

Genetic deficiency or pharmacological inhibition of miR-33 protects from kidney fibrosis

Nathan L. Price^{1,2,*}, Verónica Miguel^{3,*}, Wen Ding^{1,2}, Abhishek K. Singh^{1,2}, Shipra Malik⁴, Noemi Rotllan^{1,2}, Anna Moshnikova⁵, Jakub Toczek^{1,6,7}, Caroline Zeiss², Mehran M. Sadeghi^{1,6,7}, Noemi Arias⁸, Ángel Baldán⁸, Oleg A. Andreev⁵, Diego Rodríguez-Puyol⁹, Raman Bahal⁴, Yana K Reshetnyak⁵, Yajaira Suárez^{1,2}, Carlos Fernández-Hernando^{1,2,#} and Santiago Lamas^{3,#}

¹ Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA.

² Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA.

³ Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain.

⁴ Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA.

⁵ Department Physics, University of Rhode Island, Kingston, Rhode Island, USA.

⁶ Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA.

⁷ Section of Cardiology, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA

⁸ Edward A. Doisy Department of Biochemistry and Molecular Biology and Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, USA.

⁹ Department of Medicine and Medical Specialties, Research Foundation of the University Hospital "Príncipe de Asturias", IRYCIS, Alcalá University, Alcalá de Henares, Madrid, Spain

Running Title: miR-33 in renal fibrosis.

SUPPLEMENTAL INFORMATION

SUPPLEMENTAL FIGURE LEGENDS

Supplemental Figure 1. Renal SREBP2/miR-33 expression is not altered in folic acid and UUO-induce kidney fibrosis.

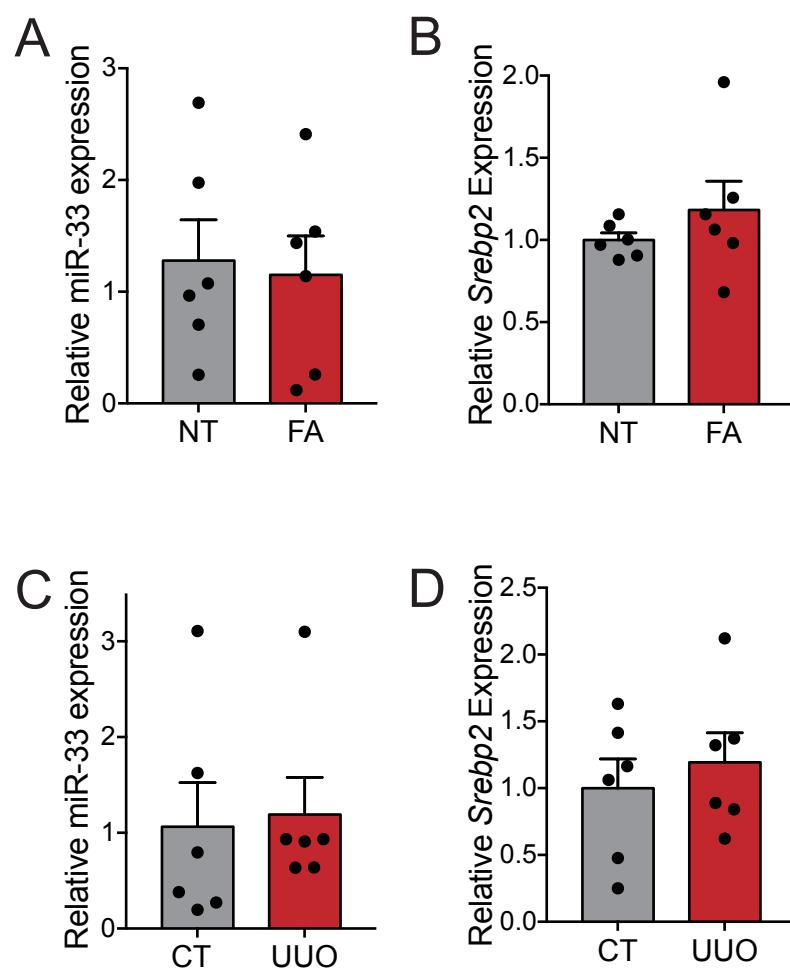
(A-D) *miR-33* (**A** and **C**) and *Srebp2* (**B** and **D**) expression in non-treated (NT) or folic acid (FA) treated mice (**A** and **B**) or in mice that underwent UUO surgery (**C** and **D**) (n=6). Statistical significance was

determined using unpaired two-sided Student's t-test. Data represent the mean \pm S.E.M. of relative expression levels normalized to NT mice or CT kidney.

Supplemental Figure 2. miR-33 is expressed in the kidney and renal TECs. (A) miR-33 expression in several human tissues. Data obtained from the human miRNA tissue atlas project (<https://ccb-web.cs.uni-saarland.de/tissueatlas/>). Red arrow indicates miR-33 expression in the kidney. (B) Functional annotation of mammalian genome (FANTOM5) analysis of miR-33 expression analysis in 400 human primary cells (fanton.grs.riken.jp). Red squares highlight the expression of miR-33 in renal TECs. (C) qRT-PCR analysis of miR-33 expression in mouse primary renal TECs. CT value for the analysis is indicated in red. Statistical significance was determined using unpaired two-sided Student's t-test.

Supplemental Figure 3. miR-33 expression is not affected by TGFB treatment in renal TEC.

qRT-PCR analysis of miR-33 expression in the HKC-8 human renal TEC line treated with TGFB for 24 and 48 h. Statistical significance was determined using non-parametric two-tailed Mann-Whitney U test.

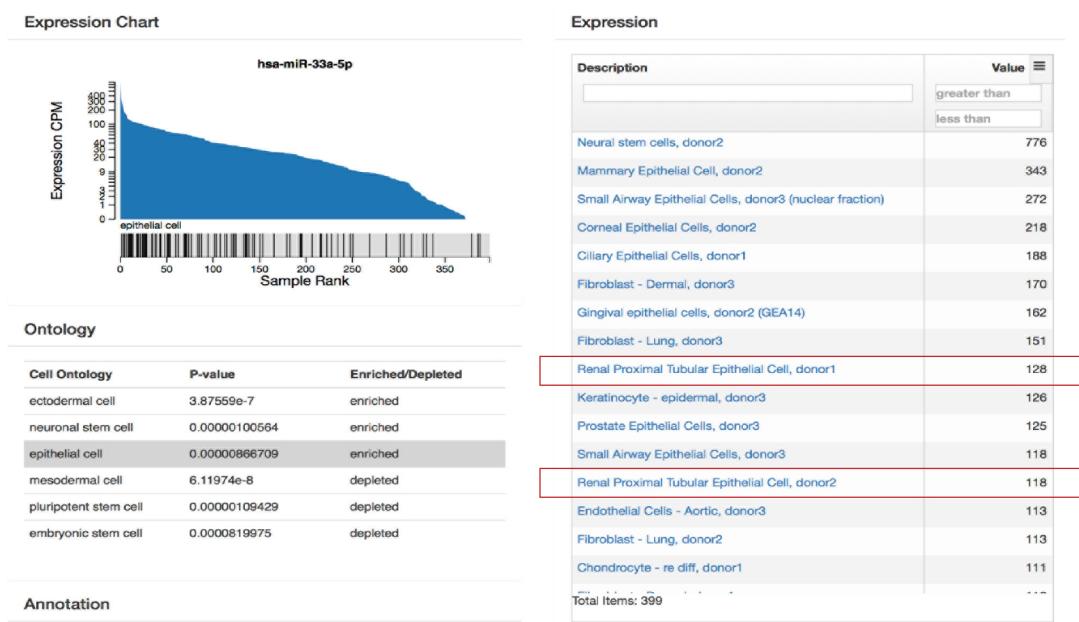

Supplemental Figure 4. Gating strategy used for the analysis of pHLIP association to renal TECs.

Representative dot plot FACS analysis of pHLIP associated to TECs treated with saline (left panel), pHLIP-A546-5K (middle panel) and pHLIP-A546 (right panel). LTL (lotus tetragonolobus lectin)-FITC labelling was used for the identification of renal TECs.

Supplemental Figure 5. miR-33 silencing does not influence renal AMPK and PGC1a expression.

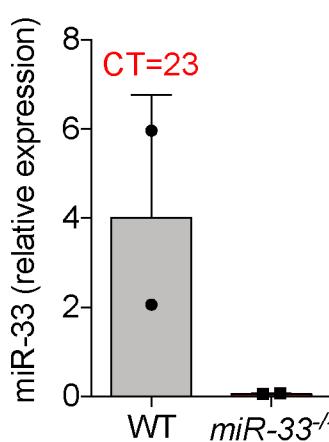
Representative WB analysis of PGC1a, AMPK, p-AMPK and vinculin in kidneys of mice injected with Src^{pHLIP} or anti-miR-33^{pHLIP} treated or not with folic acid.

Supplemental Figure 1

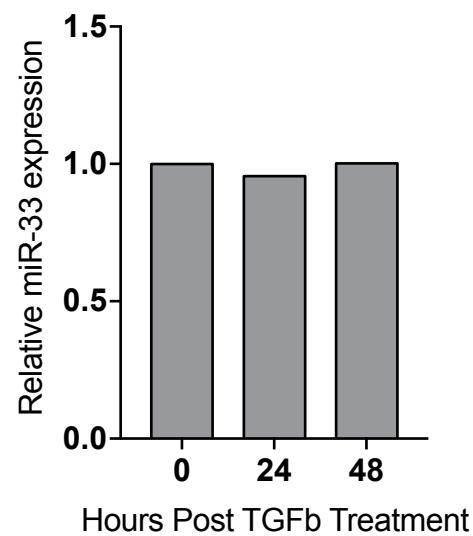


Supplemental Figure 2

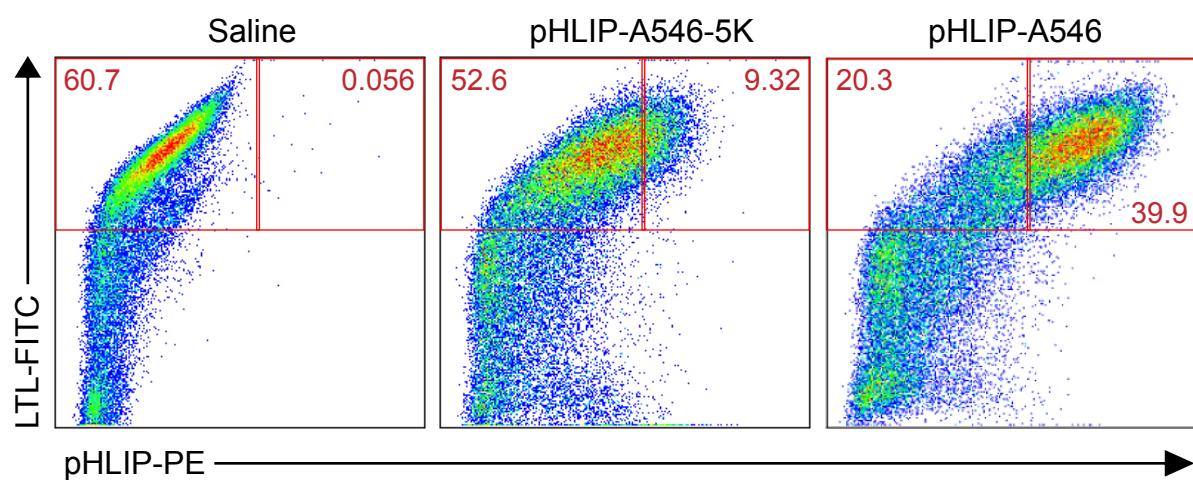
A

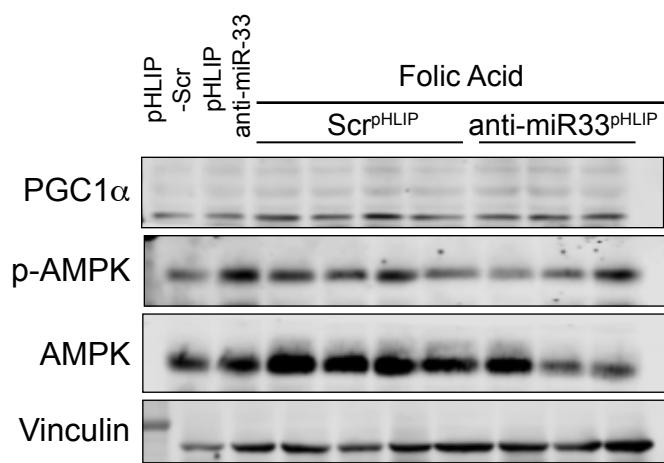


B



fanton.grs.riken.jp


C


Supplemental Figure 3

Supplemental Figure 4

Supplemental Figure 5

Genotyping Primers	
miR-33 Knockout	FW: AGCCTGCTGGCTCTTGAGAC RE: AGCCGCTACCATGACATTCCAG
qPCR Primers	
α SMA	FW: CTGACAGAGGCACCACTGAA RE: CATCTCCAGAGTCCAGCACA
FN1	FW: ACCGACAGTGGTGTGGTCTA RE: CACCATAAGTCTGGGTACG
COL1A1	FW: CTGCTGGCAAAGATGGAGA RE: ACCAGGAAGACCCCTGGAATC
CPT1A	FW: TTGATCAAGAAGTGCCGGACGAGT RE: GTCCATCATGCCAGCACAAAGTT
CROT	FW: ACTGAGAGTGAAGGGCATTGTCCA RE: AATGCCGCTATACTGGGTCCAACA
HADH β	FW: CACTTCGGGTTTGTGCATCGGA RE: GCTGTGGTCATGGCTGGTTGAA
IL-6	FW: AGTTGCCCTTCTGGGACTGA RE: TCCACGATTCCAGAGAAC
IL-1 β	FW: CCAAAATACCTGTGCCCTGG RE: GCTTGTGCTCTGCTTGAG
18s	FW: TTCCGATAACGAACGAGACTCT RE: TGGCTGAACGCCACTTGT
CD68	FW: CCAATTCAAGGGTGGAAAGAAA RE: CTCGGGCTCTGATGTAGGTC
TNF α	FW: CCCTCACACTCAGATCATCTTCT RE: GCTACGACGTGGCTACAG

Supplementary Table 1