Supplementary Materials

Antisense regulation of atrial natriuretic peptide expression Celik et al

> Supplementary Figures Supplementary Tables

Celik et al, Antisense regulation of ANP

Supplementary Figures

Figure S1. *NPPA-AS1* ChIRP of human ventricular tissue. qRT-PCR analysis of human ventricular DNA co-precipitated with probes specific for NPPA-AS1, n=2. Primers specific for six regions in the NPPA promoter (A-E) and a region of the GAPDH promoter were used to quantify the co-precipitated DNA. Mean and standard deviation is indicated.

Figure S2. Quantification of *NPPA-AS1* in RNA immunoprecipitated with a REST antibody. qRT-PCR analysis of RNA immunoprecipitated with either REST or IgG control antibody. N=2 d)

Figure S3. qRT-PCR quantification of *REST* gene expression in iPS-CM transfected with siRNA specific for *NPPA-AS1*. Results are expressed relative to *GAPDH* and normalized to the mean of the control group. Results are based on two separate experiments with three replicates each. Mean and standard deviation is shown.

Figure S4. Effect of stretch on *GAPDH* expression. qRT-PCR C_{T} -values for GAPDH from iPS-CM subjected to 48 hours of stretch or unstretched cells. Data comes from two separate experiments with 4 replicates in each group.

Figure S5. RNA-Seq of human fetal cardiac tissue at different gestational time points (extracted from Gene Expression Omnibus #GSE64283). Fetal tissue was collected at gestational week 10, 11, 17, 18 and 20 and sequenced using Illumina TruSeq Stranded Total RNA with Ribo-Zero Gold sample prep kit. RPKM: Reads per Kilobase Million.

Figure S6. a) Expression of Nppa and Nppa-as in mouse atria and ventricles. RNA was extracted from atria and ventricles of mouse hearts (n=8) and qRT-PCR was used to assess the relative levels of *Nppa* and *Nppa-as*.Results are expressed relative to Gapdh. Mean and standard deviation is shown. b) Overview of the Nppa locus including ENCODE/Caltech Rest ChIP-Seq data from the mouse myocyte cell line C2C12.

Figure S7. Assessment of toxicity of GapmeR injections. Mice were injected subcutaneously with PBS or 25 mg/kg of G5 or negative control Gapmer. 48 hours after injection, body weight (a), liver (b) and kidney (c) weight was recorded. Plasma alanine aminotransferase (d) was analyzed in a subset of animals.

Figure S8. *Nppa and Nppa-as expression in GapmeR-injected mice. Nppa* and *Nppa-as* expression levels in ventricular tissue of mice injected intraperitoneally with different doses of GapmeR5 (G5) or 25 mg/kg negative control (NC) for 48h. Results are expressed relative to *Gapdh* and normalized to the mean of the negative control group (n=5-13). Mean and standard deviation is shown. Kruskal-Wallis was used to test the difference between animals treated with negative control and each of the G5 doses, as well as within G5 treatment groups. *p<0.05 after adjustment for multiple comparisons using Dunn's test.

Supplementary Tables

Supplementary Table 1. Primer and probe sequences

NPPA-AS1 FISH Probes

Probe ID	Sequence
NPPA-AS_1	agcaaggtgtccgatgactc
NPPA-AS_2	tctgatggttcaaaaccacc
NPPA-AS_3	ggggaagtcagaaaagtcca
NPPA-AS_4	caggaagtgggaagatcctt
NPPA-AS_5	tgattctacctctgcttctg
NPPA-AS_6	aaagatggccaggaacactg
NPPA-AS_7	ccgggttctctaggaaagta
NPPA-AS_8	aagtccctctcacacattta
NPPA-AS_9	tgtatgttgtcactggcatc
NPPA-AS_10	attcctaaacctagtcatga
NPPA-AS_11	ttgagaattttctcagtgcc
NPPA-AS_12	gtcccaaataagggaaggac
NPPA-AS_13	tagcgaggataccgtgttaa
NPPA-AS_14	gagtgtttcccttaaaacca
NPPA-AS_15	aaaccacagggcaagaccag
NPPA-AS_16	ggcggtggttctaaggagag
NPPA-AS_17	tatcagattgaccatccagg
NPPA-AS_18	ggtagacgtaaatctgatcc
NPPA-AS_19	gcagatggagagaaagctgc
NPPA-AS_20	gttactgggagactgggaat
NPPA-AS_21	gcttcatcaggaagacggag
NPPA-AS_22	tgatgccaagatcctctgag
NPPA-AS_23	ctgctttcagctaactttgg
NPPA-AS_24	agagttgagtgaagctgctt
NPPA-AS_25	gctcagaagtgcttcctttc
NPPA-AS_26	tgttcatctttcagtggtca
NPPA-AS_27	tgctagcaggaggagatgaa
NPPA-AS_28	caatctgtgtgtggggcaac
NPPA-AS_29	agcagatcagagacagaggc
NPPA-AS_30	tgatggaacagccacttctg
NPPA-AS_31	atggatgcaggagctgaact
NPPA-AS_32	attccactcagaacacttgg
NPPA-AS_33	ccttgtcgttttactctttg
NPPA-AS_34	ggaagagaattcaggccgat
NPPA-AS_35	aagacaaatgcctgcgttgg
NPPA-AS_36	gctgttactgaaagtggttt
NPPA-AS_37	cttgatttcctccaagtcag
NPPA-AS_38	aaggtagggccaggaaagcg
NPPA-AS_39	caacgcagacctgatggatt
NPPA-AS_40	agagctaatcccatgtacaa

NPPA-AS1 ChIRP Probes		
Probe ID	Sequence	
NPPA-AS1_1	gctctgatggttcaaaacca	
NPPA-AS1_2	caaagatggccaggaacact	
NPPA-AS1_3	cctagtcatgaactgtatgt	
NPPA-AS1_4	gagtgtttcccttaaaacca	
NPPA-AS1_5	gaccatccaggggttattag	
NPPA-AS1_6	agaaacgtgttactgggaga	
NPPA-AS1_7	ctttcagctaactttggtgg	
NPPA-AS1_8	tcatctttcagtggtcactg	
NPPA-AS1_9	caatctgtgtgtggggcaac	
NPPA-AS1_10	cagatcagagacagaggccg	
NPPA-AS1_11	aattccactcagaacacttg	
NPPA-AS1_12	ggaagagaattcaggccgat	
NPPA-AS1_13	cttgatttcctccaagtcag	
NPPA-AS1_14	agagctaatcccatgtacaa	

Ribonuclease protection assay primers

Primer ID	Sequence
Overlapping FWD	gacacggcattgtacatggg
Overlapping REV	agcagtggattgctccttga
Non-overlapping FWD	gggcagatcgatcagaggag
Non-overlapping REV	tagaagatgaggtcgtgccc

Site-directed mutagenesis primers		
Primer ID	Sequence	
dREST_FWD	ggagggtcgcgggggacatggaag	
dREST_REV	gaggacgcagccaatttcatttcttccgtt	
dREST_Seq_FWD	gtcattctattctggggg	
dREST_Seq_REV	ttgttctcggtgggcttggc	

Celik et al, Antisense regulation of ANP

Supplemental Table 1. Primers and probe sequences. Continued.

Primers for ChIRP and ChIP-	qPCR
Primer ID	Sequence
Region A FWD	gagagacagaaccctcccc
Region A REV	caagccctgcgggatgataa
Region B FWD	gttatcatcccgcagggctt
Region B REV	acacctttgaagtgggagcc
Region C FWD	tgactcaagaggctcccact
Region C REV	acggcggtgagataaccaag
Region D FWD	aaacagagggtgacgcttgg
Region D REV	tatttggaggccctgacagc
Region E FWD	ctctccatggtcaggcgaaa
Region E REV	tggagagaggatgcttgtgc
Region F FWD	agaggacgcagccaatttca
Region F REV	tcctccatcggtcaagttgc
GAPDH Promoter FWD	cgggattgtctgccctaattat
GAPDH Promoter REV	gcacggaaggtcacgatgt
NPPA-AS1 Promoter FWD	tcaccgttgtctgtttctccc
NPPA-AS1 Promoter REV	caatggccgatggcaacaac
NPPA-AS1 5' FWD	gcttctgttgttgccatcgg
NPPA-AS1 5' REV	cagaaaatgcccctgggact
NPPA-AS1 GB1 FWD	ggcgaggaagtcaccatcaa
NPPA-AS1 GB1 REV	ccaggtcaccaagccagata
NPPA-AS1 GB2 FWD	gggcagatcgatcagaggag
NPPA-AS1 GB2 REV	tgaggtttatccctttccctgt
NPPA-AS1 3' FWD	gagagacagaaccctcccca
NPPA-AS1 3' REV	acggcggtgagataaccaag