Supplemental Figures

Figure S1 Top differentially-expressed genes between matched control and CLTI patient pro-arteriogenic Mo/M Φ s. Heatmap depicting the top 20 differentially-expressed genes between matched control (n=6) and CLTI patient (n=5) pro-arteriogenic Mo/M Φ s. Columns represent biological replicates, and rows represent genes. Gene expression is illustrated using pseudocolour scale (-2 to 2) with yellow representing high expression, and the blue representing low expression. Clustering between genes is determined using Euclidean distance metric. Mo/M Φ , monocyte/macrophage; CLTI, chronic limb threatening ischemia.

Figure S2 Optimization of *Htatip2* **siRNA transfection.** (A) The efficiency of siRNA silencing of *Htatip2* expression in iBMMs was determined by qPCR. (B) Cell death in siRNA-transfected iBMMs was quantified by 7-AAD staining using flow cytometry. (C) The duration of *Htatip2* silencing was quantified by qPCR, with relative *Htatip2* expression normalized to *Actb* and *Gapdh* expression over 7days following siRNA transfection. (D) Duration of Htatip2 silencing as determined by flow cytometry at day 3 (left) and day 7 (right) post-transfection in si*Htatip2*-treated Tie2-iBMMs (red peak) compared with si*Control*-treated cells (blue peak). Data information: In (A) and (C) Ct values of *Htatip2* mRNA was normalized to expression of *Actb* and *Gapdh* (n=3/group). The percentage of *Htatip2* mRNA silencing achieved was determined by comparing with cells transfected with a control siRNA. *Htatip2*, HIV-1 Tat interactive protein-2; iBMM, immortalized bone marrow macrophage; 7-AAD, 7-aminoactinomycin D; *Actb*, β-actin.

Figure S3 mRNA expression of pro-arteriogenic factors following *Htatip2* silencing in

Tie2-iBMMs. Relative mRNA expression of *Cd44*, *Fgf2*, *Icam1*, *Pdgf-b*, *Plgf* and *Egf* in si*Control* and si*Htatip2* Tie2-iBMMs (n=5-10/group). Expression is normalized to expression of *Actb* and *Gapdh* reference genes. P>0.05 by Mann-Whitney test. *Htatip2*, HIV-1 Tat interactive protein-2; *Plgf*, Placental growth factor; iBMM, immortalized bone marrow macrophage.

Figure S4 Gating strategy for pro-arteriogenic Mo/MΦs isolation by FACS. (A and B) Pro-arteriogenic Mo/MΦs were isolated by FACS following selection of single cell events and subsequent selection of CD14⁺ and CD2/CD3/CD19/CD56⁻ cells based on gating set by appropriate isotype controls. (C) TIE2⁺ monocytes were stringently selected for based on isotype control fluorescence for gating. Mo/MΦ, monocyte/macrophage; FSC, forward scatter; SSC, side scatter.

Figure S5 Tie2-iBMMs have pro-angiogenic function. (A-C) Light microscopy images of CD31⁺ HUVEC tubule formation following co-culture with GFP-iBMMs (A), Tie2-iBMMs (B) and 100ng/ml VEGF (C) using a 4X objective lens. (D and E) Length (D) and area (E) of endothelial cell tubule formation following co-culture with GFP-iBMMs, Tie2-iBMMs or 100ng/ml VEGF (n=12/group). (F) Quantification of GFP-iBMM and Tie2-iBMM-secreted MCP-1 by ELISA (n=6/group). Data in D&E are presented as mean ± SEM. Data in F represents mean ± SD. *P<0.05 **P<0.01 ***P<0.001 ***P<0.001 by t-test or Kruskal-Wallis and Dunn's Multiple Comparison Test. iBMM, immortalized bone marrow macrophage; MCP-1, monocyte chemoattractant protein-1.

Supplemental Tables

Gene	Fold-Change	P-value	
FIS1	-139.17	0.0278	
ARL3	-82.77	0.0051	
KCNAB2	-82.74	0.0029	
TP53l3	-81.17	0.0048	
SMG9	-74.99	0.0057	
MKRN1	-60.23	0.0119	
PDCD5	-57.97	0.0059	
SDF4	-51.05	0.0092	
LING03	-49.83	0.0113	
CAMK1	-47.72	0.0162	
MTHFS	42.29	0.0026	
PAPD7	43.62	0.0151	
TMEM106A	46.81	0.0016	
ALDH9A1	49.91	0.0032	
PHF17	53.12	0.0019	
PRPS1	60.37	0.0031	
МСМ3	69.17	0.0016	
HMGN4	73.99	0.0015	
AMY1C	75.15	0.0041	
PDE6B	166.47	<0.0001	

Table S1: Table of top 20 differentially expressed genes between CLTI and control patient pro-arteriogenic Mo/MΦs

Table S2: Top differentially expressed angiogenesis-associated genes between CLTI and control patient pro-arteriogenic Mo/MΦs

Gene	Fold-Change	P-value	
HIPK1	-34.72	0.0003	
PML	-13.36	0.0192	
PTEN	-7.80	0.0343	
TNFRSF12A	-6.13	0.0383	
LECT1	-6.04	0.0084	
EDNRA	-4.78	0.0175	
GTF2I	4.17	0.0495	
МАРКЗ	5.48	0.0288	
DDAH1	7.32	0.0322	
HTATIP2	9.24	0.0466	
ROCK1	11.50	0.0231	
NF1	15.41	0.0386	

Classification	Group	P-value	No. of genes
GO biological process	GO:0043982: histone H4-K8 acetylation	0.0001	5
GO molecular function	GO:0010485: H4 histone acetyltransferase activity	<0.0001	5
GO cellular component	GO:0043229: intracellular organelle	0.0005	346
KEGG pathways	Protein processing in endoplasmic reticulum	0.0383	15
IPA pathways	Retinoic acid Mediated Apoptosis Signaling	0.0084	7
Network	Embryonic Development, Organismal Development, Development	Tissue	27

Table S3: Most significantly enriched functional groups in differentially expressed genes between CLTI patients and controls in TIE2^{-νe} Mo/MΦs

Table S4: Most significantly enriched functional groups in differentially expressed genes between CLTI patients and controls in pro-arteriogenic (TIE2^{+νe}) Mo/MΦs

Classification	Group	P-value	No. of genes
GO biological process	GO:0071704: organic substance metabolic process	<0.0001	233
GO molecular function	GO:0050897: cobalt ion binding	0.0001	3
GO cellular component	GO:0043226: organelle	<0.0001	372
KEGG pathways	Ubiquitin mediated proteolysis	0.0129	10
IPA pathways	Thyroid Cancer Signaling	0.0107	5
Network Cell Morphology, Cellular Assembly and Organization, Cell Cycle			31

Table S5: Patient data for microarray samples

Characteristic	CLI patients (n=5)	Control patients (n=6)
Age (range)	53-92 years (mean 73.8 years)	62-86 years (mean 72.6 years)
Rutherford score //	′ 2 (40%)	0 (100%)
V	′ 3 (60%)	0 (100%)
Male	2 (40%)	6 (100%)
Positive smoking history	4 (80%)	2 (33%)
Hypertension	3 (60%)	3 (50%)
Hyperlipidemia	5 (100%)	3 (50%)

Table S6: qPCR primer details

Gene target	Accession number	Forward primer sequence	Reverse primer sequence
ACTB	NM_0011	CCAACCGCGAGAAGATGA	CCAGAGGCGTACAGGGATAG
RPLPO	NM_001002	TCTACAACCCTGAAGTGCTTGAT	CAATCTGCAGACAGACACTGG
МАРКЗ	NM_002746	CCCTAGCCCAGACAGACATC	GCACAGTGTCCATTTTCTAACAGT
HTATIP2	NM_001098523	TCGTCTTTCAAAGTAATCCTTGAGT	GCGATAATCACAATAGGCAAAA

Table S7: siRNA oligonucleotide sequences used for silencing Htatip2

siRN	A	Target Sequence
Cont	trol	AATTCTCCGAACGTGTCACGT
Htati	ip2-1	TTCGAGGAGGAAGCTTATAAA
Htati	ip2-2	CAGGTTTATATCATAGACTTA
Htati	ip2-3	CAGGAGGGTGCAAACATTTCA

Htatip2-4 AGCCAAGGTTGAAGAATTAAA

Table S8: siRNA oligonucleotide sequences used for silencing HTATIP2

- siRNA Target Sequence
- CONTROL AATTCTCCGAACGTGTCACGT
- HTATIP2-1 CACTTACCGACCAATCTTT
- HTATIP2-2 CTAGCAATGAGACATAAAT
- HTATIP2-3 CCTCCCTAAACAAGCACAA

Antigen	Conjugate	Supplier	Assay
0			Concentration/Dilution
TIE2	PE	R&D Systems	1:10
		#FAB3131P	
CD2	V450	BD Biosciences	0.5µg/ml
		#644485	
CD3	V450	BD Biosciences	0.5µg/ml
		#560351	
CD14	FITC	BD Biosciences	2µg/ml
		#555397	
CD19	V450	BD Biosciences	0.5µg/ml
		#560353	
CD56	V450	BD Biosciences	0.5µg/ml
		#560360	
NRP1	APC	Miltenyi Biotec	7.5µg/ml
		#130-113-515	
Tie2	PE	Biologend	5µg/ml
		#124008	
Nrp1	APC	Miltenyi Biotec	7.5µg/ml
		#130-105-659	
Vegfa	Unconjugated	Abcam	3µg/ml
		#ab52917	
Angiopoietin-1	APC	AssayPro	1.5µg/ml
		#32215-05161	
HTATIP2	Unconjugated	Abcam	1.75µg/µl
		#ab177961	
Laminin	AlexaFluor488	Novus Biologicals	20µg/ml
		#NB300-144G	
CD31-PECAM	Unconjugated	BD Pharminogen	5µg/ml
		#553370	
α-SMA	СуЗ	Sigma Aldrich	10µg/ml
		#C6198	
pErk	Unconjugated	Cell Signalling	1:1000
		Technology #9101S	
Histone H3	Unconjugated	Cell Signalling	1:1000
		Technology #9717	
CD31-PECAM	Unconjugated	R&D Systems	0.5µg/ml
		#BBA7	
Rabbit anti-mouse	Alkaline	Novus Biologicals	2µg/ml
lgG1	phosphatase	#NBP1-72672	
Horse anti-mouse	HRP	Cell Signalling	1:2000
lgG		Technology #7076	
Goat anti-rabbit IgG	HRP	Cell Signalling	1:2000
		Technology #7074	/ .
Donkey anti-rat IgG	СуЗ	JacksonImmunoResearch	75µg/µl
		#712-166-150	/ .
Donkey anti-rabbit	APC	JacksonImmunoResearch	75µg/µl
IgG		#711-136-152	

Table S9: Antibody details