E2, BioLegend), -KLRG1 
(13F12F2, eBioscience), -CD25 (BC96, BioLegend), -CXCR3 (G025H7, BioLegend), -CCR6 (G034E3, 
BioLegend), –T-bet (4B10, BioLegend), -EOMES (WD1928, eBioscience), –Ki-67 (SolA15, eBiosci-
ence), –CTLA-4 (BNI3, TONBO), –p-mTOR (MRRBY, eBioscience), –p-Akt1 (Ser473) (SDRNR, eBio-
science), –granzyme B (GB11, BioLegend), –IFN-γ (4S.B3, BD Biosciences), and -FOXP3 (236A/E7, 
BD Biosciences). PGC-1 expression was detected by anti–PGC-1αβ (rabbit polyclonal, Abcam, ab72230), 
which recognizes both PGC-1α and PGC-1β, followed by secondary staining with goat anti-rabbit IgG 
(Santa Cruz Biotechnology, sc-3739). Live/dead cell discrimination was performed using 7-AAD stain-
ing solution (TONBO, 13-6993). Intracellular staining was performed using a FOXP3 fixation kit (eBio-
science). For assessment of  intracellular phosphoproteins, cells were permeabilized with 0.5% Triton 
X-100 and fixed with 1.5% paraformaldehyde before staining. Acquisition of  samples was carried out 
on the BD FACSCanto II cell analyzer (BD Biosciences). Data were collected using the BD FACSDiva 
Software version 6.1.3 and further analyzed with FlowJo 10.4 (Tree Star Inc.). Data were gated on live 
(7-AAD–) and single cells. Determination of  mitochondrial mass, membrane potential, mitochondrial 
superoxide, and cellular ROS was performed using MitoTracker Green, MitoTracker Deep Red, Mito-
SOX Red, and CellROX Green reagents, respectively (all from Life Technologies). These dyes were add-
ed to cells and incubated at 37°C in a 5% CO2 humidified incubator for 30 minutes, followed by surface 
staining. Intracellular staining for granzyme B and IFN-γ was performed following treatment with plate-
bound anti-CD3 (OKT3, TONBO) and anti-CD28 (55725, BD Pharmingen) for 6 hours in the presence 
of  Brefeldin A (eBioscience) and Monensin (eBioscience) for the last 4 hours. After nivolumab treat-
ment, anti–PD-1 (EH12.2H7, APC conjugated, BioLegend) antibody was added to cells and incubated 
at 37°C in a 5% CO2 humidified incubator for 60 minutes, followed by other surface staining.
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Microarray analysis of  patients’ CD8+ T cells. We isolated peripheral CD8+ T cells from the same cohorts 
available (1st samples, n = 33; 2nd samples, n = 27). CD8+ T cells were purified from patients’ PBMCs by 
AutoMACS according to the manufacturer’s instructions (Miltenyi Biotec, 130-045-201).

Total RNA was isolated with RNeasy Micro Kit (Qiagen). The quality of  extracted RNA was analyzed 
using TapeStation (Agilent Technologies). Five nanograms of  total RNA was labeled using the GeneChip 
WT Pico Reagent Kit (Thermo Fisher Scientific) and hybridized to GeneChip Clariom D Assay, Human 
(Thermo Fisher Scientific). The array data were analyzed using Signal Space Transformation-Robust Multi-
Chip Analysis and Sketch-Quantile normalization (Expression Console Software). Then we applied the 
Linear Models for Microarray Analysis (limma) package of  Bioconductor software (46) and obtained dif-
ferentially expressed genes. Functional analysis of  the decreased gene expression was performed using the 
Database for Annotation, Visualization and Integrated Discovery (http://david.ncifcrf.gov) (47). Microar-
ray data have been deposited under Gene Expression Omnibus accession number GSE141479.

Statistics. Data are reported as the median and interquartile range. A Wilcoxon rank-sum test was con-
ducted to compare the 2 groups. A Kruskal-Wallis test followed by Dunn’s test for multiple comparisons 
were conducted to compare the difference across independent groups. The stepwise AIC regression proce-
dure was performed to select the best marker combination. Then LDA was performed by using the estimated 
biomarker combination to predict the reliability and failure rate. To adjust the cutoff  value to 0, we changed 
the constant value of  the equation of  LDA as shown in Supplemental Table 8. For the validation study, we 
used the same equation as LDA combination II. The prediction model was evaluated with 5-fold cross-vali-
dation and LDA to calculate AUCs for the discovery and validation cohorts, respectively. The survival rates 
of  different groups of  patients were calculated with the Kaplan-Meier method and presented graphically as 
a survival curve. A comparison of  survival curves between 2 groups was tested by log-rank test. Spearman’s 
or Pearson’s correlation coefficient was used to calculate the association between the cellular markers, the 
metabolic markers, and gene expression levels. JMP software (version 12.0.0; SAS Institute Inc.), R software 
(version 3.4.4), DataRobot (version 4.3.0), and Prism software (version 6.0h; GraphPad Software) were used 
for data management and statistical analyses. Significance levels were set at P < 0.05 for all tests.

Study approval. All patient and donor samples were obtained from subjects who provided informed 
consent for blood use in accordance with the Declaration of  Helsinki and with approval from the Ethics 
Committee of  Kyoto University (G1012).
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