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Supplemental Methods 
 
Cell culture cytokine analysis 

Peripheral blood mononuclear cells (PBMC) from previously genotyped wildtype CLEC7A 

subjects (AA) and CLEC7A heterozygotes (AC) at an initial concentration of 5 x106 were thawed 

from -80ºC and rested overnight. Cells (1x105) were incubated for 4 hours in R10 media (RPMI 

supplemented with 10% human serum) with the dectin-1 agonist zymosan (10 ug/mL, Sigma-

Aldrich, #58856-93-2) and tacrolimus (10 ng/ml, VWR International), or with 150 ul of R10 media 

as a negative control. Cytokines were measured from supernatant using multiplex ELISA 

(Discovery Assay, Eve Technologies).  
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Supplemental Results 
 

Cytokine production is intact in CLEC7A variants following zymosan stimulation 

Cytokines important for CD4 T-cell signaling were measured from cell culture supernatant after 

stimulation with the dectin-1 agonist zymosan. Because zymosan also signals via TLR-2 in an 

NFAT-dependent manner, which may be inhibited by tacrolimus immunosuppression, we also 

included tacrolimus in the stimulation assays. The results of experiments from 8 subjects 

heterozygous for CLEC7A AC loss-of-function polymorphisms and 8 subjects with wildtype 

CLEC7A genotypes are displayed in Supplemental Figure 1.  Several cytokines in supernatant 

were increased after 4 hours of stimulation compared to control: IL-1, IL-6, IL-8, IL-10, IL-13, IL-

17, IL-23, and TNF𝛼. Notably, IFN-gamma, IL-2 and IL-12 concentrations were too low to detect 

reliably in this assay. No statistically significant differences in cytokine production was observed 

between genotypes after adjustment for multiple comparisons.  

 
Y238X carriers were more likely to experience an increase in chronic immunosuppression 

after bronchoscopy. 

This database contained 1134 bronchoscopy encounters for 220 subjects with a median of 16 

bronchoscopies documented per subject. Bronchoscopies were most often performed for 

surveillance purposes with cough being the most reported sign or symptom at the time of 

bronchoscopy. We had 246 cases of acute cellular rejection with 61% occurring within the first 

year following transplantation. The most common type of pathogen identified was bacteria; 

though, the most common organism was Rhinovirus (n = 99). The most common fungus identified 

was Aspergillus. Details of the classes of microbes identified during the study period can be found 

in Supplemental Table 3.  There were no differences in the frequencies of bacteria, fungus, virus, 

or Acid Fast Bacillus isolated by genotype. Supplemental Figure 3 contains the results from the 

generalized estimating equation analysis comparing bronchoscopy endpoints between Y238X 
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carriers and subjects without dectin-1 polymorphisms. We found no statistically significant 

differences between bronchoscopy indication, signs and symptoms, or pathology findings 

between the dectin-1 genotypes.  Compared to wildtype subjects, dectin-1 carriers were 3.2 times 

more likely to experience an increase in chronic immunosuppression following bronchoscopy (CI 

1.4-7.6, p = 0.008) and 0.6 times less likely to be treated for an acute infection (CI 0.3-0.9, p = 

0.027).  
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Supplemental Figure 1. Similar cytokine production following stimulation between Y238X 
variant AC and CLEC7A wildtype individuals. Box and whisper plots depict cytokine 
concentrations of cell culture supernatant after 4 hours of zymosan and tacrolimus stimulation 
from dectin-1 wildtype (AA, green, n = 8) and heterozygous (AC, orange, n = 8) subjects. Several 
cytokines in supernatant were increased after 4 hours of stimulation compared to control. There 
was no difference in the concentration of TNF-alpha after stimulation. Differences were assessed 
by Student’s t-test adjusted for multiple comparisons as described by Benjamini and Hochberg. 
*In an analysis unadjusted for false discover rate (fdr), IL-23 was increased in the stimulated 
dectin-1 heterozygous supernatant (36 IQR 29 - 38 pg/mL) compared to stimulated wildtype 
supernatant (25 IQR 16 - 26 pg/mL, p = 0.04 fdr unadjusted, p = 0.1 fdr adjusted).   
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Supplemental Figure 2: Subject inclusion and exclusion diagram for the UCSF cohort.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Lung transplants at UCSF 
1/1/2000 to 9/17/2017

n = 619 

Genotyped subjects
n = 321

Bronchoscopy clinical 
analysis n = 220

125 not approached
6 refused consent
165 no DNA sample available
2 died before discharge

31 died before enrollment
70 no bronchoscopies

Survival and CLAD
analysis n = 321
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Supplemental Figure 3: Associations between dectin-1 genotypes and bronchoscopy procedure 

indication and outcome. There were no differences in bronchoscopy indication, signs symptoms 

at bronchoscopy encounter, or pathology findings from transbronchial biopsy.  Dectin-1 carriers 

(AC and CC) demonstrated decreased odds of being treated with antimicrobials (OR 0.6, CI 0.3-

0.9, p = 0.027) and increased odds of undergoing an increase in their chronic immunosuppression 

(OR 3.2, CI 1.4-7.6, p = 0.008) compared to wild type subjects.  Legend: ↓ Spirometry = changes 

in forced vital capacity or forced expiratory volume in 1 second,	↑	Chronic Meds = increased 

chronic immunosuppression. 
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Supplemental Table 1: Dectin-1 Protein by CLAD Phenotype. Samples from this nested 

analysis are from the UCSF cohort and were matched on age and time after transplant.  

 
 CLAD No CLAD p value 
Subjects (n) 25 20  
Age at transplantation,  
mean years ± SD 

56 ± 11 
 

56 ± 13 0.73 

Male gender (%) 50 56 0.73 
Transplant type: N (%)   0.74 
     Double 22 (88) 18 (90)  
     Heart and Lung 0 0  
     Single 3 (12) 2 (10)  
Race/Ethnicity: N (%)   0.79 
     Caucasian 18 (72) 16 (80)  
     African American 0 0  
     Hispanic 5 (20) 2 (10)  
     Other 2 (8) 1 (5)  
Transplant indication group: N (%)   0.73 
     A (COPD) 6 (24) 4 (20)  
     B (Pulmonary Hypertension) 2 (8) 1 (5)  
     C (Cystic Fibrosis) 0 0  
     D (Pulmonary Fibrosis) 18 (72) 15 (75)  
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Supplemental Table 2: Characteristics of subjects included in prospective bronchoscopy 

analysis and immunophenotyping analysis compared to subjects not included from genotyping 

cohort.   

 

 Entire 
Cohort 

Bronchoscopy 
Analysis 

p  

Subjects: N 321 220  
CLEC7A genotypes   0.72 
      AA   280 192  
      AC&CC 41 28  
Age at transplant,  
mean years ± SD 

55 ± 12 55 ± 12 .35 

Male gender (%) 54 57 0.07 
Transplant type: N     0.81 
     Double 288   198  
     Other 33 22  
Race/Ethnicity: N    0.07 
     Caucasian 241 158  
     Other 80 62  
Indication: N     0.1 
     D (IPF) 210 156  
     A,B,C 111 64  
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Supplemental Table 3: Findings of the bronchoscopy culture data showing no differences 

between genotypes in the frequencies of the 10 most commonly isolated microbes on 

bronchoscopy.  There was also no difference in the frequency of isolation of any bacteria, virus, 

fungus, or Acid Fast Bacillus. There were 1134 bronchoscopies performed during the study 

period (AA genotype, n=999; AC and CC genotypes, n = 135).   

 
Microbe AA genotype AC or CC genotype p value 
Penicillium 187 22 0.6 
Rhinovirus 90 9 0.5 
Aspergillus species 83 11 1 
Haemophilus parainfluenza 68 7 0.6 
Pseudomonas aeruginosa 50 5 0.7 
Staphylococcus aeruginosa 27 2 0.6 
Stenotrophomonas 
maltophilia 

21 6 0.2 

Mycobacterium gordonae 12 3 0.6 
Escherichia coli 10 0 0.5 
Klebsiella species 9 1 1 
Any bacteria 975 128 0.1 
Any virus 125 15 0.8 
Any fungus 341 40 0.3 
Any Acid Fast Bacilli 18 4 0.6 
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