Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Glucose in the hypothalamic paraventricular nucleus regulates GLP-1 release
Yue Ma, … , Waljit S. Dhillo, James Gardiner
Yue Ma, … , Waljit S. Dhillo, James Gardiner
Published March 31, 2020
Citation Information: JCI Insight. 2020;5(8):e132760. https://doi.org/10.1172/jci.insight.132760.
View: Text | PDF
Research Article Endocrinology Neuroscience

Glucose in the hypothalamic paraventricular nucleus regulates GLP-1 release

  • Text
  • PDF
Abstract

Glucokinase (GK) is highly expressed in the hypothalamic paraventricular nucleus (PVN); however, its role is currently unknown. We found that GK in the PVN acts as part of a glucose-sensing mechanism within the PVN that regulates glucose homeostasis by controlling glucagon-like peptide 1 (GLP-1) release. GLP-1 is released from enteroendocrine L cells in response to oral glucose. Here we identify a brain mechanism critical to the release of GLP-1 in response to oral glucose. We show that increasing expression of GK or injection of glucose into the PVN increases GLP-1 release in response to oral glucose. On the contrary, decreasing expression of GK or injection of nonmetabolizable glucose into the PVN prevents GLP-1 release. Our results demonstrate that gluco-sensitive GK neurons in the PVN are critical to the response to oral glucose and subsequent release of GLP-1.

Authors

Yue Ma, Risheka Ratnasabapathy, Ivan De Backer, Chioma Izzi-Engbeaya, Marie-Sophie Nguyen-Tu, Joyceline Cuenco, Ben Jones, Christopher D. John, Brian Y.H. Lam, Guy A. Rutter, Giles S.H. Yeo, Waljit S. Dhillo, James Gardiner

×

Full Text PDF

Download PDF (3.35 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts