Supplemental Fig 1

Supplemental Fig 1. Genetic inactivation of the Notch pathway leads to loss of nuclear N1 signal and elevation of activated ERK1/2. (A) Immunohistochemistry with antibodies against the nuclear form of NOTCH1 (N1ic; top) and phosphorylated ERK1/2 (pERK1/2; bottom) in WT and Notch deficient (in this case $Krt5^{CreERT2}$; $Ncstn^{flox/flox}$) mice. Note the obvious lack of intracellular NOTCH1 and pERK1/2 in basal cells (black arrowheads). Scale bars indicate 100 μ m. (B) Quantitative RT-PCR analysis of Dusp4 from urothelial cell RNA of $Krt5^{CreERT2}$; $Ncstn^{flox/flox}$ mice (n=4). Expression is presented as ratio over WT mice (n=4). ** indicates p<0.01. Student's t test was used.

Supplemental Fig 2

Supplemental Fig 2. Genetic inactivation of the Notch pathway leads to bladder and skin abnormalities. (A) H&E staining and immunofluorescence with the indicated antibodies on bladder sections from $Krt14^{CreERT2};Ncstn^{flox/flox}$ or $Krt14^{CreERT2};RBPJ^{flox/flox}$ mice. Scale bars indicate 250 μ m (top) and 100 μ m (bottom). Mice shown here do not carry the Tomato transgene. DAPI has been used as nuclear counterstain. (B) Images of $Krt5^{CreERT2};Ncstn^{flox/flox}$ mice indicating severe skin defects. (C) Images of $Krt5^{CreERT2};Ncstn^{flox/flox};Ef1^{N1ic}$ mice showing serious amelioration of the Notch loss-induced skin phenotype.

Supplemental Fig 3

Supplemental Fig 3. Gene Ontology annotation network. The plot depicts the linkages of genes amongst the top biological concepts (GO terms) as a network. The size of every biological process is defined by the number of implicated genes. Expression levels of the genes are represented through a continuous scale of green to red color transition. For statistical analysis see Methods section.

Supplemental Fig 4. Notch loss leads to blood vessel abnormalities. (A) Hematoxylin & Eosin staining on bladder tissue from wild-type (WT) and $Krt5^{CreERT2}$; $Ncstn^{flox/flox}$ mice indicating smaller size blood vessels (arrowheads). Scale bars indicate 100 μ m. (B) Immunofluorescence with antibodies against the vascular endothelial cell marker CD31 indicating smaller size vessels with abnormal structure. Scale bars indicate 50 μ m. DAPI has been used as nuclear counterstain. (C) Scatter dot plot indicating average blood vessel surface from WT and $Krt5^{CreERT2}$; $Ncstn^{flox/flox}$ mice. A total of n=13 and n=15 blood vessels respectively, from 3 different mice from each group, were measured with the use of LAS AF 2.6.0 software. *** indicates p<0.001. Student's t test was used.

Supplemental Fig 5. Notch loss leads to downregulation of ECM components and integrin signaling. Phosphorylated FAK1 (A) and fibronectin (B) immunofluorescence on bladder sections from wild-type and $Krt5^{CreERT2}$; $Ncstn^{flox/flox}$ or $Krt5^{CreERT2}$; $RBPJ^{flox/flox}$ mice. Scale bars indicate 100 μ m (A) and 50 μ m (B). DAPI has been used as nuclear counterstain.

Supplemental Table 1. List of processes affected in Notch KO mouse bladders and IC patients Mouse Notch KO Human non ulcer area (ni) Cell adhesion molecules (CAMs) Staphylococcus aureus infection Viral protein interaction with cytokine and cytokine receptor Phagosome Viral myocarditis Chemokine signaling pathway Cytokine-cytokine receptor interaction Antigen processing and presentation Human T-cell leukemia virus 1 infection Cell adhesion molecules (CAMs) Protein digestion and absorption Intestinal immune network for IgA production ECM-receptor interaction Hematopoietic cell lineage Human papillomavirus infection Allograft rejection Graft-versus-host disease Leishmaniasis Type I diabetes mellitus Renin secretion Type I diabetes mellitus Graft-versus-host disease Rheumatoid arthritis Cellular senescence Allograft rejection Th1 and Th2 cell differentiation Epstein-Barr virus infection Viral myocarditis AGE-RAGE signaling pathway in diabetic complications Inflammatory bowel disease (IBD) Th17 cell differentiation Focal adhesion Gap junction T cell receptor signaling pathway Natural killer cell mediated cytotoxicity Dilated cardiomyopathy (DCM) Autoimmune thyroid disease Epstein-Barr virus infection Metabolism of xenobiotics by cytochrome P450 Autoimmune thyroid disease Toxoplasmosis B cell receptor signaling pathway Inflammatory bowel disease (IBD) Antigen processing and presentation MAPK signaling pathway Asthma Salivary secretion NF-kappa B signaling pathway Osteoclast differentiation Pentose and glucuronate interconversions cGMP-PKG signaling pathway Primary immunodeficiency Human cytomegalovirus infection Phagosome Small cell lung cancer Systemic lupus erythematosus Leishmaniasis Fc gamma R-mediated phagocytosis Tuberculosis Toxoplasmosis **Amoebiasis** Chagas disease (American trypanosomiasis) Leukocyte transendothelial migration cAMP signaling pathway Leukocyte transendothelial migration **Tuberculosis** Fc epsilon RI signaling pathway Pathways in cancer PD-L1 expression and PD-1 checkpoint pathway in cancer Colorectal cancer Cytokine-cytokine receptor interaction Human T-cell leukemia virus 1 infection Arrhythmogenic right ventricular cardiomyopathy (ARVC) Malaria Adrenergic signaling in cardiomyocytes TNF signaling pathway Viral protein interaction with cytokine and cytokine receptor Toll-like receptor signaling pathway Drug metabolism - cytochrome P450 Complement and coagulation cascades PI3K-Akt signaling pathway Human immunodeficiency virus 1 infection Hematopoietic cell lineage **Pertussis** Insulin secretion Influenza A Herpes simplex virus 1 infection Rap1 signaling pathway Th1 and Th2 cell differentiation Aldosterone-regulated sodium reabsorption Other types of O-glycan biosynthesis Measles Hypertrophic cardiomyopathy (HCM) Legionellosis p53 signaling pathway Platelet activation Aldosterone-regulated sodium reabsorption Glutathione metabolism

Malaria Yersinia infection Proteoglycans in cancer **Amoebiasis**

TNF signaling pathway

Calcium signaling pathway Transcriptional misregulation in cancer

Fluid shear stress and atherosclerosis

Th17 cell differentiation

ABC transporters

Cell cycle

Kaposi sarcoma-associated herpesvirus infection

Human immunodeficiency virus 1 infection

Chronic myeloid leukemia

Porphyrin and chlorophyll metabolism

Breast cancer

Prion diseases

Human ulcer area (ulcus)

Staphylococcus aureus infection

Viral protein interaction with cytokine and cytokine receptor

Cytokine-cytokine receptor interaction

Rheumatoid arthritis
Hematopoietic cell lineage
Cell adhesion molecules (CAMs)
Chemokine signaling pathway

Intestinal immune network for IgA production

Leishmaniasis

Type I diabetes mellitus Graft-versus-host disease

Allograft rejection

Complement and coagulation cascades

NF-kappa B signaling pathway Inflammatory bowel disease (IBD)

Th17 cell differentiation

Asthma

Viral myocarditis

Th1 and Th2 cell differentiation Leukocyte transendothelial migration Systemic lupus erythematosus

Osteoclast differentiation

Phagosome

AGE-RAGE signaling pathway in diabetic complications

Autoimmune thyroid disease

Malaria Amoebiasis

Fc epsilon RI signaling pathway

TNF signaling pathway

Fc gamma R-mediated phagocytosis
B cell receptor signaling pathway
Natural killer cell mediated cytotoxicity
Fluid shear stress and atherosclerosis

Epstein-Barr virus infection

Chagas disease (American trypanosomiasis)

Tuberculosis

T cell receptor signaling pathway PI3K-Akt signaling pathway

Legionellosis

Toll-like receptor signaling pathway

Aldosterone-regulated sodium reabsorption

Primary immunodeficiency

Antigen processing and presentation Protein digestion and absorption

Mouse Notch KO and Human ni and ulcus

Cell adhesion molecules (CAMs)

Phagosome

Viral myocarditis

Antigen processing and presentation Human T-cell leukemia virus 1 infection

Graft-versus-host disease Type I diabetes mellitus Allograft rejection

Epstein-Barr virus infection Autoimmune thyroid disease

Toxoplasmosis

Inflammatory bowel disease (IBD)

Leishmaniasis Tuberculosis Amoebiasis

Leukocyte transendothelial migration Cytokine-cytokine receptor interaction

Viral protein interaction with cytokine and cytokine receptor

Hematopoietic cell lineage
Th1 and Th2 cell differentiation

Aldosterone-regulated sodium reabsorption

TNF signaling pathway

Malaria

Th17 cell differentiation

[Mouse Notch KO] and [Human ni]:

Human immunodeficiency virus 1 infection

[Mouse Notch KO] and [Human ulcus]:

Protein digestion and absorption

ECM-receptor interaction

AGE-RAGE signaling pathway in diabetic complications

Metabolism of xenobiotics by cytochrome P450

MAPK signaling pathway

Pentose and glucuronate interconversions Drug metabolism - cytochrome P450

PI3K-Akt signaling pathway Proteoglycans in cancer

[Mouse Notch KO unique]

Human papillomavirus infection

Renin secretion Cellular senescence Focal adhesion Metabolism of xenobiotics by cytochrome P450

Chemical carcinogenesis Rap1 signaling pathway Glutathione metabolism

Drug metabolism - cytochrome P450 Ascorbate and aldarate metabolism

Arachidonic acid metabolism MAPK signaling pathway

Pertussis

Pentose and glucuronate interconversions

Steroid hormone biosynthesis

Influenza A

Transcriptional misregulation in cancer Arginine and proline metabolism

Toxoplasmosis

Tryptophan metabolism African trypanosomiasis

Human T-cell leukemia virus 1 infection Valine, leucine and isoleucine degradation

Platelet activation VEGF signaling pathway

Inflammatory mediator regulation of TRP channels

Carbohydrate digestion and absorption
Pathogenic Escherichia coli infection
Drug metabolism - other enzymes
EGFR tyrosine kinase inhibitor resistance
Glycosaminoglycan biosynthesis - chondroitin

sulfate/dermatan sulfate ECM-receptor interaction Proteoglycans in cancer IL-17 signaling pathway TGF-beta signaling pathway

Antifolate resistance

PD-L1 expression and PD-1 checkpoint pathway in cancer

Gap junction

Dilated cardiomyopathy (DCM)

Salivary secretion

cGMP-PKG signaling pathway Human cytomegalovirus infection

Small cell lung cancer cAMP signaling pathway Pathways in cancer Colorectal cancer

Arrhythmogenic right ventricular cardiomyopathy (ARVC)

Adrenergic signaling in cardiomyocytes

Insulin secretion

Herpes simplex virus 1 infection Other types of O-glycan biosynthesis Hypertrophic cardiomyopathy (HCM)

p53 signaling pathway Calcium signaling pathway

ABC transporters

Cell cycle

Kaposi sarcoma-associated herpesvirus infection

Chronic myeloid leukemia

Porphyrin and chlorophyll metabolism

Breast cancer Prion diseases Supplemental Table 2: Quantitative PCR Primer sequence

Primer Name	Sequences (5'—> 3')
Gapdh_ F	CTGCCCAGAACATCATCCCT
Gapdh_ R	ACTTGGCAGGTTTCTCCAGG
Ncstn_F	AGCCAAGCCCAACTCAACTT
Ncstn_R	CAAGCCGTTGCCCAGTTCAT
RBPJ_F	TGGCAACAGCGATGACATTG
RBPJ_R	TCGTTCCTGAAGCAATGCAC
Hey1_F	TGCAGATGACTGTGGATCACC
Hey1_R	AAACCCCAAACTCCGATAGTCC
Itga4_F	GTAGCCGTTGGTGCATTTCA
Itga4_R	TGTAGCCTGGGACCTCTTTG
Itga9_F	TTCCTGCCAGGCTCCATCAA
Itga9_R	CCACATCAGCCGTCAGATTG
Itgb8_F	GCTTTTCTGACTGCTGCACT
Itgb8_R	GGCACAGGAGACCACATTTG
Itga1_F	GGCCAGAAGGGGAGTGAAAA
Itga1_R	GGGCTCACTTGCGATTGATT
Prlc_F	TAGCGGTGACGCATGGGCTG
Prlc_R	CTGCCAGCAGGTCCTCATCA
Bgn_F	CTCTGACTTGGGTCTGAAGACT
Bgn_R	TGCTGGAGGCCTTTGAAGTCAT
Dcn_F	TTCCTACTCGGCTGTGAGTC
Dcn_R	AAGTTGAATGGCAGAACGC
ZO-1_F	CCACCTCTGTCCAGCTCTTC
ZO-1_R	AGTTGGTGGTCTGAAAGTTGCT
Dusp4_F	CGTGCGCTGCAATACCATC
Dusp4_R	CTCATAGCCACCTTTAAGCAGG